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Abstract: Dark septate endophytes (DSEs) fungi are beneficial to host plants with regard to abiotic
stress. Here, we examined the capability of SWIR spectroscopy to classify fungus types and detected
the growth stages of DSEs fungi in a timely, non-destructive and time-saving manner. The SWIR
spectral data of five DSEs fungi in six growth stages were collected, and three pre-processing methods
and sensitivity analysis (SA) variable selection methods were performed using a machine learning
model. The results showed that the De-trending + first Derivative (DET_FST) processing spectra
combined with the support vector machine (SVM) model yielded the best classification accuracy for
fungi classification at different growth stages and growth stage detection on different fungus types.
The mean accuracy of generic model for fungi classification and growth stage detection are 0.92 and
0.99 on the calibration set, respectively. Seven important bands, 1164, 1456, 2081, 2272, 2278, 2448 and
2481 nm, were found to be related to the SVM fungi classification. This study provides a rapid and
efficient method for the classification of fungi in different growth stages and the detection of fungi
growth stage of various types of fungi and could serve as a tool for fungi study.

Keywords: dark septate endophytes (DSEs); fungi identification; preprocessing; support vector
machine (SVM); variable selection

1. Introduction

Endophytes fungi, which mainly inhabit healthy plant tissues, have been widely
noticed due to their diversity and ecological significance in recent years [1]. It is a cru-
cial component in plant root mycobiome and could reveal masked, undiscovered fungal
diversity [2]. Dark septate endophytes (DSEs) are able to alleviate the host plant abiotic
stresses [3] by producing melanized hyphae and microsclerotia in host plant roots which
are crucial for host salt tolerance [4]. However, different DSE species could yield various
influences on their host plant for abiotic stresses [5]. As a result, it is of vital importance
to study the growth characteristics of DSEs and identify various DSEs species, so as to
understand the influence of fungal growth on host plants.

Numerous studies have been carried out on fungal identification and growth charac-
teristics study using traditional techniques, including enzyme assays, time lapse cameras,
cytochemical processing and photo microscopy [6], which are cost- and time-consuming
and often lead to further biological or chemical contamination [7], and are not suitable for
high-throughput and rapid measurement. Therefore, a non-destructive and highly efficient
method is needed.

Near-infrared (NIR) spectroscopy, a vibrational spectroscopy ranged 800–2500 nm,
mainly used in hydrogen-containing groups such as C–H, O–H, N–H and S–H stretching
modes, has received extensive attention for its great potential in many fields [8–11]. In
particular, NIR has been shown to have advantages in the classification of fungi species [12]
and monitoring fungi growth stages [13]. To create a robust and promising classification
model, spectral pre-processing and important variable selections need to be coupled with
pattern recognition algorithms, such as support vector machine (SVM) [14], random forests
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(RF) [15] and multilayer perceptron (MLP) [16]. SVM, a data-driven approach for pattern
recognition tasks, has extended its usage from initially binary classification to multiclass
classification, which allows for a broad range of classification approaches in spectroscopy
and remote sensing [17,18]. RF is also a powerful algorithm that could be used for solving
both classification and regression problems [19]. It was first introduced by Breiman [15]
and has been used in a broad field, including ecology [20], agriculture [21], and fungi
study [22,23]. MLP is a deep learning methodology [24], widely used for classification
and regression in recent years [25,26]. It mainly contains three types of layers: the input
layer, the output layer, and the hidden layer. The input layer will load the input data to be
processed, the output layer needs to be set based on the task of prediction or classification,
and the true computational engine of the MLP is the multiple hidden layers which locate
between the input and output layer. Pattern classification, recognition, prediction, and
approximation are the main uses of MLP [27].

Spectral pre-processing methods are mainly used to reduce the overlapping and
noise influence from the raw NIR spectra which may reduce the model accuracy. The
most common spectral pre-processing methods are block scaling (BS) [28], De-trending
(DET) [28], and first (FST) and second (SED) derivatives [29]. Spectra not only contain the
useful information that could highly contribute to the model accuracy, but also contain
irrelevant variables which may reduce the model accuracy [30]. Therefore, it is crucial to
use the most important variable that is highly correlated with the target traits instead of
the full spectra band. There are many variable selection algorithms available including
genetic algorithm (Ga) [31], Sub-window permutation analysis (SwPA) [32], backward
variable elimination (BVE) [33], significant Multivariate Correlation (sMC) algorithm [34],
and sensitivity analysis (SA) [35]. Among them, the Ga, SwPA, BE, and sMC methods are
mostly applied on the partial least-squares regression (PLSR) algorithm [36–38]. The SA
techniques have been studied for the selection of important variables in recent years [39–41].
The SA method usually considers the effects of both individual input variables and the
interaction among input variables on the output, and it works well on the SVM model for
classification [42].

Although it has been proved that the NIR spectroscopy can be used for fungi detection,
limited research outcome has been found on its use in the classification of different fungal
species in a variety growth stages [12,43]. Lu, Wang, Huang, Ni, Chu, and Li [12] evaluated
and classified five cereal fungi in different growth stages using Visible/Near-Infrared hyper-
spectral imaging and machine learning algorithm ranged from 400 to 1000 nm and yielded a
satisfactory result using SVM model coupled with the successive projection algorithm (SPA)
wavelength selection method. However, to the best of our knowledge, there is no research
that identifies endophytes fungi on the culture medium in different growth stages using the
shortwave NIR spectroscopy (SWIR). SWIR ranges from 1100–2500 nm, which is relatively
low compared to the visible and near-infrared region (VNIR, 400–1100 nm), mainly due to
its lack of sufficient technology and high-cost silicon detectors [44]. However, compared to
the VNIR region, SWIR has the advantages of easy penetrating the atmosphere, sensitive
to the water content, high total transmittance in the atmospheric, and containing many
unique absorption features that are not available in the VNIR [45].

To fill the gap, the study aims to use the SWIR technique combined with machine
learning methodology to evaluate the possibility on the classification of different fungi in
different growth stages, the specific objectives are: (1) comparing the advantages of different
machine learning models to establish an optimal model for fungi species classification;
(2) exploring the possibility of classifying different endophytes fungi in an early stage
and determining the earliest classifiable time; (3) selecting the most relevant wavelengths
correlated with the classification of different endophytes fungi and different growth stages
on model building; (4) testing the possibility of using a mixed growth stage model with
optimal informative variables for a rapid fungi classification.
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2. Materials and Methods
2.1. Sample Preparation

Five strains of Laburnicola rhizohalophila (Figure 1) [46] purchased from the China
General Microbiological Culture Collection Center (CGMCC 3.19615) were propagated on
the modified Melin-Norkrans liquid medium [47] at 28 ◦C for 7 days to obtain the pure
fungi with high vigor and consistent activity. Then, the fungi were inoculated on potato
dextrose agar (PDA) and placed in a mold incubator at 22 ◦C, with 22 identical replicates of
each group. A total of 110 spectra were obtained for each growth stage of five fungi, and a
total of 660 spectra were obtained for five species.
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Figure 1. Five strains of Laburnicola rhizohalophila in the same growth stage.

2.2. SWIR Spectrum Acquisition

To monitor the growth stages of each fungi, the SWIR spectra were collected every two
days with an interval of 1 h from the first day after inoculation. The NIR spectra data were taken
from the top of the Petri dish with a lid using the field-based spectrometer (LF-2500, Spectral
evolution, Haverhill, MA, USA) with a handheld fiber optic contact probe. Each spectrum was
averaged 24 scans and saved in a 6 nm resolution with a range of 1100 to 2500 nm.

2.3. Model Calibration and Validation

SVM, RF, and MLP, three common machine learning methods, were generated to
obtain the optimal classification model for five endophytes fungi. Three different spectral
pre-processing methods and their combination (BS, DET, FST, DET_BS, DET_FST) were
performed on the spectrum of each sample when building classification model to reduce
the effects of overlapping or light noise at different wave numbers [48]. A variable selection
method called sensitivity analysis (SA) [49] was applied to extract the most relevant spectra
variables from the pre-processing or raw spectra that contribute highly to the accuracy of
the classification model. Data were randomly split into three sets: calibration set (60%),
validation set (20%), and test set (20%). To check the stability of overall data on the
classification models, each model with different pre-processing methods and variable
selection methods were repeated 100 times.

2.4. Model Evaluation

To check the quality of the calibration models, four parameters, i.e., overall accuracy
(OA), precision (P), recall (R), and the confusion matrix of each model were generated.
Similar to the study of Li, et al. [50], we used true positives (TP), false positives (FP), true
negatives (TN), and false negatives (FN) calculated from the confusion matrix of each
model. Since the models in this study are for multiclass classification, the confusion matrix
will have a N × N dimension where N is the number of different class labels C0, C1, . . . ,
CN (e.g., N = 5 for fungi in this study). The performance metrics for the OA and the specific
class Ci in the model can be expressed as follows [51]:

OA =

∑
N

i = 1
TP(Ci)

∑
N

i = 1 ∑
N

j = 1
Ci,j

(1)
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R =
TP(Ci)

TP(Ci) + FN(Ci)
(2)

P =
TP(Ci)

TP(Ci) + FP(Ci)
(3)

All of the analyses were conducted using R software [52] integrated with R studio [53].
The caret [54] packages have been used for SVM modeling, the prospectr [55] package for
spectra pre-processing, the rminer package [56] for variable selection, and the ggplot2 [57]
for data visualization.

3. Results
3.1. Fungi Classification in Different Growth Stages

Figure 2 shows the OA results of fungi classification using the SWIR spectra in six
individual growth stages and generic model (generic-D). Regardless of the pre-processing
methods, all the individual growth stage models and the generic model yield a promising
and reliable classification accuracy with the mean OACal higher than 0.9. The DET_FST
and FST pre-processing methods yield the highest mean OACal with a range from 0.92
to 0.99 in all of the models, followed by the DET_BS (range: 0.92–0.99) and DET (range:
0.91–0.99), the BS pre-processing and the original spectra yield the lowest mean OACal
(range: 0.92–0.98). When using the DET_FST processing spectra for model classification,
different growth stages influence the OACal, with the highest mean OACal of 0.99 in D5
and D7. D1 yields the lowest classification result compared to other individual growth
stage models, but still high with the mean OACal of 0.93. The generic-D model using of
all growth stage data yield a satisfactory classification result with the highest mean OACal
of 0.92. The classification error is low in calibration and slightly high in validation from
the 100 simulated models for both generic and individual growth stages. The P and R
of the calibration and validation set using the DET_FST processing spectra in all models
are shown in Figure 3. All of the fungi show a stable PCal and RCal in all different growth
stages, The highest mean PCal and RCal (range: 0.89–1) is found in R22-1 fungi, and A11
shows the lowest mean PCal and RCal (range: 0.77–1) compared to other fungi.
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otherwise in grey.

3.2. Early Detection of Fungi in Different Species

The results of classification on different growth stages using five fungi are shown in
Figures 4 and 5. It can be clearly seen that the growth stages of different fungi have been
successfully detected using various pre-processing methods. All of the models yield a high
mean OACal value ranging from 0.97 to 1. Pre-processing methods have slightly improved
the model accuracy. DET, DET_BS, DET_FST, and FST yield similar mean OACal (range:
0.99–1) in all individual sample model and generic model. Models using BS processing
spectra and original spectra without processing yield promising classification OACal, but
with some OACal outliers from the 100 simulated model. Similarly, when choosing the
DET_FST processing spectra to generate models, the P and R are high in both calibration
and validation set in different types of fungi. All of the P Cal and R Cal in six growth stages
are higher than 0.95. In addition, the generic model (Generic-S) for detecting the different
growth stages using all types of fungi yield a high and promising P Cal and R Cal result for
all growth stages, with P Cal and R Cal mean value ranging from 0.96 to 1. The data show a
stable result with small error in OA, P Cal and R Cal for 100 simulated calibration models.

3.3. Model Comparison

After selecting the best pre-processing method using SVM model, other machine
learning methodologies were also applied and compared to the SVM model using DET_FST
processing spectra. The OA results show that other machine learning models also provide
a stable and promising result in both fungi classification and early detection (Table 1). The
OA value of RFCal and MLPCal are 0.91 and 0.91 in fungi classification and 0.99 and 0.98 in
early detection, respectively.
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Table 1. The mean OA accuracy of 100 simulated generic models for the fungi classification and early
detection using SVM, RF, and MLP methodology and the optimal DET_FST processing spectra.

Model Types Generic Model
OA

Cal Val

Fungi classification
SVM 0.92 0.76
RF 0.91 0.75

MLP 0.91 0.77

Early detection
SVM 0.99 0.92
RF 0.99 0.92

MLP 0.98 0.91

3.4. Model Evaluation for Fungi Classification

The confusion matrixes for fungi classification of various growth stages and the generic
model on the test data set are plotted in Figure 6. The model using the D1 and D3 data shows
the lowest result on test data, with only 0.85 accuracy. As the fungi grow, the classification
accuracy shows a growing trend, with 1 classification accuracy on the D7 and D9, respectively.
The generic model using all growth stages data show slightly low classification accuracy on
the test set (0.91). The most unstable fungi for classification is −19, which has misclassified six
samples to −44, two samples to A11, and seven samples to A8.
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Figure 6. The confusion matrixes of fungi classification for test data of individual growth stages and
the generic growth stages model using DET_FST processing spectra. (A) The generic model; (B) D1
model; (C) D3 model; (D) D5 model; (E) D7 model; (F) D9 model; (G) D11 model. The color changed
from yellow to fuchsia represent different classified numbers.

3.5. Model Evaluation for Early-Stage Detection

The confusion matrixes for the classification of different growth stages using various
fungi and generic fungi models on the test set are shown in Figure 7. All of the models
show a high classification result with accuracy higher than 0.92. Different types of fungi
show a slight difference on the detection of growth stages, The R22−1 and A8 fungi show
an accuracy of 1, followed by the −44 and −19 fungi (accuracy of 0.96). The A11 fungi
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show the lowest classification accuracy of 0.92 on test data. The generic model for different
growth stages shows a high and reliable accuracy on the test data (0.96).
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the generic fungi model using DET_FST processing spectra. (A) The generic model; (B) −19 model;
(C) −44 model; (D) A11 model; (E) A8 model; (F) R22−1 model. The color changed from yellow to
fuchsia represent the different classified numbers.

3.6. Importance Variable Selection

The average of DET_FST processing spectra for five fungi and six growth stages and
the important variables for these two kinds of SVM models are shown in Figure 8. For
the averaged spectra of fungi samples, the region around 1800 to 2000 nm and 1300 nm
are found to have various changes for different fungi types with growth (Figure 8A),
and similar results are also found in the growth date of different fungi (Figure 8B). The
top 10% important spectral variables are labeled in red. Similar important variables are
found for both fungi classification model and growth stage model, which are 1164, 1456,
2081, 2272, 2278, 2442, 2448, and 2481 nm, respectively. The important variables found by
the SA from SVM model are located slightly differently to the change area of DET_FST
processing spectra.
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4. Discussion

The SWIR technology, in our study, has been successfully applied to the DSEs fungi
classification and the early growth stage detection. It shows a promising and reliable result
using machine learning methodology. To the best of our knowledge, it is the first report on
the DSEs fungi classification using SWIR spectra. Similar study on fungi classification and
growth stage detection using NIR spectra was made by Lu, Wang, Huang, Ni, Chu, and
Li [12], who reported that the cereal fungi can be successfully classified in all growth stages
using the SVM model and successive projection algorithm variable selection methods
combined with the Visible/Near-Infrared (Vis/NIR) hyperspectral imaging, with an overall
accuracy of more than 95.87% on all growth stages and 98.89% on the first growth stage,
which is close to our study (with a mean accuracy of 0.92 on all growth stages and 0.99 on
the first growth day). In addition, SWIR hyperspectral imaging has also shown a promising
ability on the Fusarium spp. Fungi detection using the partial least squares discriminant
analysis (PLS-DA) models yielded a reasonable accuracy ranging from 78% to 100% on the
train and test data sets [58]. Our results showed that different growth stages influence the
fungi classification, with an OA value ranging from 0.92 to 0.99, supported by the study of
Sun, Gu, Wang, Huang, Wei, Zhang, Tu, and Pan [13], who found that the best accuracy in
the classification of three spoilage fungi is 97.5% for the test dataset at 36 h using the 400 to
1000 nm NIR hyperspectral imaging and PLSDA model.

Three spectra pre-processing methods (BS, DET, FST) and their combination (DET_BS,
DET_FST) were applied in our study to check the influence of processing spectra on the
SVM classification accuracy. Our results found that BS showed no improvement on the
model accuracy compared to the original raw spectra with more outliers when simulated
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100 times, and that DET, DET_BS, DET_FST showed high improvement on both fungi
classification and early detection models, with the highest OA reaching 1. Our results
are different to what were reported in the study by Wu, et al. [59] who found the highest
classification accuracy of waxy wheats was gained by using the raw non-processing SWIR
spectra data combined with the SVM model, reaching 98.51%. Different applications
may lead to different results. Xu, et al. [60] found the second-order derivatives and
standard normal variate (SNV) processing spectra can largely enhance the classification of
regular and aged shiitake using SVM model. Yao, et al. [61] found that the combination
of different pre-processing methods (second derivative (2D), Savitzky–Golay (SG) filter
and SNV) could improve the SVM model accuracy on the discrimination of five Boletaceae
mushroom species, which is similar to our study where the combination of DET and
first derivative yield the optimal classification results on the SVM model. Therefore, the
spectral preprocessing methods may need to be performed based on the needs of practical
applications [62].

Different types of machine learning methodologies including SVM, RF, and MLP have
been compared in our study to find the most suitable model for fungi classification and
growth stage detection. It has shown that all of the machine learning methodologies can
achieve high classification aspects. All of the classification accuracy on the calibration set
for the two kinds of models are above 0.9. Though all these three machine learning models
can be applied to the fungi classification and growth stage detection, since the SVM model
performed slightly better than the other two methods, we selected the SVM as the final
model in our study, which is supported by Castro, et al. [63] who compared three classifiers,
decision tree (DT), SVM, and K-nearest neighbor, and found that the SVM model yielded
the best performance on the classification of different growth stages of coffee rust infection,
using the Vis/NIR (400–1000 nm) hyperspectral imaging. In addition, the detection and
classification of corn (Zea mays L.) seeds also yielded a high classification accuracy of 96.46%
when SVM was applied using SWIR hyperspectral imaging [64].

The region of SWIR (1100–2500 nm) has been well studied for whether it is highly
sensitive to the target water, lignin, cellulose, and proteins [13,65]. Seven prominent bands
around 1164, 1456, 2081, 2272, 2278, 2448, and 2481 nm were found by SA variable selection
method in our study which has highly contributed to the SVM classification model. These
bands found to be related to the model classification are not exactly equal to the findings
of other studies, maybe because the different spectral processing varied the number of
bands in the spectral range [11]. However, similar bands can be found by other studies.
The bands around 1164, 1456, and 2081 nm have been reported to be highly related to
the carbohydrates [6,66], the bands at 2272, 2278 are mostly corelated to the stretching
or deformation vibration of C-H or C-C, and the bands at 2448 and 2481 nm have been
reported to be related to protein contents [11,67]. All of these band regions were responsible
for the differences between fungi species and growth stages.

5. Conclusions

In our study, the growth stages of five different DSEs fungi inoculated on the PDA
were classified using the SWIR spectroscopy based on machine learning models. It has
been shown that the SWIR spectroscopy can be successfully used for the fungi classification
in different growth stages and the growth stage detection in different fungi. Generic
model for the two approaches also provides a reliable and promising classification accuracy.
Furthermore, the hyperspectral imaging with SWIR regions should be studied in future
to yield a better result for visualization. Our classification of fungi and detection of fungi
growth stages using the SWIR spectroscopy is fast and accurate which could enhance the
fungi study in the future.
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