
Citation: Liu, Q.; Li, Y.; Wu, H.;

Zhang, B.; Liu, C.; Gao, Y.; Guo, H.;

Zhao, J. Hyphopodium-Specific

Signaling Is Required for Plant

Infection by Verticillium dahliae. J.

Fungi 2023, 9, 484. https://

doi.org/10.3390/jof9040484

Academic Editor: Premila Achar

Received: 17 March 2023

Revised: 10 April 2023

Accepted: 12 April 2023

Published: 18 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Fungi
Journal of

Article

Hyphopodium-Specific Signaling Is Required for Plant
Infection by Verticillium dahliae
Qingyan Liu 1,2,†, Yingchao Li 1,3,†, Huawei Wu 1,2, Bosen Zhang 1,2, Chuanhui Liu 1,2, Yi Gao 4, Huishan Guo 1,2

and Jianhua Zhao 1,2,*

1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences,
Beijing 100101, China

2 CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences,
Beijing 100101, China

3 School of Life Sciences, Hebei University, Baoding 071000, China
4 Qilu Zhongke Academy of Modern Microbiology Technology, Jinan 250022, China
* Correspondence: zhao_jian_hua@hotmail.com
† These authors contributed equally to this work.

Abstract: For successful colonization, fungal pathogens have evolved specialized infection struc-
tures to overcome the barriers present in host plants. The morphology of infection structures and
pathogenic mechanisms are diverse according to host specificity. Verticillium dahliae, a soil-borne
phytopathogenic fungus, generates hyphopodium with a penetration peg on cotton roots while
developing appressoria, that are typically associated with leaf infection on lettuce and fiber flax roots.
In this study, we isolated the pathogenic fungus, V. dahliae (VdaSm), from Verticillium wilt eggplants
and generated a GFP-labeled isolate to explore the colonization process of VdaSm on eggplants. We
found that the formation of hyphopodium with penetration peg is crucial for the initial colonization
of VdaSm on eggplant roots, indicating that the colonization processes on eggplant and cotton share a
similar feature. Furthermore, we demonstrated that the VdNoxB/VdPls1-dependent Ca2+ elevation
activating VdCrz1 signaling is a common genetic pathway to regulate infection-related development
in V. dahliae. Our results indicated that VdNoxB/VdPls1-dependent pathway may be a desirable
target to develop effective fungicides, to protect crops from V. dahliae infection by interrupting the
formation of specialized infection structures.
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1. Introduction

For any successful fungal-host interaction, including commensalism, symbiosis and
pathogenesis, the most crucial event is the attachment and penetration of the plant sur-
face [1]. During their colonization [1,2], fungi have evolved various strategies to overcome
the barriers present in the host, such as by forming specialized infection structures [3–6]
and secreting cell-wall-degrading enzymes [7]. A subset of fungal pathogens has evolved
specialized infection structures to facilitate their penetration, whose infection strategies
and morphology of the infection process have been well documented [1–3,5,8,9].

Appressoria have been thoroughly studied in Magnaporthe oryzae, which causes the
most serious foliar fungal disease of cultivated rice [10]. Leaf infection by M. oryzae initiates
from conidia that adhere to the leaf surface [10,11]. Conidia germinate and produce germ
tubes that differentiate into heavily melanized penetration structures, known as appressoria.
The appressoria then build up the tremendous turgor pressure to pierce the tough leaf
surface [10,12]. It is noteworthy that M. oryzae also initiates root infection by forming the
typical root pathogen hyphopodia, where the melanin layer is not observed. Moreover,
root infection can lead to systemic invasion and classical disease symptoms on the aerial
parts of the plant under laboratory conditions [10,12]. These results provide initial evidence
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for tissue-adapted fungal infection strategies [10]. In addition, a previous study showed
that three M. oryzae genes essential for appressoria maturation in rice played only limited
roles in the infection of Arabidopsis, suggesting that the pathogenic mechanisms are distinct
from those in different hosts [13].

The infection structures of the soil-borne fungus Verticillium dahliae, which poses a
major threat to more than 400 plant species by causing Verticillium wilt [14,15], are variable
in different host species. In lettuce and fiber flax, V. dahliae developed an infection structure
called appressoria at the junction of epidermal cells of host roots [16,17]. During the initial
infection, conidia germinated on the root surface. Germinating hyphae grew parallel to
the longitudinal axis of the root. Few hyphae developed appressoria along the junctions of
root epidermal cells and penetrated an adjacent epidermal cell directly [16,17]. However,
in N. benthamiana, hyphae invaded the host quickly through root wounds and the lateral
root primordium without the formation of special infection structures [18]. When V. dahliae
invaded oilseed rape [19] and sunflower [20], only slight hyphal swelling without penetra-
tion peg was observed before penetration. During oilseed rape infection, random growth
of V. dahliae hyphae on the oilseed rape root surface was observed but not following any
pattern [19]. For successfully colonizing the sunflower root, hyphae grow along the longitu-
dinal grooves of epidermal cells, a process similar to that in lettuce. Additionally, abundant
hyphae were observed at the protrusion sites of taproots, suggesting that these sites may
facilitate V. dahliae sunflower root colonization [20]. For a cotton isolate of V. dahliae, strain
V592, we incipiently observed slight hyphal swelling followed by a narrow penetration
peg during infection of Arabidopsis roots [21]. Subsequently, the slight hyphal swelling
cell was molecular, characterized as a typical infection structure called hyphopodium,
which develops the penetration peg required for V592 to breach the cotton root cell wall
during the initial colonization [22]. Hyphopodium-specific VdNoxB/VdPls1-mediated
reactive oxygen species (ROS) production elevates Ca2+ accumulation in hyphopodia and
then activates VdCrz1 signaling to form penetration pegs [22]. NADPH oxidase (Nox)
is the major enzymatic producer of ROS, which has been shown to be crucial for fungal
hyphal tip growth and fungal virulence [23–27]. Endogenous ROS elevation produced
by Nox-activated Ca2+ channels facilitate Ca2+ influx for fungal cell polarity [28–30]. We
found that ROS-Ca2+ signal plays a pivotal role in the fungal pathogenicity by regulating
the penetration peg formation [22]. Furthermore, we demonstrated that the V592 infection
structure not only functions as a colonization apparatus but also provides a unique interface
for the secretion of fungal effectors [31]. Whether this hyphopodium molecular feature
exists in other V. dahliae strains remains unknown.

In this study, we collected Verticillium wilt eggplants (Solanum melongena L.) from Hebei,
China, and isolated the pathogenic fungus. Internal transcribed spacer (ITS) sequencing
results indicated that the pathogenic fungus was V. dahliae (VdaSm). The objectives of
this study were to characterize the infection process of VdaSm, determine whether VdaSm

evolves infection structure, and identify the molecular features and the role of infection
structure in the pathogenicity of VdaSm.

2. Materials and Methods
2.1. Fungal Recovery, Culture Conditions, ITS Analysis and Infection Assays

The eggplants with Verticillium wilt symptoms were collected from a field in Guan
County (39.43◦ N, 116.23◦ E), Langfang City, Hebei Province, China. The stems of the
pathogenetic eggplants were placed in paper bags. The stems were cross-sectioned into
1 cm slices and soaked in 75% alcohol for approximately 10 min. Then, these slices were
transferred to 30% sodium hypochlorite and soaked for approximately 20 min for surface
sterilization. After rinsing three times with sterile water, the samples were cultured at
26 ◦C on potato dextrose agar (PDA) medium. Isolates were purified using single spore
isolation [32]. Individual colonies were picked up and transferred to another PDA plate
to continue growth for morphological observation or DNA extraction. For ITS analysis,
fungal DNA extraction followed a previous description [33]. The ITS region was amplified
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with conserved primers [34] and sequenced by Suzhou Ribo Life Science Co., Ltd. (Ribo,
Suzhou, China) (https://www.ribolia.com/en, accessed on 13 April 2023). Blastn (https:
//blast.ncbi.nlm.nih.gov/Blast.cgi, accessed on 13 April 2023) with default parameters was
used to search the homologous sequences of ITS.

This isolate was stored at −80 ◦C and reactivated on PDA for pathogenicity assays.
For the eggplant infection assays, the conidia were cultured in liquid Czapek–Dox medium,
shaking at 200 rpm and 26 ◦C in the dark. Twelve-day-old seedlings of eggplants were
irrigated with 1 × 107 cfu/mL spores of VdaSm for infection. Disease progression in
eggplants was recorded over time for at least 20 days. Disease symptom was classified
into five grades: 0 (asymptomatic), 1 (0–25% leaf wilted or dropped off), 2 (25–50% leaves
wilted or dropped off), 3 (50–75% leaves wilted or dropped off), and 4 (75–100% leaves
wilted or dropped off or plant died).

2.2. Penetration Assays and Confocal Laser Scanning Microscopy (CLSM)

Minimal medium (MM) [22] was used for penetration assays. The VdaSm cultures were
incubated on a cellophane membrane (DINGGUO, Beijing, China), which was overlaid
onto MM. To determine if any VdaSm penetrated the cellophane, the hyphae were observed
in the medium after removing the membranes. The experiments for each colony were
repeated independently at least three times. For hyphopodium detection, the mycelium
was grown on cellophane for 2 days and observed as previously described [22]. The
protocol of plasma membrane staining using FM4-64 (ThermoFisher, Shanghai, China),
ER-Tracker (ThermoFisher, Shanghai, China) staining and protein localization assays have
been described [22,31].

To observe the infection process of VdaSm, eggplant roots (Hang No. 1) were inoculated
for 8 days and sectioned. Fluorescent photographs were captured using a Leica SP8 confocal
laser scanning microscope system [21,22].

2.3. Construction and Transformation

To obtain GFP-labeled VdaSm-GFP, the pNEO-olic GFP plasmid (stored in our labora-
tory) was transferred to VdaSm. G418 was used to select the transformants on PDA medium.

To generate the knockout plasmids, pKOVsmNoxB, pKOVsmPls1 and pKOVsmCrz1,
upstream and downstream genomic sequences of these genes were amplified with the
corresponding primers (Table S1). The paired sequences were inserted into a position
flanking the hygromycin resistant cassette of the vector pGKO-HPT with the Exnase MultiS
(Vazyme, Nanjing, China), and then the knock-out plasmids were transformed as previously
described [35].

To produce the complemented strains, including Vd∆noxb/VdNoxB and Vd∆pls1/VdPls1,
GFP-fused VdNoxB and VdPls1 under the native promoter were introduced into Vd∆noxb
and Vd∆pls1, respectively. RFP-fused VdKar2 under the Tef promoter were introduced
into Vd∆noxb/VdNoxB and Vd∆pls1/VdPls1, to detect the location of VdNoxB and VdPls1,
respectively. The fusion plasmids were constructed as previously described [22], and the
primers are listed in Table S1.

2.4. Detection of ROS and Ca2+

For ROS detection, DAB staining solution (1 mg/mL, pH adjusted to 6.5–7.0) was
prepared in PBS buffer. After culturing on cellophane membranes for 2 days, the colonies of
VdaSm were cut and floated on the staining solution (1 mL). These colonies were cultured
for 8 h in the dark at room temperature, rinsed twice and observed under a microscope.

Ca2+ detection followed our previous description [22].

2.5. Quantitative Real-Time PCR (qRT-PCR)

For qRT-PCR, total RNA was isolated from fungi using hot-phenol extraction [36].
gDNA wiper (Vazyme, Nanjing, China) was used to remove the residual DNA. Then,
the RNA was reverse transcribed into cDNA using HiScript II Q RT Supermix (Vazyme,
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Nanjing, China). cDNA was subjected to qRT-PCR with a BioRad CFX96 Real-Time system
using ChamQ SYBR qPCR MasterMix (Vazyme, Nanjing, China). β-Tubulin was included
in the assay for normalization. The relative quantification was analyzed using the 2−∆∆CT

method. For each sample, at least three biological replicates and three technical replicates
were performed. The primers are listed in Table S1.

2.6. Southern Blot

A total of 20 µg of genomic DNA was completely digested by proper restriction
enzymes, and separated using agarose gel electrophoresis as previous described [22].
Gene-specific probes were amplified with primers listed in Table S1 and labeled with
Biotin-11-dUTP (Thermo Fisher, Waltham, MA, USA, R0081). The chemiluminescence
image analysis system (Tanon, St Andrew, UK, Tanon-4600SF) was used to detect the
hybridization signals.

3. Results
3.1. Isolation and Identification of Pathogens Causing Verticillium Wilt in Eggplants

Based on plant symptoms, we collected diseased eggplants with the typical symptom
of Verticillium wilt in the field. To isolate the pathogen, the stem sections of diseased plants
were surface-sterilized and transferred to potato dextrose agar (PDA) medium (Figure 1a).
The hyphae that grew around the tissue slices of eggplant were transferred to another
PDA medium to continue growth (Figure 1a). In the laboratory, the fungus caused typical
Verticillium wilt symptoms in healthy plants, such as leaf wilting and chlorosis and plant
stunting (Figure 1b).
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Figure 1. Eggplant wilt disease symptoms caused by infection with V. dahliae recovered from diseased
plants. (a) Hyphae grew from two ends of the cut stems and were transferred to another PDA medium
to continue growth; (b) VdaSm infection caused leaf wilting and chlorosis and plant stunting. Similar
results were obtained from 20 plants, and representative photographs are shown.

For molecular identification, the ITS region of the fungus was sequenced using the
primer pairs ITS1/ITS4 [34]. Blastn analysis revealed that the ITS sequence was 99–100%,
identical to the V. dahliae reference sequences. PCR assays, with two primer pairs which
were designed to differentiate Verticillium species [37], further confirmed that the isolate is
V. dahliae (Figure S1a). Therefore, we conclude that the V. dahliae recovered from diseased
eggplants (VdaSm) was the pathogenic fungus causing Verticillium wilt.
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3.2. Colonization Process on Eggplant Roots by GFP-Labeled VdaSm

To explore the colonization process of VdaSm, we generated a GFP-labeled isolate,
VdaSm-GFP. Green fluorescence was detected under a microscope to confirm the stable
expression of GFP (Figure 2a). When cultured on PDA, both VdaSm and VdaSm-GFP were
similar in colony morphology and growth rate (Figure S1b,c). Moreover, disease severity
on eggplants caused by VdaSm and VdaSm-GFP did not show any obvious difference
(Figure 2b). Given that its pathogenicity was unaffected, VdaSm-GFP was used to study the
infection processes on eggplants.
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isolate. (a) Confocal micrograph of green fluorescence by GFP-labeled VdaSm; (b) Similar wilt symp-
toms were observed with VdaSm and VdaSm-GFP on 20 eggplants, and representative photographs
are shown.

The roots of infected eggplant were observed using the confocal laser scanning mi-
croscopy (CLSM). After 12 h inoculation (hpi), a small fraction of conidia germinated
on the root surface at random sites (Figure 3a,b). Massive conidia that had germinated
were observed at 24 hpi (Figure 3c). By 3 dpi, mycelium expanded, and hyphae covered
the root surface. A fraction of hyphae expanded in parallel along the epidermal cells
(Figure 3d). Only a few hyphae, tightly adhering to the surface, penetrate intercellularly
into the epidermal cells (Figure 3e). At the site of penetration, we observed slight swelling
of the elongating hyphae (Figure 3e). After successfully invading the root, the hyphae
elongated parallelly along the longitudinal axis. The intercellular hyphal swelling between
the epidermal cell junctions at the site of penetration to an adjacent cell was observed at
4 dpi (Figure 3f). By 6 dpi, the hyphae reached the vascular tissue and continued to grow
and ramify, forming a hyphal net within the xylem vessels (Figure 3g). The root xylem
vessels filled with hyphae were observed by 8 dpi (Figure 3h). Our results indicated that
the invasion of eggplant roots by VdaSm shares a colonization process similar to that of
V592 on cotton plants [21].
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Figure 3. Systemic infection of eggplant roots by VdaSm-GFP. (a) Germinated conidia on the eggplant
root surface (12 hpi). c—conidium, gc—germinated conidia, gt—germ tubes; (b) Germ tubes emerging
from one end of the conidium (12 hpi); (c) VdaSm-GFP hyphae on the root of eggplant (24 hpi);
(d) Hyphae covering the surface with a nonspecific growth pattern (3 dpi); (e) A few hyphae tightly
adhered on the root surface penetrated intercellular into the epidermal cells (3 dpi). hp—hyphopodia;
(f) Swelling hyphae were observed at the site of penetration to an adjacent cell (4 dpi); (g) A hyphae
net within the xylem vessels was observed by 6 dpi; (h) Hyphae filled the root xylem vessels by 8 dpi.

3.3. VdNoxB and VdPls1 Are Required for Penetration Peg Formation and Fungal Pathogenicity

We previously demonstrated that VdNoxB and VdPls1 from V592 are specifically
expressed in infection structure and hyphopodium, and are indispensable for penetration
peg formation in the colonization of V592 on cotton plants [22]. Therefore, to figure out
whether the swelling hyphae (Figure 3e,f) were infection structures with specific molecular
feature similar to V592 on cotton plants [22], we amplified and confirmed VdNoxB and
VdPls1 homologous sequences from VdaSm. We then generated knockout mutants, Vd∆noxb
and Vd∆pls1, using the homologous recombination method (Figure S2a–c) [35]. There
were no noticeable morphological differences between the VdaSm and the mutant strains
(Figure 4a). GFP-fused VdNoxB and VdPls1 under the native promoter were introduced
into Vd∆noxb and Vd∆pls1 mutants, respectively, to produce the complemented strains
Vd∆noxb/VdNoxB and Vd∆pls1/VdPls1. Green fluorescence was detected, confirming the
stable expression of GFP-fused VdNoxB and VdPls1 in complemented strains (Figure S2d).

We first examined the penetration abilities of the VdsSm, Vd∆noxb and Vd∆pls1 mu-
tants and the complemented strains Vd∆noxb/VdNoxB and Vd∆pls1/VdPls1 on a cellophane
membrane laid on MM, which is used for V592 to induce hyphopodia and penetration
pegs [22]. We observed that VdaSm and both complemented strains penetrated from the
cellophane membrane and grew on the medium at 3 dpi (Figure 4b). However, fungal
hyphae penetration from the cellophane membrane was not observed for either Vd∆noxb
or Vd∆pls1 mutants (Figure 4b), suggesting that VdNoxB and VdPls1 were also required
for VdsSm to induce infection structure. Indeed, hyphopodia with clear penetration pegs to
breach the cellophane membrane for VdaSm and complemented strains were observed un-
der microscopy (Figure 4c). Even though hyphopodia was observed, neither the Vd∆noxb
nor Vd∆pls1 mutants generated penetration pegs (Figure 4c). These data demonstrate that
VdNoxB and VdPls1 are indispensable for penetration peg formation in VdaSm to penetrate
the cellophane membrane.
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Figure 4. The penetration abilities assay on the cellophane membrane. (a) Colony morphology of
wild-type VdaSm, Vd∆noxb and Vd∆pls1 mutants, and Vd∆noxb/VdNoxB and Vd∆pls1/VdPls1 on
PDA plates; (b) Colonies grown on the cellophane membrane (Above) and MM (Below). VdaSm

grew on the MM after penetration from the cellophane membrane. Mutant strains lost penetration
ability, and complemented strains restored penetration ability; (c) VdaSm and complemented strains
developed hyphopodia with penetration pegs. The hyphopodia are indicated by the arrow, and the
penetration peg is indicated by asterisks.

We then investigated the roles of VdNoxB and VdPls1 in the pathogenicity of VdaSm on
eggplants. The eggplants were inoculated with spores from the wild-type VdaSm, Vd∆noxb
and Vd∆pls1 mutant strains, as well as with the complemented strains, Vd∆noxb/VdNoxB
and Vd∆pls1/VdPls1. Compared to VdaSm, both the Vd∆noxb and Vd∆pls1 mutant strains
displayed significantly reduced disease severity in eggplants (Figure 5a,b). The loss of
virulence was restored in both Vd∆noxb/VdNoxB and Vd∆pls1/VdPls1 strains (Figure 5a,b).
Isolation of diverse VdaSm strains from the infected plants was used to confirm the success-
ful inoculation (Figure 5c). These results indicate that VdNoxB and VdPls1 are essential to
the pathogenicity of VdaSm.

Similar to our previous studies on cotton [21,22], we conclude that special infection
structures are required for V. dahliae strains colonization of various host plants. A conserva-
tive mechanism involving VdNoxB and VdPls1 would be indispensable for penetration
peg formation.
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3.4. VdNoxB and VdPls1 Were Highly Expressed in Hyphopodia and Localized at the Position of
Penetration Peg Emergence in VdaSm

NoxB and Pls1 were reported to be associated with the ER and specifically accumulate
in the infection structures in V. dahliae [22], Magnaporthe oryzae [38] and Botrytis cinerea [39].
VdNoxB and VdPls1 of V592 particularly colocalized at the position of penetration peg
emergence and VdPls1 is required for the plasma membrane localization and activation
of VdNoxB [22]. To investigate the cellular localization of VdNoxB and VdPls1, the com-
plemented strains Vd∆noxb/VdNoxB and Vd∆pls1/VdPls1, in which GFP-fused VdNoxB or
VdPls1 was introduced into the corresponding mutant (Figure S2c), were examined under
CLSM. The functional activities of GFP-fused proteins were confirmed by complementation
of both penetration ability (Figure 4) and pathogenicity (Figure 5). The hyphae grown
on the cellophane membrane were stained by ER-Tracker Blue-White DPX (Figure 6a).
Either GFP-fused protein colocalized with the ER-tracker signals (Figure 6a). Further-
more, the RFP was fused with the V. dahliae homolog of yeast KAR2, located at the ER
and nuclear envelope [40]. RFP-fused VdKar2 was introduced into the Vd∆noxb/VdNoxB
and Vd∆pls1/VdPls1. Red fluorescence was detected under a microscope, confirming the
stable expression of VdKar2-GFP (Figure 6b). Similar to Blue-White DPX staining, overlap-
ping of the RFP signal with the GFP fluorescence in both Vd∆noxb/VdNoxB/VdKar2 and
Vd∆pls1/VdPls1/VdKar2 was also observed (Figure 6b). Notably, at the base of hyphopo-
dia where penetration pegs developed, the plasma membrane of Vd∆noxb/VdNoxB and
Vd∆pls1/VdPls1 was clearly stained using FM4-64 (Figure 6c), where linescans also showed
the strong GFP signals in a transverse section of individual hyphopodium (Figure 6d).
Taken together, these results indicated that both VdNoxB and VdPls1 of VdaSm are asso-
ciated with the ER, and localized at the position of penetration peg emergence in VdaSm,
which is similar to VdNoxB and VdPls1 location in V592 [22].
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Figure 6. VdNoxB and VdPls1 were highly expressed in hyphopodium and localized at the base of
hyphopodium. (a) Localization of VdNoxB and VdPls1 in the ER. ER was stained with ER-Tracker
Blue-White DPX. Bar = 10 µm; (b) Localization of VdNoxB-GFP, VdPls1-GFP and VdKar2RFP. Bar
= 10 µm; (c) Localization of VdNoxB and VdPls1 with the membrane of penetration pegs. The
plasma membrane was stained using FM4-64, Bar = 2.5 µm. (d) Linescan graphs showing the relative
intensity of RFP and GFP at the base of hyphopodium.

3.5. VdNoxB/VdPls1-Mediated ROS Production Coupled with Ca2+-Activated VdCrz1 Signaling
in the Hyphopodium

In V592, VdPls1 regulates ROS burst by influencing the plasma membrane localization
of VdNoxB. The VdNoxB/VdPls1-dependent ROS burst is essential for the free Ca2+

elevation in the hyphopodium, which activates VdCrz1 signaling to induce penetration
peg development [22].
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To confirm whether penetration peg formation in VdaSm shared a molecular mecha-
nism similar to that in V592, we first detected the ROS burst in the hyphopodium. VdaSm

hyphae grown on the cellophane membrane were treated with DAB staining for CLSM
observation. Intensive ROS signals were detected at the base of hyphopodia in VdaSm,
where the penetration pegs were generated (Figure 7a). In contrast, no signal was detected
for ROS-specific accumulation in either the Vd∆noxb or Vd∆pls1 mutant strains (Figure 7a).
Moreover, a tip-high Ca2+ gradient in the hyphopodia of VdaSm was observed with the
intracellular calcium indicator Fluo-a AM, whereas Ca2+ was not detectable in the hyphopo-
dia of the Vd∆noxb and Vd∆pls1 strains (Figure 7b). Our data indicate that VdNoxB and
VdPls1 are required for ROS production and Ca2+ elevation in the hyphopodium [22].
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vious phenotypic differences on PDA plates (Figure 8a). Similar to VdΔnoxb and VdΔpls1, 
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Figure 7. VdNoxB/VdPls1-dependent ROS burst affected VdCrz1 signaling by Ca2+ elevation.
(a) CLSM observation of ROS accumulation at the base of hyphopodia in VdaSm but not in mutant
strains. Hyphae grown on the cellophane membrane were stained with DAB. Bar = 10 µm; (b) De-
tection of Ca2+ elevation in hyphopodia with Fluo-4 AM. A tip-high gradient Ca2+ was observed in
VdaSm but not in the Vd∆noxb and Vd∆pls1 strains. Bar = 5 µm; (c) Expression analysis of VdCrz1 and
its target genes in VdaSm and mutant strains. The asterisks indicate significant differences (p < 0.05,
one-way ANOVA), and error bars show the standard deviations.

Next, we examined the expression of VdCrz1 and its potential targets VdLcc and
VdRhom, encoding M. oryzae orthologs of laccase and rhomboid family membrane protein,
respectively [41], to confirm whether Ca2+ elevation affected VdCrz1 signaling in VdaSm.
The expression of VdCrz1 was significantly reduced in Vd∆noxb and Vd∆pls1 compared
to wild-type VdaSm (Figure 7c). As expected, the two target genes of VdCrz1 were also
downregulated in both mutant strains (Figure 7c). We then generated the VdCrz1 knockout
mutant, Vd∆crz1 (Figure S3a,b), and assayed its ability to induce penetration peg formation
and pathogenicity in eggplants. Compared to VdaSm, Vd∆crz1 did not exhibit obvious
phenotypic differences on PDA plates (Figure 8a). Similar to Vd∆noxb and Vd∆pls1,
Vd∆crz1 hyphae penetration from the cellophane membrane at 3 dpi (Figure 8b) and the
formation of a penetration peg at 2 dpi was not observed (Figure 8c). Pathogenicity assays
showed that Vd∆crz1 displayed greatly reduced virulence in eggplants compared to VdaSm

(Figure 8d,f). Isolation of VdaSm and Vd∆crz1 strains from the infected plants was used to
confirm the successful inoculation (Figure 8e). Taken together, our results demonstrated
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that VdNoxB/VdPls1-mediated Ca2+ elevation activates VdCrz1 signaling to regulate the
penetration ability and pathogenicity of VdaSm.
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eggplants. (a) Colony morphology of wild-type VdaSm and Vd∆crz1 mutant; (b) The penetration
ability detection of Vd∆crz1 on the cellophane membrane at 3 dpi; (c) Penetration peg was not
observed in Vd∆crz1. Bar = 5 µm; (d) Disease symptoms of eggplants infected with VdaSm and
Vd∆crz1. Similar results were obtained from 20 infected plants for each strain, and representative
photographs are shown. Photographs were taken at 15 dpi. Bar = 10 cm; (e) Isolation of VdaSm

and Vd∆crz1 mutant strains from the stems of infected plants; (f) Disease grade of infected plants
by VdaSm and Vd∆crz1 mutant strains. A total of 21 infected plants for each strain were counted;
(g) Schematic overview of VdNoxB/VdPls1-mediated ROS-Ca2+ signaling during penetration pef
formation of VdaSm on eggplant roots.
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4. Discussion

In this study, we demonstrated that the formation of hyphopodia and penetration pegs
is required for the initial colonization of VdaSm on eggplant roots. VdNoxB and VdPls1 are
indispensable for penetration peg formation and essential to the pathogenicity of VdaSm.
Both VdNoxB and VdPls1 localized at the base of hyphopodia, where the penetration pegs
were generated. Additionally, VdNoxb and VdPls1 are required for the ROS production.
Furthermore, the VdNoxB/VdPls1-dependent ROS burst elevates Ca2+ accumulation in
the hyphopodia, which activates VdCrz1 signaling to regulate penetration peg formation
(Figure 8g).

To enter the underlying host tissues, many fungi generate elaborate infection structures
from emerging penetration hyphae to breach the cuticle and epidermal cell wall [1,42].
Interestingly, studies on host penetration by Rhizoctonia solani showed that the ability
to generate infection structures is highly variable even within a given species [42,43].
Similarly, V. dahliae develops infection structures with different characteristics to adapt to
host specificity. An appressoria, which is a requirement for leaf infection, was observed
during the invasion of V. dahliae on lettuce and fiber flax roots [16,17]. However, we
demonstrated that the formation of hyphopodia with penetration peg is essential for the
initial colonization of V592 on cotton roots [22]. In this study, we isolated the V. dahliae strain
VdaSm from Verticillium wilt eggplants (Figure 1) and observed its infection process with
a GFP-labeled isolate (Figure 2). Hyphal swelling at the site of penetration was observed
(Figure 3). The penetration ability assay showed that the hyphopodium with penetration
pegs are indispensable to breach the cellophane membrane (Figure 4). Furthermore, we
demonstrated that the hyphopodia and penetration pegs play essential roles in initial
colonization and pathogenicity of VdaSm on eggplant (Figure 5Similar to our previous
observation [21,22], we conclude that V. dahliae colonized eggplant, cotton and Arabidopsis
with a similar process.

The tissue-adapted infection strategies of M. oryzae have clarified the difference in ap-
pressoria and hyphopodia [10,12,13,38]. On the leaf, M. oryzae develops heavily melanized
appressoria associated with classical foliar infection, and then the appressoria build up
tremendous turgor pressure to penetrate the tough surface [12,44,45]; on the root, hyphal
swellings resembling the simple structure hyphopodia has been evident [12]. These results
indicated that it is harder for the fungus to breach the leaf than to penetrate the root. Our
previous study showed that the average diameter of V. dahliae hyphopodia was smaller
than that of M. oryzae appressoria [31], which suggests that more pressure is needed for the
fungus to breach the plant leaf compared to the root. Therefore, the previous findings of
slight hyphal swelling during V. dahliae infection on oilseed rape and sunflower [19,20] that
was thought as non-structural development without molecular characterization would be
worth studying further.

Although there is considerable variation in morphology between appressoria and hy-
phopodia, a study showed that the infection structures share common genetic requirements
during M. oryzae colonization [38]. In general, ROS generation is required for the differenti-
ation of a penetration peg from appressoria [23,25,46] or hyphopodia [22]. Nox enzymes
function as the major enzymatic producer of ROS [47–49]. In several fungal pathogens,
the NoxA and NoxB proteins have been shown to be crucial for hyphal tip growth, tissue
invasion and virulence [24,26,27,50]. ROS elevation, produced by NoxB, activates Ca2+

channels to facilitate Ca2+ influx for the plant root-hair cell and the fungal hyphae tip polar-
ity [28–30]. Pls1, which is expressed during appressoria development, is presumed to be the
corresponding integral membrane adaptor for the assembly of the NoxB complex [39,51].
In this present study, VdNoxB and VdPls1 of VdaSm were indispensable for penetration
peg formation on the cellophane membrane (Figure 4). We observed that both VdNoxB and
VdPls1 localize on the plasma membrane (Figure 6a), particularly at the position of pene-
tration peg emergence (Figure 6b). Similar to our previous results on V592 [22], the ER and
plasma membrane location of VdNoxB/VdPls1 was essential for penetration peg formation.
In our previous study, yeast two-hybrid and bimolecular fluorescence complementation
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assays provided evidence of a direct physical interaction between VdNoxB and VdPls1 [22].
Furthermore, we demonstrated that the plasma membrane localization of VdNoxB and
VdPls1 is required for the ROS burst in the hyphopodia (Figure 7a), which elevates Ca2+

accumulation at the base of hyphopodia (Figure 7b). Consistent with our previous results
on V592 [22], VdNoxB/VdPls1-dependent Ca2+ elevation activated VdCrz1 signaling, and
VdCrz1 and its targets were significantly reduced in Vd∆noxb and Vd∆pls1 compared to
VdaSm (Figure 7). Similar to Vd∆noxb and Vd∆pls1, penetration peg formation was not
observed in Vd∆crz1 on the cellophane membrane at 2 dpi (Figure 8b,c). Vd∆crz1 displayed
significantly reduced virulence in eggplants (Figure 8d).

5. Conclusions

In summary, we observed the infection process of VdaSm on eggplants and identified
the infection structure and its molecular features. Similar to our previous study on V592
infection on cotton plants, we conclude that a common genetic pathway regulates host-
specific infection-related development in the soil-borne fungus V. dahliae. The finding that
Nox/Pls-dependent signaling is required for appressorium formation [23,51], suggests
that Nox/Pls are key components for this pathogenic fungal colonization of their hosts.
Therefore, Nox/Pls-dependent signaling maybe a desirable target for fungicides. The
elaboration of regulatory mechanisms in the upstream of Nox/Pls-dependent signaling,
such as cAMP [38,52], is worth studying further. A clear understanding of the process of
colonization might help to develop effective fungicides for inhibiting the V. dahliae infection
process.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jof9040484/s1, Figure S1: The colony morphology and growth rate
of VdaSm and VdaSm-GFP on PDA plates; Figure S2: Construction of knockout mutants Vd∆noxb and
Vd∆pls1, and complemented strains Vd∆noxb/VdNoxB and Vd∆pls1/VdPls1; Figure S3: Identification
of the VdCrz1 knockout mutant with the primers HPT and VdCrz1 as indicated; Table S1: Primers
were used in this study.
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