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Abstract: Metarhizium anisopliae, an entomopathogenic fungus, has been widely used for the control
of agricultural and forestry pests. However, sporulation degeneration occurs frequently during
the process of successive culture, and we currently lack a clear understanding of the underlying
mechanisms. In this study, the metabolic profiles of M. anisopliae were comparatively analyzed
based on the metabolomics approach of gas chromatography–mass spectrometry (GC–MS). A total of
74 metabolites were detected in both normal and degenerate strains, with 40 differential metabolites
contributing significantly to the model. Principal component analysis (PCA) and potential structure
discriminant analysis (PLS-DA) showed a clear distinction between the sporulation of normal strains
and degenerate strains. Specifically, 23 metabolites were down-regulated and 17 metabolites were up-
regulated in degenerate strains compared to normal strains. The KEGG enrichment analysis identified
47 significant pathways. Among them, the alanine, aspartate and glutamate metabolic pathways and
the glycine, serine and threonine metabolism had the most significant effects on sporulation, which
revealed that significant changes occur in the metabolic phenotypes of strains during sporulation
and degeneration processes. Furthermore, our subsequent experiments have substantiated that
the addition of amino acids could improve M. anisopliae’s spore production. Our study shows that
metabolites, especially amino acids, which are significantly up-regulated or down-regulated during
the sporulation and degeneration of M. anisopliae, may be involved in the sporulation process of
M. anisopliae, and amino acid metabolism (especially glutamate, aspartate, serine, glycine, arginine
and leucine) may be an important part of the sporulation mechanism of M. anisopliae. This study
provides a foundation and technical support for rejuvenation and production improvement strategies
for M. anisopliae.
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1. Introduction

The entomopathogenic fungus Metarhizium is extensively utilized for the control of
agricultural and forestry pests, exhibiting efficacy against over 300 target pest species [1,2].
Consequently, there is significant international recognition and emphasis on the research
and development of biopesticides, incorporating highly virulent strains of Metarhizium as
their primary component [3]. However, during the industrialized production and preser-
vation of germplasm resources, Metarhizium has undergone degeneration after multiple
successive cultures, resulting in a significant decrease in conidia production, virulence
reduction and loss of application value [4]. Strain degeneration has long been a challenge
for the commercial production and application of entomopathogenic fungi. Metarhizium
reproduces asexually to generate conidia. Sequential cultivation of conidia or mycelium is
essential in the production of Metarhizium insecticides; however, this process often leads to
strain degeneration. There is substantial variance between strains in terms of the impact of
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in vitro successive culture on the virulence and morphological traits of entomopathogenic
fungi [5]. Germination rate, spore size and epidermal adhesion are the primary factors
affecting the pathogenicity of pathogenic fungi [6]. Besides, bioassay, spore production on
artificial media, optimal growth temperature, resistance to solar ultraviolet rays and toxin
production have been considered as important parameters for screening highly virulent
strains [7]. For example, the virulence of Beauveria bassiana strains is impacted by nutrition,
and lower C/N ratios of artificial media tend towards greater virulence [8]. The activity
of glutathione peroxidases and the scavenging ability of cellular reactive oxygen species
(ROS) are improved in stabilized strains of B. bassiana. Overexpression of glutathione
peroxidases, furthermore, can restore the reproductive capability of Cordyceps militaris [9].
Meanwhile, the decline in conidial production and virulence following sequential cul-
tivation is frequently accompanied by alterations in secondary metabolites [10]. When
comparing differentially methylated regions of genomic DNA in wild-type and mutant
mycelia of C. militaris, it was discovered that the pathways associated with glycerophos-
pholipid metabolism, pyruvate metabolism, ubiquitin-mediated protein hydrolysis and
n-glycan biosynthesis may be linked to the spore-producing degradation [11]. The level
of activity observed in laccase, carboxylester hydrolase, α-galactosidase and catalase in
flat mushrooms presented a direct correlation to the number of passages, which could be
used as an indicative characteristic of strain degeneration [12]. Therefore, the degradation
of the strain can be attributed to either inhibition or synergistic effects on the synthesis of
metabolites involved in metabolic regulation.

Metabolomics, as a component of systems biology, is dedicated to elucidating the
metabolic reactions induced by environmental or genetic factors through the analysis of
changes in small molecule metabolites, and subsequently unraveling complex physiolog-
ical mechanisms. Currently, metabolomics has diverse applications, including cellular
phenotype classification and gene function, as well as metabolism studies on transformed
bacterial strains. Microorganisms are widely utilized in metabolomics analysis and research
due to their singular structure, uncomplicated nutritional requirements and well-developed
enzyme systems. Numerous microorganisms, including Saccharomyces cerevisiae and Es-
cherichia coli, possess significant medical, pharmacological and industrial production values.
Mashego et al. [13] explored the effects of culture age on the levels of intracellular and
extracellular metabolites, as well as the specific activities of enzymes involved in central
carbon metabolism in S. cerevisiae over 90 generations. They found that there was a down-
regulation of metabolic overcapacities (for reversible reactions) and storage pools (such
as trehalose, amino acids and excess metabolic capacity in glycolytic protein in enzymes)
over the course of evolution. Karpe et al. [14] examined the sugar metabolism of four
types of filamentous fungi using gas chromatography–mass spectrometry (GC–MS). They
found that the major metabolites generated during fungal degradation, which differenti-
ated the metabolic profiles of fungi, included sugars, sugar acids, organic acids and fatty
acids. Eshell et al. [15] found that the degradation of Aflatoxin B1 of Actinomycetes was
associated with the appearance of a range of lower molecular weight compounds and
coupled with the accumulation of intermediates of fatty acid metabolism and glycolysis.
Metabolomic analysis in combination with insect tissue culturing shows that two generalist
isolates of the genus Metarhizium and Beauveria employ significantly different arrays of
secondary metabolites during infectious processes and saprophytic growth [16]. During the
transition from mycelia to fruiting bodies of Cordyceps bassiana, the major metabolic change
observed was the conversion of glucose to mannitol, and beauvericin to phenylalanine
and 1-hydroxyisovaleric acid [17]. In recent years, the rapid advancement of multi-omics
and the utilization of bioinformatics have facilitated the discovery of a greater number
of regulatory genes, unveiling crucial synthesis pathways for various metabolites [18–21].
Therefore, investigating metabolite biosynthesis and functional genes holds significant
practical value in elucidating the degenerate mechanisms of Metarhizium.

In this study, we utilized the GC-MS based metabolomics sample processing method
established by our group for Metarhizium anisopliae [22] to investigate the correlation be-
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tween secondary metabolite metabolism and sporulation degeneration in different strains
(Figure 1) of M. anisopliae. By employing chromatography–mass spectrometry techniques,
we systematically analyzed the metabolic differences between normal and degenerate
strains of M. anisopliae preserved in our laboratory. By comparing the metabolome differ-
ences between normal and degenerate strains, we searched for endogenous small molecule
biomarkers and metabolic pathways closely related to the sporulation of M. anisopliae,
elucidating the relationship between the degeneration of M. anisopliae and the metabolism
of secondary substances. The aforementioned elucidation of the relationship between
M. anisopliae degeneration and secondary metabolism has laid a solid foundation for sub-
sequent comprehension of metabolome regulation in conjunction with transcriptome and
proteome regulation, as well as entomopathogenic fungi degeneration. Further studies in
this direction will yield crucial biological insights for the rejuvenation and preservation
of M. anisopliae, thereby facilitating the industrialization of entomopathogenic fungi and
promoting sustainable agroforestry development.
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Figure 1. The colony morphology on the culture medium of Ma09 is shown. (A): The lower row
displays the first generation of Ma09 strains with normal sporulation, while the upper row exhibits
the degenerate strains after successive culture. (B): The sporulation quantity of normal strains was
10.28 × 107 CFU; the sporulation quantity of degenerate strains was 1.23 × 107 CFU.

2. Materials and Methods
2.1. Fungi Materials

The strain M. anisopliae 09 (Ma09), which exhibited superior sporulation, was selected
for multiple spot grafting and prolonged cultivation (for 25 generations) until a significant
decline in sporulation was observed. The normal strains (the first generation strains) and
the degenerate strains (the 25 generations) (Figure 1) were then inoculated onto a fresh
PPDA plate and incubated at 25 ◦C for seven days to produce conidia. A plug of fungal agar
culture was prepared by punching out a 6 mm circle along the outer edge of the colony and
was delicately placed onto a solid PPDA medium dish that had been coated with cellophane.
It would be cultivated further under controlled conditions at 25 ◦C over the course of five
to seven days. Subsequently, the mycelial growth on the surface of the cellophane layer
would be scrupulously excised using disinfected scalpels. The sporulation quantity of
normal strains and degenerate strains was determined to be 10.28 and 1.23 × 107 CFU,
respectively (Figure 1). After collecting approximately (100 ± 5) mg of this tissue sample,
it would then be promptly flash-frozen in liquid nitrogen for three to five minutes as an
effective means of deactivating any residual biological activity prior to storage at −80 ◦C.

2.2. Metabolome Analysis

Extraction of metabolites: The preserved mycelium samples were soaked in pre-cooled
methanol (−80 ◦C), homogenized using a ball mill at a frequency of 50 times/s for one
minute, subjected to vortex oscillation for one minute, and then underwent ultrasonic
extraction lasting twenty minutes. The resulting supernatant was transferred into another
centrifuge tube where it received an additional 1 ml volume of extraction solution; this
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process was repeated twice prior to combining the supernatants, which were subsequently
dried under nitrogen gas before undergoing derivatization treatment.

Derivation: After lyophilization, the extracted samples were treated with 150 µL of a
pyridine solution containing 20 mg/mL methoxyamine hydrochloride. The mixture was
vigorously oscillated for thirty seconds and then incubated at 37 ◦C for ninety minutes.
After cooling to room temperature, a BSTFA derivative containing 1% TMCS (50 µL) was
added and the reaction proceeded at 70 ◦C for one hour. Following a standing period of
thirty minutes at room temperature, GC–MS analysis was performed, or the sample was
stored at −20 ◦C.

GC-MS conditions: The inlet temperature was set to 280 ◦C, and the heating procedure
involved an initial temperature of 50 ◦C for three minutes, followed by a heating rate of
10 ◦C/min to achieve a temperature of 150 ◦C within a period of five minutes. Subsequently,
there was a gradual increase in temperature at a rate of 5 ◦C/min until it reached 200 ◦C
within another span of five minutes. Finally, there was an abrupt rise in temperature at
a rate of 10 ◦C/min to reach the final target temperature of 280 ◦C during the last five
minute interval. High purity helium gas (purity ≥ 99.999%) was utilized as the carrier gas,
employing a non-shunt injection method with an injection volume of 1 µL at a flow rate of
1 mL/min. The electron impact ionization source (EI) was employed, and the ion source
temperature, quadrupole temperature and interface temperature were set to 230 ◦C, 150 ◦C
and 280 ◦C respectively. The electronic energy was calibrated to 70 eV using standard
tuning methods for mass spectrometry, scanning in full scan mode over a scanning range
of 40–500 amu. Spectral retrieval was conducted utilizing the NIST (National Institute of
Standards and Technology) 2017 spectral library.

Data pre-processing and recognition: Peaks with ratios (signal/noise) of <5 were
removed. The original GC-MS data were automatically analyzed using the automatic mass
spectral deconvolution and identification system (AMDIS) and identified by comparing to
the database of NIST 2017. The material identification is based on comparing the EI mass
spectrometry fragments of the detected metabolites to the mass spectrometry information
of the standard substances stored. The NIST 2017 database retrieval matching criterion
is that the similarity of the mass spectrometry fragments is greater than 700 (the highest
value is 1000). The information related to the identified metabolites was collected from the
spectra, including retention time, peak area and name of the substance [23].

2.3. Effects of Different Amino Acids on Sporulation

The 6 amino acids (Serine, L-alanine, Glutamate, Aspartate, Arginine, Leucine) de-
tected in the experiment were selected to cultivate the degraded spore-producing Metarhiz-
ium anisopliae by plate grafting method. The effect of amino acid composition on sporula-
tion was investigated based on the amount of sporulation. The 6 kinds of amino acids were
configured in solution according to the following concentration: Aspartate 100 (mg/L),
L-alanine 100 (mg/L), arginine 15 (mg/L), glutamate 140 (mg/L), serine 20 (mg/L), leucine
100 (mg/L). After 0.22 um filtration, the solution was added to PPDA medium to make
a 9 cm amino acid medium for the test Petri dish. The degraded strain of sporulation
was selected as the test strain, transferred to the medium containing amino acids and
subcultured for 5 generations, and the number of spores produced in each generation was
counted. PPDA medium without added amino acids was used as a control. Five replicates
were performed for each treatment.

2.4. Data Analysis

For subsequent analysis, a substance should only be considered if it is present in at
least 3 out of the 6 replicate samples. By default, missing values will be replaced by 1/5 of
the min positive values of their corresponding variables. We normalized each alignment
using normalization by sum, then the data were log10 transformed. The data scaling was
performed through auto scaling (the data were mean-centered and divided by the standard
deviation of each variable). The resulting data matrix of peak area was then imported into
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SIMCA-P software (version 14.0, Umetrics, Umea, Sweden) for multivariate statistical anal-
ysis. Principal component analysis (PCA) and partial least squares-discriminant analysis
(PLS-DA) (n = 6) were conducted on GC–MS data from normal strains and degenerate
strains. Two-dimensional maps were generated to visualize the results of PCA and PLS-
DA analyses. According to the PLS-DA model, the R2Y and Q2 of the permutation test
were used to assess the goodness-of-fit and predictive ability of the PLS-DA models. The
metabolites with VIP > 1 and p-value < 0.05 were considered to be differential metabolites.
MetaboAnalyst 5.0 was adopted for the metabolic pathway analysis [24].

3. Results
3.1. Comparison of the Metabolism Difference of Ma09

The total ion chromatograms of the normal and degenerate strains are presented in
Figure 2, with the former representing normal sporulation and the latter depicting a de-
generate state. A total of 74 metabolic substances were detected. Evidently, significant
metabolic disparities exist between these two strains, as well as shared endogenous metabo-
lites. See Table S1 for detailed Data.
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Figure 2. The typical total ion chromatograms (TICs) of the normal strains and their degenerate
counterparts are presented. The y-axis represents relative mass abundance, while the x-axis de-
notes retention time. The top panel illustrates normal strains, whereas the bottom panel depicts
degenerate strains.

3.2. Multivariate Analysis of the Differential Metabolites

The PCA score plot displays the distribution of samples in the principal component
space, with similar samples clustered together and those with differences distributed in
distinct regions. As a result, metabolic differences can be classified based on the score
chart. The results indicated that there is clustering of metabolites from the six replicates
of each treatment source, and the fact that the two treatment ellipses do not overlap the
first principal component explains 56.1% of the variance, whereas the second principal
component explains 13.6% (Figure 3). Furthermore, the score plot exhibited a clear trend
in distinguishing between normal and degenerate strains; specifically, the six treatments
of normal strains are clustered on the left side of Figure 3, while the six treatments of
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degenerate strains were relatively dispersed on the right of Figure 3. This indicates that
there exist significant inter-individual variations in GC–MS metabolism among degenerate
strains. The load plot identifies differential variables that contribute to classification; each
point on the graph represents a unique metabolic substance, and its contribution to the
model is determined by its distance from the center point. The further away from the center
point, the more significant its contribution to the model.
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Figure 3. Principal component analysis (PCA) score plot (up) and loading plots (down) for separation
of metabolites in normal strains and degenerate strains. The variances are shown in brackets. The six
symbols for each treatment represent six biological replicates. Each green box represents a metabolite.
A represents the normal strain and B represents the degenerate strains.

The PLS-DA method incorporates orthogonal signal correction (OSC) to eliminate
signals that are not correlated with the model classification, thereby enhancing sample
separation between groups and improving explanatory power. As demonstrated by the
PLS-DA score plot (Figure 4), there is a clear distinction between the groups, characterized
by a high degree of clustering, which underscores the reproducibility of this method. The
first principal component explains 56% of the variance, whereas the second principal
component explains 11.6%. The R2Y value of 0.996 and the Q2 value of 0.983 indicated the
high reliability of the current model. To further assess its robustness, a permutation test was
conducted. The y-axis intercept of Q2 was below 0.5, and when the transverse coordinate
equaled 1, Q2 was less than R2 but very close to it, thus confirming the model’s reliability.
Therefore, the original model adequately accounted for differences between samples.
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The metabolites with VIP > 1.0 in PLS-DA analysis and p < 0.05 were used for fur-
ther selecting the significantly differential metabolites by univariate analysis (Table 1).
A total of 40 differential metabolites with VIP scores greater than 1 and p < 0.05 were
identified as potential metabolic markers between the two groups. The levels of 23 sub-
stances were down-regulated, including 2,3-Diphosphoglyceric acid; Acetyl-CoA; Aflatoxin
G2; Arginine; Asparagine; Carnitine; Ergothioneine; Galactitol; Glycine; Indomethacin;
Leucine; L-Glutamate; L-Histidinol; Linolenic acid; L-Proline; 1-methyl-; methyl ester;
Mannitol; Mesaconic acid; Octadecanoic acid; Phenylalanine; Pyruvate; Trehalose; Tyrosine;
and Valine. Meanwhile, the levels of 17 substances were up-regulated, which include
9,10-Epoxyoctadecanoic acid-2-ethylhexyl ester; Aspartate; Betaine; Glutamine; Glyoxy-
late; Guggulsterone; L-Aspartyl-L-phenylalanine; Linoleic acid; Maleamic acid; Mandelic
acid; Myo-inositol; N-Acetyl-L-phenylalanine; Oxoglutaric acid; Proline; Serine; Threonine;
and Uracil. Hierarchical clustering analysis was performed on 40 metabolites to identify
inter-component change patterns. Visual inspection aided in distinguishing and addressing
differences between data sets. The heat map shows a clear difference between the normal
and degenerate strains of Ma09 (Figure 5). The heat map facilitated simultaneous clustering
of both samples and metabolites, grouping together those with similar metabolic profiles
and aggregating metabolites related to metabolism. On the horizontal axis of the figure,
normal and degenerate strains are clearly distinguished as two categories. On the vertical
axis of the graph, metabolites related to biochemistry aggregate into one category.
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Table 1. Differential component information between normal strains and degenerate strains identified
by GC–MS.

Components p-Value VIP Trend

Acetyl-CoA 0 1.29195 down
Aflatoxin G2 0 1.17275 down

Ammonia 0 1.31058 down
Arginine 0 1.19034 down

Asparagine 0.005 1.01498 down
Aspartate 0.001 1.10915 up

Betaine 0 1.28929 up
Carnitine 0 1.16839 down

Ergothioneine 0 1.28954 down
Glutamate 0 1.24028 down
Glutamine 0 1.28597 up

1-Acylglycerophosphoinositol 0 1.24205 up
Glycine 0 1.20305 down

Glyoxylate 0 1.20335 up
Guggulsterone 0 1.24587 up

Histidinol 0 1.29683 down
Leucine 0.001 1.09971 down

Linoleic acid 0.002 1.07298 up
Linolenic acid 0 1.13966 down
Maleamic acid 0 1.18627 up
Mandelic acid 0.003 1.05333 up

Mannitol 0 1.28916 down
Mesaconic acid 0.001 1.09989 down

Myo-inositol 0 1.13666 up
N-Acetyl-L-phenylalanine 0.002 1.06872 up

Octadecanoic acid 0 1.27733 down
9,10-Epoxyoctadecatrienoic acid 0 1.24609 up

Indomethacin 0.001 1.12263 down
Oxoglutaric acid 0 1.23002 up

Phenylalanine 0 1.26797 down
2,3-Diphosphoglyceric acid 0 1.22615 down

Proline 0 1.28514 up
Proline betaine 0.001 1.13507 down

Pyruvate 0 1.14563 down
Serine 0 1.25741 up

Threonine 0 1.24688 up
Trehalose 0 1.30756 down
Tyrosine 0 1.27859 down

Uracil 0.001 1.13457 up
Valine 0 1.14533 down

3.3. Pathway Analysis

To gain insight into the metabolic pathways associated with sporulation, we conducted
pathway enrichment and topology analysis based on metabolites exhibiting significant
differences between normal and degenerate strains. Pathway enrichment analysis and
path topology analysis were conducted on the two datasets, respectively. The results
of metabolic pathway analysis are shown by a bubble chart. Each bubble represents a
metabolic pathway in the bubble diagram. The abscissa and bubble size represent the
influence factor of the path in topological analysis. The y-coordinate and bubble color
represent the p values of the enrichment analysis. Through KEGG search for differential
metabolites, a total of 47 metabolic pathways (Table S2 pathway_results.xls) were found
to be involved. Figure 6 demonstrates the significant impact of the top 25 pathways on
sporulation. Among the 47 metabolic pathways, there are 12 metabolic pathways related to
biosynthesis; 28 metabolic pathways related to metabolism; 4 metabolic pathways related to
degradation; and 3 other pathways. Additionally, there exist 9 amino acid-related pathways
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in the 47 metabolic pathways. Among them, our focus lies on investigating the influence
of amino acids on sporulation. Based on our findings, the first two amino acid metabolic
pathways that exert a significant impact on sporulation are alanine, aspartate and glutamate
metabolism, along with glycine, serine and threonine metabolism.
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Figures 7 and 8 illustrate the two metabolic pathways that have been identified as
having the most significant impact based on KEGG differential metabolites analysis. By
integrating metabolic pathways with differential metabolites, a total of 16 biomarkers were
identified in the metabolic network, including arginine, asparagine, aspartate, fumarate,
N-(L-arginino)succinate, glutamate, glutamine, glycine, glyoxylate, 2-Phospho-D-glycerate,
proline, pyruvate, serine, succinate, threonine, trehalose and tryptophan.
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3.4. Amino Acids Have an Effect on Sporulation

The low spore-producing Ma09 was continuously cultured up to the fifth generation
by supplementing the medium with various amino acids, and the corresponding changes
in spore production are illustrated in Figure 9. The spore production of the first gener-
ation strain was determined to be 5.42 × 106 CFU. The results demonstrated a pattern
of increasing, followed by decreasing, and then increasing spore production when the
medium contained serine and L-alanine. Additionally, an increase in spore production was
observed when the medium contained glutamate, aspartic acid and arginine. Furthermore,
an increase in spore production was noted with the inclusion of leucine in the medium;
however, a decrease in spore production was observed when leucine was present. The
spore production of M. anisopliae was found to be significantly higher in the medium supple-
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mented with amino acids compared to the medium without amino acid supplementation,
after four generations of successive culture. The spore production exhibited a declining trend
in the absence of amino acid supplementation in the medium, suggesting that the addition
of amino acids exerts a discernible impact on M. anisopliae’s spore production.
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Figure 9. Effects of different amino acids on sporulation. The horizontal coordinate represents the
number of generations of culture, the vertical axis represents sporulation quantity.

4. Discussion

Amino acids are crucial organic compounds that play a vital role in numerous bio-
logical processes, including protein synthesis, cell growth and development, and energy
production. Research has shown that amino acids not only serve as key players in cell
signal transduction, but also exert significant regulatory effects on gene expression and
protein phosphorylation cascades [25].

Glutamate serves as a precursor for the biosynthesis of purine and pyrimidine nu-
cleotide bases in organisms, while also playing a crucial role in various metabolic pathways
as an amino group donor. Glutamate and glutamine exert a crucial regulatory function in
the biosynthesis of glutathione. The catabolism of glutamine via the glutaminolysis path-
way generates not only glutamate but also minor amounts of aspartate, alanine, lactic acid
and pyruvate, while serving as a substrate for GABA synthesis [26]. The study revealed a de-
crease in glutamine content, indicating a reduction in the substance’s strength. Elevated lev-
els of aspartate and argininosuccinic acid were observed, while the corresponding fumarate
level was reduced, suggesting potential issues with the conversion process from aspartate
to fumarate. The conversion of aspartate to fumarate can occur through two pathways. The
first pathway involves the intermediate compound aspartate–adenylosuccinate–fumarate.
In this experiment, adenylosuccinate was not detected, suggesting that the conversion of
aspartate to adenylosuccinate was inhibited and, consequently, adenylosuccinate produc-
tion was suppressed, leading to down-regulation of fumarate levels. Alternatively, it is
possible that technical issues prevented the detection of adenylosuccinate. Therefore, the
down-regulation of fumarate may also be attributed to the fact that certain genes have a
part missing, or certain proteins are abnormally expressed in the second pathway involving
aspartate–argininosuccinate–fumarate. The enrichment of argininosuccinate during its con-
version to fumarate is attributed to genes missing or protein expression inhibition, leading
to up-regulation. Inconsistent material change trends were observed in the conversion
processes of aspartate–aspartamide and glutamate–glutamine before and after, suggesting
issues in these pathways resulting in lower conversion rates (Figure 10). Aspartate and
glutamine also have a certain effect on subsequent arginine and proline metabolism, and
L-arginine is necessary for the sporulation of biocontrol fungus Coniothyrium minitans, plus,
its derivative nitric oxide may mediate its sporulation function [27]. Proline plays a crucial
role in stabilizing the structure and function of collagen in vivo, safeguarding the integrity
of the central nervous system, regulating cell osmotic pressure, as well as enhancing salt
and drought tolerance [28]. In the metabolic pathway of glycine, serine and threonine, this
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experiment also found that glycine produced a weakening and up-regulation of glyoxy-
late, threonine and serine, suggesting that the conversions behind these three substances
were inhibited, which caused the accumulation of upstream substances. The remarkable
incorporation of glycine and serine into the wild-type strain during sporulation was closely
associated with spore coat formation. Higher levels of glycine may be a response to high
temperature stress, which is closely associated with spore and conidium production [29].
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Other metabolites such as oleic, linoleic and linolenic acids have also been reported
to be important sources of oxylipins in pathogenic fungi. As a vital signaling molecule,
oxylipins play a pivotal role in fungal growth; sexual and clonal reproduction; host–fungal
signal recognition; host immune defense; and pathogenicity [30–32]. Furthermore, the
metabolism of oxylipins is also associated with mycotoxin synthesis. Trehalose, a non-
reducing disaccharide widely distributed in the hyphae and spores of fungi, is typically
induced under conditions of heat, desiccation and oxidative stress. Its primary function
lies in maintaining cell membrane fluidity and protein stability [33]. In fungi, mannitol
can undergo conversion into mannitol 1-phosphate through the action of enzymes such
as mannitol kinase and mannitol 1-phosphate dehydrogenase. This process subsequently
generates fructose-6-phosphate which enters the glycolytic cycle, thereby participating
in energy metabolism [34]. Mannitol plays a crucial role in maintaining cellular osmotic
pressure, fungal stress resistance and host interaction. Mannitol also plays an essential role
in asexual sporulation in Stagonospora nodorum both in vitro and in planta [35]. Furthermore,
the pathogenicity of pathogenic fungi can also be influenced by mannitol [36,37].

The majority of organic materials undergo oxidation and degeneration during the tri-
carboxylic acid cycle [38]. Inhibiting this cycle can effectively reduce excessive consumption
of organic materials, thereby promoting spore biosynthesis. Two metabolic pathways—the
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alanine, aspartate and glutamate metabolic pathway and the glycine, serine and threonine
metabolism—had the most significant effects on sporulation, mainly related to unsaturated
fatty acid synthesis, lysosomes and amino acid metabolism. In addition, we identified
other kinds of compounds, such as amides, that can be used in the formation of secondary
metabolites, which play a key role in spore formation. Significant changes in the levels of
major metabolites may indicate a key role in multiple metabolic pathways that regulate
the sporulation of M. anisopliae. Using GC–MS, several hundred compounds could be
analyzed simultaneously, including organic acids, most amino acids, sugars, sugar alcohols,
aromatic amines and fatty acids. But the metabolic differences in this study still have some
limitations, and due to the limitations [39] of GC–MS, an incomplete range of metabolites
was identified; in particular, lipids were less frequently identified, which may be due to
their low volatility, resulting in the omission of metabolites. The derivatization reaction is
an essential prerequisite in GC–MS analysis. However, the use of standardizations or stan-
dard operating procedures (SOPs) is insufficient to provide reliable results in metabolomic
studies using derivatization-based GC–MS. Conversely, they may create a false sense of
reliability. The derivatization procedure and origins of chromatographic peaks constitute
two fundamental issues that can directly impact the outcome of GC–MS analysis [40,41].
Therefore, more sensitive high-throughput and advanced histologic techniques should be
used to interpret the entire metabolic network.

5. Conclusions

At present, we have employed GC-MS metabolomics to elucidate the metabolic dif-
ferences between strains exhibiting normal sporulation and those displaying impaired
sporulation, as metabolites serve as a reliable indicator of physiological responses to
multiple factors. So far, this is the first time the metabolic changes of spore-producing
Metarhizium have been evaluated. A total of 74 metabolites were detected through rapid
GC-MS analysis of normal and degenerate strains, with 40 differential metabolites iden-
tified as potential metabolic markers between the two groups. Enrichment analysis was
conducted using KEGG, resulting in the identification of 47 relevant pathways. The KEGG
pathway mapper and metabolite set enrichment analysis indicated that these metabolites
are primarily associated with energy, amino acid synthesis and metabolism, and fatty
acid synthesis and metabolism, among others. The amino acid metabolism (especially
glutamate, aspartate, serine, glycine, arginine and leucine) may be an important part of the
sporulation mechanism of M. anisopliae. The addition of amino acids to the medium can
increase M. anisopliae spore yield.
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