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Abstract: A bimetallic organic gel (MOG-Fe/Al) was synthesized through the solvothermal method.
The gel state of the product obtained under optimized gel formation conditions is sufficient to
carry 2 g of weight for a long time. Scanning electron microscopy (SEM), X-ray diffraction (XRD),
Fourier transform infrared (FT-IR) spectroscopy, Brunauer–Emmett–Teller (BET) technique, and
X-ray photoelectron spectroscopy (XPS) analysis confirmed the structures and morphologies of the
synthesized materials. MOG-Fe/Al, with good stability, excellent durability, and wide applicability,
exhibited efficient MO adsorption capacity as high as 335.88 mg/g at 25 ◦C. Adsorption-influencing
factors including solution pH, contact time, and temperature were investigated. The adsorption
performance of the bimetallic organic gel was better than that of the monometallic organic gels (MOG-
Fe and MOG-Al), and its adsorption processes were in accordance with the pseudo-second-order
kinetic and Langmuir isothermal models. The excellent adsorption capacity of the MOG-Fe/Al is due
to its surface structure, pore volume, π-π interactions, hydrogen bonds, and electrostatic interactions.

Keywords: organic gel; binary; adsorption; dye removal; water treatment

1. Introduction

In recent years, synthetic dyes have become one of the important pollutants in indus-
trial wastewater from different operations, such as printing, dyeing, textile production,
and papermaking [1–3]. They usually contain complex aromatic ring structures, and their
long-term existence in the environment not only poses potential risks to ecosystems, but
also threatens human health through toxic effects, causing a variety of cancers [4,5]. Methyl
orange (C14H14N3SO3Na), as a typical azobenzene dye, is widely used in agriculture and
industry. The accumulation of MO in water bodies will endanger aquatic organisms and
seriously threaten the quality of human drinking water [6]. In addition to strict regula-
tion, sewage treatment materials and technologies are important means to reduce water
pollution. Many techniques, such as coagulation [7], ion exchange [8], membrane separa-
tion [9], adsorption [10,11], advanced oxidation [12,13], and biodegradation [14], have been
explored to purify the water. Among them, adsorption is considered as a promising and
effective technique for dye removal due to its advantages of simple operation, low cost,
high efficiency, and low environmental impact [15,16]. Designing efficient adsorbents is the
key to adsorption techniques.

Metal–organic gels (MOGs) are a class of supramolecular organic gels formed by
connecting organic ligands and inorganic units through metal coordination, and they are in
a semi-solid immobile state at the macroscale [17–20]. Owing to their low density, porosity,
and large surface, their applications in catalysis [21], gas adsorption [22], sensors [23], and
water purification [24] have become a research focus in recent decades [25]. In particular,
binary and multiple MOGs have abundant active sites and high porosity, and they exhibit
excellent performance owing to the synergistic interaction of multiple metals [26–29].
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The bimetallic MOGs benefiting from MIL-100 (Fe and Al) have a large pore size and
high pore volume, which can trap larger molecules and are especially suitable for dye
removal in acidic and neutral environments. They may be ideal water-amplifier adsorbents
and can adsorb more pollutant molecules than monometallic adsorbents. Inspired by
this, here, binary metal–organic gel (MOG-Fe/Al) originating from Fe and Al with 1,3,5-
benzentricarboxylic acid was produced by the solvothermal technique. The impact factors
of gel formation such as reactant ratio, reaction temperature, and solvent type were carefully
studied. And the process of MO adsorption on MOG-Fe/Al was assessed by kinetics,
isotherms, equilibrium states, and thermodynamic properties. Finally, the durability of
MOG-Fe/Al and the adsorption properties on multiple dyes were investigated, and the
adsorption mechanism was deduced.

2. Results and Discussion
2.1. Synthesis of MOGs

Generally, in the process of MOG synthesis, the important factors affecting gel for-
mation include the following: reactant ratio, reaction temperature, solvent type, reaction
time, pH, surfactants, and inhibitors [30,31]. In this work, six reactant ratios (1:8, 1:5, 1:4,
1:2, 1:1, and 3:2) were investigated using single-factor experiments, and the results are
described in Figure S1. As shown in Figure S1A, the reactant ratio of 1:4 is a critical value
beyond which the gel state can be formed. Subsequently, the adsorption performances of
the four gel-forming materials (1:4, 1:2, 1:1, 3:2) were compared. As shown in Figure S1B,
the adsorption properties of the products varied greatly with the reactant ratio, and the
products obtained from 1:2 had the highest adsorption properties. In addition, this con-
clusion was further verified by the fitting results of the relationship between the reactant
ratio and the adsorption efficiency (Figure S1C). Furthermore, DMF, EtOH, and DMSO
were screened as solvents for forming gels, and the results are shown in Figure S2. Under
the same reaction conditions, the apparent morphology of the gel in the DMF system is
perfect, and a semi-liquid product can be seen in the EtOH system, while no gel is formed
in the DMSO system. Different reaction temperatures (50–130 ◦C) were explored in the
systems with different reactant ratios. As shown in Figure S3, as the proportion of the
metal center increases, the gel formation temperature decreases gradually. The system
with a 1:2 reactant ratio can form a stable gel at 100 ◦C. In summary, a 1:2 reactant ratio
(metal salt concentration: 0.11 M; coordinating ligand concentration: 0.22 M), DMF solvent,
and reaction temperature of 100 ◦C were chosen as optimized gel formation conditions.
The prepared product was further confirmed as a non-flowing semi-solid gel by the falling
ball method (Figure S4). A 24 h observation indicated that the weights did not settle,
indicating that the gelation degree of MOG-Fe/Al was good enough. When the external
conditions are certain, MOG-Fe/Al can maintain the gel state [32,33].

2.2. Characteristics of the Samples

The SEM images and EDS spectra of the three materials were assessed, as shown in
Figure 1 and Figure S5. The SEM images of monometallic gel materials (Figure 1A–D) indi-
cate that the samples consist of only blocks, which confirmed their phase purity. The blocks
exhibit heterogeneous shapes, and their surfaces present dense scale-like textures. By com-
parison, the surface morphology of bimetallic gel is significantly different; the surface is
rough and ragged. Some cavities and channels constructed by the accumulation of blocks
provide abundant adsorption sites (Figure 1E,F). In order to confirm the existence of metal
components in the gels, the EDS spectra of the three MOGs were obtained. The EDS results
show that the three samples contain Fe, C, and O (MOG-Fe); Al, C, and O (MOG-Al); Fe,
Al, C, and O (MOG-Fe/Al), respectively, which proved the successful preparation of the
organometallic gel (Figure S5).
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Figure 2. The high-resolution survey (A), Fe 2p spectrum (B), Al 2p spectrum (C), C 1s spectrum 
(D), and O 1s spectrum (E) of MOG-Fe/Al. 

Figure 1. SEM images of MOG-Fe (A,B), MOG-Al (C,D), MOG-Fe/Al (E,F).

High-resolution XPS was further used to evaluate the elemental compositions and
electronic valence states of the material (MOG-Fe/Al). The full survey spectrum reveals the
presence of C, N, O, Fe, and Al (Figure 2A). The high-resolution Fe 2p spectrum (Figure 2B)
confirms the presence of Fe2+ (711.3 and 724.7 eV) and Fe3+ (712.7 and 726.4 eV), with a
satellite peak at 717.8 eV. The peaks observed at 74.5 and 74.9 eV in Figure 2C correspond
to Al 2p, indicating the presence of Al–O species. The C 1s XPS spectrum is divided into
three peaks at approximately 284.8, 286.3, and 288.8 eV, corresponding to C–C, C–O, and
O–C=O bonds, respectively (Figure 2D). Additionally, the peaks at binding energies of 532.1
and 533.6 eV in the O 1s spectrum are ascribed to OH–C and C=O groups, respectively
(Figure 2E).
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As shown in Figure 3A, the broad diffraction peaks of MOG-Al, MOG-Fe, and MOG-
Fe/Al in the XRD spectra indicate the amorphous nature of the gels, which is consistent
with the SEM results. The FT-IR spectra of H3BTC and the three MOGs are shown in
Figure 3B. By comparison with the IR spectrum of H3BTC, a series of characteristic peaks
of carboxylate group stretching vibrations can be observed in the three MOGs’ spectra (i.e.,
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a strong peak near 1610 cm−1, a doublet in the range of 1440–1370 cm−1 and a peak at
770 cm−1 coming from the stretching vibrations of the benzene ring in H3BTC) [28]. It is
noteworthy that the characteristic peak of pure H3BTC at 1710 cm−1 has shifted to lower
wavenumbers (1660 cm−1) in the case of the MOGs. The redshift of the band at 1710 cm−1

indicates that the carboxylate is coordinated. For the prepared MOGs, the peaks observed
between 1610 and 1440 cm−1 should be assigned to asymmetric (νas) and symmetric (νs)
vibrations of COO−, respectively. And the ∆ν (νas(COO−) -νs(COO−)) value of 170 cm−1

indicates the presence of a bidentate bridge coordination mode in the carboxylic acid
group [34]. Additionally, the broadening of the diffraction bands in the range of 3510 to
3000 cm−1 is related to the stretching vibrations of O–H emanating from H2O [35].
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The N2 adsorption/desorption isotherms of MOG-Fe, MOG-Al, and MOG-Fe/Al
exhibit type IV behavior (Figure 3C). The specific surface areas of the three samples are
10.9, 15.8, and 40.9 m2/g, respectively. Owing to the hybridization of the two metals, the
surface of the bimetallic gel becomes more convex and uneven, resulting in an increase in
specific surface area and more adsorption sites. Moreover, the pore size distribution result
of MOG-Fe/Al (Figure 3D) shows that the bimetallic gel contains micropores, mesopores,
and a few macropores, indicative of a hierarchical porous material. Furthermore, TGA
was performed to ascertain the thermal stability of MOG-Fe/Al (Figure S6). MOG-Fe/Al
experienced five main steps of weight loss. Zone I describes the initial weight loss occurring
below 230.6 ◦C attributed to water removal from the sample surface. In the range of Zone II
to Zone V (230–800 ◦C), very sharp weight losses were observed due to the decomposition
of the organic species and the destruction of the structure.

2.3. Adsorption Study of Adsorbents for MO

Mono-doped (MOG-Fe and MOG-Al) and dual-doped (MOG-Fe/Al) metal–organic
gels derived from Fe and Al as metal sources were successfully synthesized according to
the experimental parameters and conditions optimized as described above. As shown in
Figure 4A,B, these materials exhibited superior adsorption performance for MO removal.



Gels 2024, 10, 208 5 of 14

The adsorption capacity of dual-doped gel (156.98 mg/g, adsorption efficiency 80.10%)
was higher than that of its mono-doped counterparts (MOG-Fe:148.52 mg/g, adsorption
efficiency 74.31%; MOG-Al: 132.8 mg/g, adsorption efficiency 65.17%). Therefore, MOG-
Fe/Al was selected as the adsorbent in the subsequent study.
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2.3.1. Effect of pH on MO Adsorption

pH is a crucial factor affecting the adsorption process, which affects the surface
properties of the adsorbent and the ionization of the dye [36]. Figure 5A presents the
impact of initial pH on MO removal. It reveals that the MO adsorption on MOG-Fe/Al is
greatly affected by the variation in pH. It is well known that MO, as an anion dye, exists in
the form of sulfonic acid under acidic conditions and in the form of sulfonate under neutral
and alkaline conditions. Meanwhile, the surface charge of MOG-Fe/Al at different pH
values had been measured, as depicted in Figure S7. The adsorbent was positively charged
in the pH range of 2–7. Consequently, electrostatic attraction between the adsorbent and
the dye significantly contributed to the adsorption process. Therefore, acidic condition
is conducive to MO adsorption, with the adsorption capacity increasing until it reaches
156.02 mg/g. As the pH of the solution further increased to alkaline levels, the surface
of the adsorbent became negatively charged, leading to a reduction in MO adsorption
due to electrostatic repulsion. Thus, a high MO removal efficiency was maintained within
the pH range of 4.5–7 (>78.1%). Considering that the measured pH value of the MO
aqueous solution was about 4.5, it is more practical to deregulate the pH value during the
adsorption process.
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2.3.2. Effect of Contact Time and Adsorption Kinetics

Contact time is a key factor in determining the efficacy of an adsorbent in actual use
and the optimal decolorization time. Batch adsorption experiments were conducted over
the range of 5–300 min to investigate the impact of contact time on the adsorption capacity.
As shown in Figure 5B, the adsorption capacity of MO increased rapidly in the first 30 min,
which is attributed to the abundance of available adsorption sites at first. Subsequently, the
absorption process of MO decelerated and reached the equilibrium condition after 240 min,
with the highest adsorption capacity of 156.36 mg/g, and then the removal capacity tended
to stabilize. Therefore, the optimum contact time for adsorption of MO was 240 min.

The kinetic models of MO adsorption on MOG-Fe/Al were compared by the nonlinear
regression method, as shown in Figure 6, and the calculated relevant parameters are listed
in Table 1. The relatively high R2 value (>0.99) and the calculated qe (157.73 mg/g) are
basically consistent with the experimental value (156.36 mg/g), indicating that the pseudo-
second-order model is more suitable for describing the adsorption phenomenon. It is
shown that the chemisorption involving electron exchange or valence forces between the
adsorbent surface and the adsorbate is primary in the adsorption process [28].
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Table 1. Kinetic parameters for MO adsorption by MOG-Fe/Al.

Pseudo-First-Order Model Pseudo-Second-Order Model

k1 (min−1) qe,1 (mg/g) R2 k2
(g/mg·min) qe,2 (mg/g) R2

–1.94 × 10−2 46.63 0.9581 8.5 × 10−4 157.73 0.9999

2.3.3. Effect of Initial Concentration and Adsorption Isotherm

The impact of the initial MO concentration on the adsorption capacity is shown in
Figure 7A. The results showed that with the increase in the initial concentration of dye,
the adsorption capacity gradually increased and reached saturation, and the maximum
adsorption capacity was 335.88 mg/g. The increment in the initial dye concentration
provides mass transfer force and reduces the resistance between the liquid and solid phases.
The probability of contact between the dye and the adsorption site is enhanced, which is
beneficial for improving the adsorption performance of the adsorbent [37,38].

The Langmuir model assumes the possibility of monolayer adsorption, which considers
homogeneous adsorption with molecular thickness on the adsorbent. The Freundlich model is
often used to discuss multilayer and heterogeneous adsorption processes. The Temkin model
is similar to the Freundlich model in that it is suitable for multilayer adsorption except for
extremely low and extremely high adsorbent concentrations. In this work, the Langmuir,
Freundlich, and Temkin isotherm models were employed to determine the adsorption ability of
MOG-Fe/Al (Figure 7B–D). The relative parameters presented in Table 2 indicate that the MO



Gels 2024, 10, 208 7 of 14

adsorption isotherm fitted the Langmuir model well with the highest R2 (> 0.99) compared with
the Freundlich and Temkin isotherm models (>0.95 and >0.96), and the maximum adsorption
capacity was 337.47 mg/g. This result suggests that MO adsorption on MOG-Fe/Al involved
monolayer coverage at a specific homogeneous site.
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Table 2. Parameters of Langmuir, Freundlich, and Temkin isotherms.

Langmuir Freundlich Temkin

Kl (L/mg) qm (mg/g) Rl
2 Kf

(mg/g)/(mg/L)1/n)
n Rf

2 Kt (L/g) B (kJ/mol) Rt
2

0.00576 337.47 0.9950 13.80 1.92 0.9540 0.081 88.84 0.960

2.3.4. Effect of Adsorption Temperature and Thermodynamics

The adsorption temperature is also an important factor influencing MO adsorption.
The effect of temperature and the thermodynamic data were investigated, as exhibited
in Figure 8A. In the temperature range of 15 to 45 ◦C, the adsorption capacity of MO
on MOG-Fe/Al only fluctuated slightly and remained above 150 mg/g. The ∆Sθ and
∆Hθ were acquired from the Van’t Hoff plot (Figure 8B), and the results are presented in
Table 3. The ∆Hθ value is negative, indicating that the MO adsorption is an exothermic
process. A negative value of ∆Sθ shows that the solid–liquid interaction in the adsorption
process reduced the randomness of the system. And negative values of ∆Gθ signify that the
adsorption process is spontaneous and feasible. Additionally, as shown in Table 3, the trend
of ∆Gθ is positively correlated with the temperature change, indicating that the adsorption
process is more favorable at room temperature than at high temperature [39]. Therefore, the
adsorption of MO by MOG-Fe/Al is a spontaneous exothermic entropy reduction process.
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Table 3. Thermodynamic parameters for MO adsorption by MOG-Fe/Al.

T/(K) ∆Gθ/(kJ/mol) ∆Hθ/(kJ/mol) ∆Sθ/(kJ/mol)

288 −4.39

−8.39 −1.69
298 −4.34
308 −3.92
318 −3.78

2.4. Durability and Applicability of Adsorbent

The durability of adsorbents affects the cost of water treatment operations and is there-
fore an important factor in evaluating their potential commercial applications. After adsorp-
tion of MO, MOG-Fe/Al was removed by centrifugation, regenerated by ethanol-distilled
water washing, subjected to separation with centrifugation, and used for continuous recy-
clable tests. Adsorption–desorption washing was performed in a similar manner for each
process. As shown in Figure 9A, the removal efficiency of the regenerated MOG-Fe/Al
declined with each cycle and remained above 60% in the seventh cycle. Similarly, the ad-
sorption capacity decreased by 20 percent after consecutive uses. The loss of properties can
be attributed to the partial irreversible adsorption of dye on MOG-Fe/Al and incomplete
recovery of the adsorption sites. The stability of the adsorbent was explored by detecting
the metal leaching of iron and aluminum during the adsorption. The metal loss from the
MOG-Fe/Al composite is exhibited in Table S1. As shown in Table S1, the percentage of the
leaching element of iron to the total elements was 0.09%, and that of aluminum was 0.37%.
Moreover, the FT-IR spectra of the regenerated adsorbent were highly consistent with those
of fresh MOG-Fe/Al (Figure 9B). Metal leaching and FT-IR results further confirmed that
the adsorbent maintained structural stability during the regeneration process.

In addition, the adsorption properties of CV, MB, RhB, and EY dyes were also investi-
gated. The concentration changes were measured by UV-Vis, and the characteristic peaks of
CV, MB, RhB, and EY appeared at the wavelengths of 584, 665, 554, and 517 nm, respectively.
The experimental results showed that the removal efficiency of all dyes was above 87%
when the adsorbent dose was 0.5 g/L and the concentration of dye solution was 20 mg/L
(Figure 9C). Meanwhile, the adsorption capacity of MOG-Fe/Al was also contrasted with
other materials used to remove MO dye from aqueous solutions in previous literature
(Table S2). The comparison results showed that MOG-Fe/Al demonstrated wonderful
advantages in dosage and adsorption capacity for realizing efficient synthetic dye removal.
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2.5. Proposed Adsorption Mechanisms

According to the above results of BET, pH, zeta potential, adsorption kinetics, and
isotherms, the adsorption of MO on MOG-Fe/Al is mainly chemisorption. FT-IR was
conducted to further investigate the interactions between the adsorbent and adsorbate
(Figure S8). π-π interaction exists between electron-deficient groups (–SO3H in MO and
–COOH in MOG-Fe/Al) and electron-rich groups ((CH3)2NH in MO and –OH in MOG-
Fe/Al). After MO adsorption, the characteristic peak of the benzene ring in FT-IR spectra
showed a redshift from 1385 to around 1371cm−1, indicating the presence of π-π inter-
action/stacking during adsorption [26]. Hydrogen bonds are typically formed between
adsorbents with hydroxyl (–OH), carboxyl (–COOH), and carbonyl (–C=O) groups and
contaminants with –OH and –NH groups. After MO adsorption, the FT-IR peak of C=O
shifted from 1572 to 1559, and the O–H peak shifted from 3399 to 3395 cm−1, indicating the
existence of hydrogen bonds [26,27]. Moreover, the pore-filling effect is also very important
when using porous adsorbents. MOG-Fe/Al possesses a multi-level pore structure that
facilitates the diffusion of dye molecules into the adsorbent and then the capture of these
molecules [38]. Furthermore, electrostatic interactions played a role in the adsorption
process, and this has been demonstrated by pH influence factor experiments. Overall,
the adsorption of MO on MOG-Fe/Al is a complex process, including π-π interactions,
hydrogen bonds, pore filling, and electrostatic interactions.

3. Conclusions

Monometallic and bimetallic organic gels derived from Fe, Al, and 1,3,5-benzentricarboxylic
acid were successfully synthesized using a simple solvothermal approach in this study. The gel
state of the product obtained under optimized gel formation conditions (reactant ratio 1:2,
solvent DMF, and reaction temperature 100 ◦C) is strong and stable enough to carry 2 g of weight
for a long time. Batch experiments were utilized to investigate the properties of the materials
for MO dye removal from water. The results showed that the bimetallic gel (MOG-Fe/Al)
exhibited superior adsorption performance to its mono-doped counterparts (MOG-Fe and
MOG-Al). The adsorption capacity of MOG-Fe/Al reached 335.88 mg/g under the conditions
of 240 min contact time, pH deregulation, dye initial concentration 100 mg/L, adsorbent dose
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0.5 g/L, and room temperature. The adsorption process followed pseudo-second-order kinetics
(R2 = 0.9999) and the Langmuir adsorption isotherm (R2 = 0.9950). Negative values of ∆Hθ,
∆Sθ, and ∆Gθ indicated the spontaneous and exothermic nature of the adsorption process.
The excellent adsorption capacity of the MOG-Fe/Al adsorbent is due to the increased surface
area and pore volume of the hybrid material, along with the π-π interactions, hydrogen bonds,
and electrostatic interactions. Meanwhile, the obtained MOG-Fe/Al adsorbent exhibited good
durability and excellent removal for a variety of dyes, such as methylene blue, rhodamine
B, eosin Y, and methyl violet. In summary, the bimetallic organic gel MOG-Fe/Al will be an
attractive candidate for the removal of synthetic dyes from wastewater in multiple fields.

4. Materials and Methods
4.1. Materials

Ferric nitrate nonahydrate (Fe(NO3)3·9H2O, ≥99%), aluminum nitrate nonahydrate
(Al(NO3)3·9H2O, ≥99%), 1,3,5-benzentricarboxylic acid (H3BTC, ≥99%), dimethylfor-
mamide (DMF, ≥99%), ethyl alcohol (EtOH), and dimethyl sulfoxide (DMSO) were pur-
chased from Shanghai Titan Scientific Co., Ltd. (Shanghai, China); hydrochloric acid (HCl,
≥99.7%) and sodium hydroxide (NaOH, ≥99%) were obtained from Sinopharm Chemical
Reagent Co., Ltd. (Beijing, China); crystal violet (CV, ≥99%), methylene blue (MB, ≥99%),
methyl orange (MO, ≥99%), rhodamine B (RhB, ≥99%), and eosin Y (EY, ≥99%) were
provided by DaMao Chemical Co., Ltd. (Tianjing, China). All chemicals and solvents were
of analytical grade and used as received. Water for experiments was ultrapure water with a
resistivity of 18.25 MΩ·cm.

4.2. Synthesis of MOGs

A metal salt mixture (0.75 mmol of Fe(NO3)3·9H2O and 0.75 mmol of Al(NO3)3·9H2O)
and 3.0 mmol of H3BTC were dissolved in 7 mL of DMF separately with vigorous stirring
(600 rpm) at room temperature. The two obtained solutions were then mixed and heated
at 100 ◦C for 6 h and then subjected to natural cooling. The impurities in the initial
product were removed by dialysis in ultrapure water, and the xerogel particles obtained
after lyophilization were named MOG-Fe/Al. The same procedures were applied for the
synthesis of MOG-Al and MOG-Fe, as outlined in Scheme 1.
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4.3. Characterization of Adsorbent

The morphology and elemental composition of the samples were studied by JSM-
7610F Plus M Field emission scanning electron microscope (FESEM, Tokyo, Japan) coupled
with an X-ray energy spectrum analyzer (EDS). Elemental compositions and electronic
valence were probed by Thermo Escalb 250 X-ray photoelectron spectroscopy (XPS) with Al
Ka radiation at 10 kV and 10 mA. X-ray diffraction (XRD) data were obtained using a Bruker
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D8 Advance X-ray diffractometer with Cu Kα radiation (λ = 1.54 Å) (Karlsruhe, Germany).
Thermogravimetric analysis (TGA, Hitachi STA7200; Tokyo, Japan) was performed to
measure the thermal stability of gels. Fourier transform infrared (FT-IR) spectra were
examined with an Thermo Scientific Nicolet iS50 FT-IR spectrometer (Waltham, MA, USA)
in the range of 400–4000 cm−1 at room temperature. N2 adsorption/desorption isotherms
were measured via a USA Micromeritics ASAP 2020 apparatus. The mental concentration
of leached elements was measured by an inductively coupled plasma spectrometer (ICP-
OES). Zeta potentials were determined on a Malvern Zetasizer Nano ZS90 instrument
(Malvern, England). The concentration of MO solution was measured with a UV-Vis UV-
2550 spectrophotometer (Tokyo, Japan). The pH of the solution was tested by a Gottingen
Sartorius PB 220 pH meter (Munich, Germany).

4.4. Adsorption Experiments

The adsorption characteristics of MO in aqueous solution were assessed through batch
adsorption experiments. A given amount of adsorbent (20 mg) was added in an aqueous
solution (40 mL, pH 2–11, time periods 5–300 min) containing MO in a concentration range
of 10–500 mg/L at a temperature from 15 to 45 ◦C (288–318 K). After reaching the desired
adsorption time, 1.0 mL of the sample solution was extracted, and then the adsorbents
were filtered by centrifugation. The MO concentration was determined by using a UV-Vis
spectrophotometer at 463 nm. The pH of the solution was adjusted with HCl aqueous
solution (0.1 M) or NaOH aqueous solution (0.1 M) at the beginning of the adsorption
process. The equilibrium adsorption amount (qe, mg/g) was calculated using the following
equation [29]:

qe =
(C0 − Ce)

m
× V (1)

where C0 and Ce (mg/L) represent the initial and equilibrium dye concentrations, respec-
tively; m (g) is the mass of the adsorbent; and V (L) is the volume of the dye solution.

The kinetic studies were performed at 298 K for 5 h. The process was investigated
using pseudo-first-order and pseudo-second-order kinetic models [30].

pseudo − first − order model : ln(qe − qt) = lnqe − k1t (2)

pseudo − second − order model :
t
qt

=
1

k2q2
e
+

t
qe

(3)

where qe (mg/g) is adsorption capacity at equilibrium; qt (mg/g) is MO adsorption at
time t; k1 (min−l) and k2 (g/(mg·min)) are the rate constants of pseudo-first-order and
pseudo-second-order reactions, respectively.

4.5. Adsorption Isotherm

Langmuir, Freundlich, and Temkin models were used to describe the adsorption
experimental data. The equilibrium models can be explained as follows [29,31]:

Langmuir formula :
Ce

qe
=

1
Klqm

+
Ce

qm
(4)

Freundlich formula : lnqe =
1
n

lnCe + lnK f (5)

Temkin formula : qe = Bln(KtCe) (6)

where Ce (mg/L) is the equilibrium concentration; B (kJ/mol) is the adsorption heat factor;
qm (mg/g) is the maximum amount adsorbed; Kl (L/mg), Kf ((mg/g)/(mg/L)1/n), and Kt
(L/g) are Langmuir, Freundlich, and Temkin adsorption constants, respectively; and n is a
measure of adsorption intensity.
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The thermodynamic evaluation of the experimental results was carried out; that is,
the entropy (Sθ), the standard enthalpy (Hθ), and the free energy (Gθ) were obtained using
the following equations:

∆Gθ = −RTlnKl

∆Gθ = ∆Hθ − T∆Sθ

lnK =
∆Sθ

R
− ∆Hθ

RT
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