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Abstract: Monolayers of colloidal particles trapped at an interface between two immiscible fluids
play a pivotal role in many applications and act as essential models in fundamental studies. One of
the main advantages of these systems is that non-close packed monolayers with tunable inter-particle
spacing can be formed, as required, for instance, in surface patterning and sensing applications.
At the same time, the immobilization of particles locked into desired structures to be transferred
to solid substrates remains challenging. Here, we describe three different strategies to immobilize
monolayers of polystyrene microparticles at water–decane interfaces. The first route is based on
the leaking of polystyrene oligomers from the particles themselves, which leads to the formation of
a rigid interfacial film. The other two rely on in situ interfacial polymerization routes that embed
the particles into a polymer membrane. By tracking the motion of the colloids at the interface, we
can follow in real-time the formation of the polymer membranes and we interestingly find that the
onset of the polymerization reaction is accompanied by an increase in particle mobility determined
by Marangoni flows at the interface. These results pave the way for future developments in the
realization of thin tailored composite polymer-particle membranes.
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1. Introduction

Monolayers of colloidal particles are widely used both as model systems [1–3] as well as
in a large range of applications, spanning from the fabrication of lithography masks [4,5]
and anti-reflective coatings [6] to emulsion stabilizers [7] and patterning elements for ultra-thin
polymeric membranes [8]. Standard protocols to prepare monolayers of colloidal particles adsorbed
onto a solid substrate involve direct adsorption from solution (including sedimentation [3] and
electrostatic adsorption [9,10]), spin-coating [11], controlled drying [12], convective assembly [13] and
electric-field-assisted deposition [14,15]. In all of these cases, dense particle monolayers are produced,
mostly with particles sharing contacts in closely packed arrays. Applications, e.g., in biosensing [16]
and patterning [5,17,18], and fundamental studies, e.g., in tailoring surface adhesion [19] and
friction [20] by particle adsorption, often also require non-close-packed monolayers with control
on both the particle size and the spacing between them. This can be achieved by first depositing a
close-packed monolayer and then by reducing the particle size by reactive etching [21], or alternatively
by depositing the particles onto stretchable elastomers [22]. Albeit successful and easy to implement,
these methods present some limitations. The former process does not afford independent control on
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size and spacing, i.e., the two are linked by the initial particle diameter. Moreover, sizes can only be
reduced up to a given point before the particles lose their shape integrity. The latter strategy involves
high-temperature steps, which restrict its applicability to inorganic particles. Another alternative
exploits the self-assembly of colloids at fluid–fluid interfaces [4,23]. In this case, monolayers of
particles are first formed at the interface between two fluids, i.e., oil-water or air-water, and are then
deposited onto a solid substrate. The presence of long-range electrostatic forces between particles
of suitable surface charge and wettability enables the possibility to obtain regular, non-close-packed
2D lattices [24,25]. These forces are dipolar in origin and can either be generated by charges on the
particle–water surface or on the particle–nonpolar fluid (air or oil) surface, depending on the materials
of interest. In particular, in the case of dominant charges on the particle-nonpolar fluid surface, it
has been shown that adsorption of ions from air in atmospheric conditions, or migration of ions
from the water side, can greatly reduce the effective surface charge density and thus lead to weaker
repulsion [26,27]. These contributions are less important in the case of highly water-insoluble oils,
such as purified alkanes, which tend to maintain higher unscreened surface charges leading to stronger
electrostatic repulsion. For the purpose of structural tailoring, spacings up to ten particle diameters
can be achieved and smoothly tuned by controlling the number of particles per unit area injected at
the interface [4] or by monolayer compression [26,28]. The most complicated part of the process is
the transfer of the particles from the interface to the substrate without destroying the monolayer’s
integrity. Different approaches have been devised, either using solvent exchange [23] or by choosing
oil phases with suitable viscosities and volatilities [4]. The process remains nevertheless challenging
due to limited adhesion between the particles and the substrate. Additional routes have been pursued
by using soft deformable particles that show an increased area of contact and thus higher adhesion
with the template, but, in this case, the range of available inter-particle spacing is limited and it is
dictated by the range of soft steric interactions at the interface [29].

In this paper, we describe three different approaches that can be used to immobilize particle
monolayers directly at a fluid–fluid interface before deposition, which could therefore be used in the
future to circumvent the issues described above. The paper is organized as follows. We initially present
a first route, where immobile monolayers of polystyrene (PS) particles are created spontaneously
at a water–decane interface without the addition of any external ingredient. The kinetics of the
immobilization process is followed by in situ microscopy and particle tracking. We then move to
another approach, where two different interfacial polymerization routes are followed to immobilize
the particles at the water–decane interface into thin polymer membranes. The presentation and
discussion of the experimental results is followed by conclusions and a perspective for future work.
An experimental section detailing the materials and methods used in our work closes the manuscript.

2. Results and Discussion

Figure 1 illustrates schematically the three different approaches that we have investigated to study
PS particle monolayer immobilization at the water–decane interface. Results and discussion follow for
each route.

2.1. Spontaneous Immobilization

Experiments aimed at studying particle dynamics within a monolayer at a water–decane interface
revealed that particle mobility was a strong function of the residence time of the particles at the
interface. Systematic investigations showed that, given a sufficient amount of time, the particles
became completely immobilized without distorting the interface microstructure. The experiments
were carried out as follows (additional details in the Experimental Section). A given number of
fluorescent polystyrene particles of either 2.8 or 1.08 µm diameter was injected using a micropipette
at a macroscopically flat oil-water interface created in a customized sample cell. A solution of 50:50
ultra-pure water and isopropanol was used to aid the spreading of the particles at the interface [30].
The latter was obtained by filling a metallic ring to its rim with water and carefully covering it with
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decane, after which the sample cell was sealed at the top with a glass slide. The cell was then placed
under a microscope, where videos of the particles at the interface were captured by fluorescence
microscopy as a function of waiting/residence time at the interface. The videos were successively
processed to extract particle trajectories and to compute the particle mean squared displacements
(MSD) as a function of time. The MSD is a standard quantity to describe the modality of the motion of
colloidal particles driven by thermal fluctuations. In the case of freely diffusing particles, the MSD
plotted as a function of time shows a slope of 1 in a log-log plot. Slopes below 1 indicate sub-diffusive
behavior characteristic of crowded or super-cooled systems, and flat lines indicate complete local
caging of the particles that cannot move beyond a specific distance, as in the case of completely
immobilized particles.
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Figure 1. Schematics of the three different immobilization routes. (a) spontaneous immobilization at a
water–decane interface. Particles within the monolayer simply become immobile with time; (b) nylon
interfacial polymerization. After the spontaneous interfacial adsorption of 1,6-diaminohexane from
the water phase, sebacoyl dichloride is injected into the organic phase to start the polymerization;
(c) polystyrene interfacial polymerization. After the spontaneous interfacial adsorption of the monomer
(styrene) and crosslinker (p-divinylbenzene) from the oil phase and of the initiator (Irgacure 2959) from
the water phase, the system is illuminated by UV light to initiate the free radical polymerization of
styrene at the interface.

Figures 2 and 3 show the MSDs of the 2.8 and 1.08 µm diameter particles, respectively, for different
residence times tw at the interface, where tw = 0 corresponds to the time at which the particles were
injected at the interface. The data are accompanied by a series of representative microscopy images
showing the interface microstructure at the various waiting times. Starting from the data in Figure 2,
we describe the mobility and the arrangement of the PS particles at the interface. The first observation
to be made is that the particles self-assembled into non-close-packed crystals due to electrostatic
repulsion. The corresponding MSD at short waiting times displayed the expected behavior. At short
times, the MSD increased sub-linearly with time, indicating sub-diffusive motion of the particles
interacting with their neighbors. After a few seconds, the MSDs plateaued and became flat, indicating
that the particles became completely caged by their neighbors. This situation corresponds to particles
rattling around their lattice positions. Remarkably, the rattling happened over distances much smaller
than the typical particle size or inter-particle distance, indicating strong local trapping. After a waiting
time of approximately 16 h, the situation was radically different. Here, the local rattling of the particles
in the lattice had completely disappeared and the MSD was flat at all times. The value of the MSD
corresponded to displacements of the order of one tenth of the particle diameter, which basically
constitutes the resolution limit of the particle tracking. We can then conclude that, after a few hours, the
particles stopped moving completely and a fully immobile monolayer was formed. Very interestingly,
no appreciable changes in the interface microstructure were found. The particle monolayer maintained
its non-close-packed crystalline structure, as can be seen by the micrographs. Analogous results are
seen in Figure 3 for the smaller PS particles.
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Figure 2. Mean squared displacements (MSD) versus time for 2.8 µm polystyrene (PS) particles at
the water–decane interface as a function of residence time at the interface tw. A solid line with slope
1 representative of freely diffusive motion is included for comparison. The micrographs show the
interface microstructure at various waiting times. The scale bar is 10 µm.
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Figure 3. MSD versus time for 1.08 µm PS particles at the water–decane interface as a function of
residence time at the interface tw. A solid line with slope one representative of freely diffusive motion
is included for comparison. The micrographs show the interface microstructure at various waiting
times. The scale bar is 10 µm.
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The complete immobilization of the particles suggests that a strong elastic film was formed at the
interface as a function of the particle residence time. This result was initially surprising, given that no
other component was added to the system during the experiments. We therefore proceeded to unravel
the reason for the formation of this very stiff membrane. After testing that this was not due to the
presence of surface-active contaminations coming from the sample cells or the liquids used, the only
conclusion left was that the particles themselves were responsible for their immobilization. This was
presumably due to the appearance of surface-active impurities leaking from the particles into decane
and then adsorbing at the interface, as we later confirmed by the following experiment. After drying
0.1 mL of the PS particles aqueous stock suspension at 40 ◦C overnight in a vacuum oven in an
Eppendorf tube, they were subsequently redispersed in 1.5 mL of purified decane, sonicated for at least
10 min and allowed to sediment overnight. We then took the supernatant and measured its interfacial
tension against ultra-pure water. We measured a strong reduction of the interfacial tension from the
pure water–decane value of 53 mN/m down to 32 mN/m (1.08 µm) and 40 mN/m (2.8 µm) after 3 h
(significantly less than the timescales for interfacial arrest reported in Figures 2 and 3), which confirmed
the leaking of surface-active species from the PS particles into decane. We then proceeded to identify
these surface-active species by running UV-Vis spectroscopy on the same supernatants. The results are
shown in Figure 4. The spectra for the supernatants of the 1.08 and 2.8 µm particles (red and green
curves) showed distinctive bands in two regions. A first very intense band in the 250 nm range and
a second less intense band in the 400–550 nm region. In order to identify and confirm the origin of
these bands, we also ran UV-Vis spectroscopy on decane solutions of the same dye molecules used to
render our PS particles fluorescent and on decane solutions of PS oligomers having two molecular
weights, 300 and 2200 Da respectively. The first band for the particle supernatants was compatible
with the peak of the PS oligomers, as shown by comparing the green and red curves in Figure 4 with
the blue and purple ones obtained for the pure polystyrene oligomers. The fact that the peak position
of the green and red curves was identical and lay in between the ones for PS300 and PS2200 indicates
that oligomers of comparable molecular weight, between 300 and 2200 Da, were released into decane
from both particles. These were most likely un-reacted and non-crosslinked PS chains left behind
after particle synthesis. By comparing the peaks in the longer-wavelength region, we confirmed that
dye molecules were also leaking out into decane. Identical spectral features were in fact found in the
supernatant and in the pure dye solutions, as evidenced in the inset to Figure 4. In order to assess
which one of the two substances leaking from the particles was responsible for the creation of the
strong elastic film at the interface, we measured the surface tension reduction of a pure PS solution
and of the dye solutions at the water–decane interface and compared it to the one measured for the
particle supernatants. Pendant drop tensiometry showed that, albeit surface-active, the dye molecules
showed a saturation of the water–decane interfacial tension reduction at a few mN/m below the pure
water–decane level over several hours, and therefore cannot be responsible for the stronger interfacial
tension reduction measured for the supernatants. Measurements on a PS300 solution (and we expect
similar results for PS2200) instead showed a dramatic reduction of interfacial tension, which saturated
at 20 mN/m for high PS concentrations already after a few minutes. We can therefore conclude with
certainty that the formation of the strong interfacial film immobilizing the particles at the interface was
due to interfacial adsorption of non-crosslinked PS oligomers leaking from the particles when exposed
to decane.

2.2. Nylon Interfacial Polycondensation

The results presented in the previous section showed that it was possible to immobilize particles
into stable regular lattices at the water–decane interface by solely waiting for a sufficient amount of
time for the PS oligomers to build up an elastic monolayer. This approach, spontaneously occurring
for our PS beads trapped at a water–decane interface, is very simple but time-consuming and only
applicable to systems releasing surface-active species capable of creating highly elastic films. Despite
being ”frozen” in place, the particles are only surrounded by a very thin polymer layer, whose
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composition and thickness cannot be externally controlled. This section and the next one describe two
different possible routes to embed these regular particle arrangements into thicker and more controlled
polymeric membranes.

250 300 350 400 450 500 550 600 650 700
Wavelength [nm]

0

0.2

0.4

0.6

0.8

1

N
or

m
al

is
ed

 A
bs

or
ba

nc
e

PS300
PS2200
PS 2.8 µm
PS 1.08 µm

400 450 500 550 600
Wavelength [nm]

A
bs

or
ba

nc
e 

[a
.u

.]

Pyrromethene
Macrolex RedG
PS 2.8 µm
PS 1.08 µm

Figure 4. UV-Vis spectra of supernatants after overnight exposure to decane for the 2.8 (green solid
line) and 1.08 µm (red solid line) diameter PS particles. The spectra are combined with the UV-Vis
spectra of reference decane solutions of pure PS (molecular weight 300 Da (blue crosses) and 2200 Da
(purple triangles)) and of the red (Macrolex RedG (red squares)) and green (Pyrromethene (green
diamonds)) dyes, zoomed in the inset for the relevant wavelength region.

The first route, schematically shown in Figure 1b, is based on the interfacial polycondensation
reaction commonly known as the ”nylon rope trick”. In this case, one monomer, sebacoyldichloride,
reacts with a second one, 1.6-diaminohexane, under the elimination of hydrogen chloride [31]. This
reaction is particularly suited for our purpose since the two monomers can be dissolved into immiscible
solvents, e.g., water and decane, and the reaction takes place only at the interface between these two
fluids, where the monomers meet. In the presence of particles at the interface, these are entrapped by
the nylon membrane as it grows.

We carried out these experiments by using a customized sample cell, as schematically depicted
in the inset to Figure 5a. The cell consisted of a metallic ring with a sharpened edge, used to contain
the water phase and pin the liquid interface, glued onto a microscope slide and enclosed by a cut-out
centrifuge tube, whose cap was also glued onto the slide. The metallic ring was filled with a 6 mM
water solution of 1.6-diaminohexane to achieve a flat water–air interface and then carefully covered by
0.5 mL of pure decane to create the water-oil interface. At these concentrations, the 1.6-diaminohexane
rapidly formed an interfacial layer, as monitored separately by pendant drop tensiometry. A pipette tip,
filled with the particles dispersed in the spreading solution previously described, was then brought in
contact with the interface to produce a particle monolayer surrounded by 1.6-diaminohexane. At this
stage, 100 µL of a 34 mM sebacoyldichloride solution in decane were added to the oil phase and the
dynamics of the particles at the interface was monitored as discussed above. Alternatively, a round
piece of filter paper (MN 615, prewetted by decane) could be mounted above the interface and blocked
by the screw-on cap of the centrifuge tube and additional oil (1–4 mL) could be inserted. The filter paper
acted as a physical barrier to avoid flow at the interface caused by the injection of the additional decane
containing the sebacoyldichloride. After a given amount of time, the second monomer reached the
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interface and the polymerization reaction started. The evolution of particle mobility was monitored as a
function of time after the injection of the second monomer tw and it is shown in Figure 5a by plotting the
MSD of the 2.8 µm PS particles at ten seconds (MSD10) vs. tw. The black square symbols refer to the case
with no filter paper and the red circles to the case with filter paper. In both cases, the same qualitative
behavior was observed. After an initial time where the MSD remained fairly constant, a sudden very
large increase of particle mobility was seen (as highlighted by the arrows). Visual inspection showed
that this corresponded to very violent convective flows at the interface, which then stopped fairly
rapidly. After that, the particles became completely immobilized, with values of the MSD comparable
to the ones reported in Figure 2. The strong convective flows were not due to mechanical disturbance
of the interface upon injecting the second monomer, since they occurred after minutes and they also
appeared in the presence of the filter paper. They were instead due to Marangoni stresses caused by
gradients of surface tension at the interface when it was reached by the second monomer. In fact,
due to diffusion, different amounts of sebacoyldichloride reached the interface in different places
and at different times, causing local gradients of concentration and therefore of interfacial tension
leading in turn to Marangoni flows [32]. The flows eventually stopped, when the polymerization
reaction had formed a sufficiently stiff membrane at the interface. This phenomenon was unavoidable.
Changing both the porosity of the filter paper, as well as the concentration and amount of injected
sebacoyldichloride, did not lead to any qualitative change and the only differences were in the waiting
time before the onset of the flow. Very interestingly, the occurrence of the Marangoni flows and the
polymerization did not disrupt significantly the microstructure of the interface. Figure 5b–e show
fluorescence micrographs of the interface before and after polymerization, with and without the filter
paper, for two monolayer densities. No qualitative differences were visible.

a b c

d e

Figure 5. (a) MSD calculated after 10 seconds for 2.8 µm PS particles at a water–decane interface
during the interfacial polymerization of nylon plotted as a function of waiting time after injection of
sebacoyldichloride, with (red) and without (black) filter paper. The arrows mark the points of highest
particle mobility due to convective Marangoni flows at the interface. Inset: schematic of the sample cell
used for the measurements. The horizontal dashed line represents the interface and the red line depicts
the filter paper membrane; (b–e) fluorescence images of the particles at the interface before (b and d)
and after polymerization (c and e), showing no qualitative difference in the microstructure. Images
(b) and (c) are taken without the filter paper membrane; (d) and (e) with the filter paper membrane.
The scale bars are 50 µm.

This led us to believe that this route yielded a very fast and efficient immobilization mechanism
of particle monolayers into polymeric membranes, but additional inspection of the nylon membranes
by bright-field microscopy, as reported in Figure 6, showed instead that the completion of the
polymerization reaction required significantly longer times. Visible droplets were in fact formed
onto the membrane a few minutes after particle immobilization and disappeared over the course of
several hours. These were most likely sebacoyldichloride pockets that accumulated on the initially
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formed membrane and that were then slowly consumed by the diaminohexane diffusing through the
continuously growing membrane.

a                             b                             c                            d    

Figure 6. Sequence of bright field microscopy images of the nylon membrane forming at the
water–decane interface taken 30 (a); 120 (b); 180 (c) and 240 (d) minutes after sebacoyldichloride
injection. Scale bars are 50 µm.

2.3. UV Interfacial Polymerization of Styrene

Despite its simplicity, the interfacial polymerization of nylon presents some limitations in terms
of the control over the final properties of the membrane since the reaction basically proceeds until all
the monomers are consumed. We therefore explored a second route where the polymerization reaction
can be externally triggered by UV illumination. The reaction scheme we used is depicted schematically
in Figure 1c and it is based on the free radical polymerization of styrene. Radical polymerization
reactions belong to the family of chain-growth polymerizations and require an initiator to get started.
The polymerization continues as long as the active chain end is not terminated by recombination with
an other radical or when all the monomer is consumed [33]. The initiation can be triggered by external
stimuli, such as UV light as in our case [33]. In order to improve the mechanical stability of the forming
polymer film, we also added p-divinylbenzene as crosslinker. The different polarities of all the species
make these reactions very suitable to be carried out at fluid–fluid interfaces, where the initiator and
monomer can be dispersed into immiscible fluids and meet only at the interface, such as in the case of
emulsions [34,35].

In the specific case of our experiments, we had a water-soluble initiator (Irgacure 2959) and
decane-soluble monomer and crosslinker (styrene and p-divinylbenzene). While details of the
preparation of the two solutions will be given in the Experimental Section, we report here the essential
steps for the particle immobilization experiments. We used a slightly modified version of the sample
cell used for the nylon polymerization as sketched in the top inset to Figure 7a. Here, a thicker metal
ring was used to form the interface between 112 µL of a 4.46 mM water solution of the initiator
and 2 mL of decane containing 1.56 mM of styrene and 0.14 mM of p-divinylbenzene. The particles
were injected at the interface as previously described. After particle injection, the top part of the
cell was completely filled with the decane solution and the cell was carefully sealed with a glass
slide. Observation of the particles at the interface was carried out with a custom-built microscope as
shown in Figure 8, which allowed simultaneous imaging in reflection and sample illumination with
a UV LED lamp emitting at 365 nm. Pendant drop tensiometry investigations showed that, at these
concentrations, the water–decane interface was readily covered by a stable layer containing monomer,
crosslinker and initiator, which are all surface-active species. After equilibration, the UV lamp was
turned on and particle mobility was followed by tracking.

Figure 7a shows the evolution of MSD at ten seconds for 2.8 µm PS particles as a function of time
after illumination start-up. Representative MSD curves are shown in Figure 7b for various values of tw.
From these graphs, we can make similar observations as in the case of the nylon polymerization. We
observe that, before illumination, the particles showed the standard expected behavior for particles
in the interfacial crystals, as reported earlier in Figure 2. When the photopolymerization began,
we observed a significant increase of the particle mobility, again due to the presence of concentration
gradients of the reacted species at the interface. Upon continuing UV illumination, the polymerization
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was completed and the particles were fully immobilized in a polystyrene membarne. We point out
that membranes could also be formed in the absence of particles, confirming that their presence does
not affect the polymerization reaction significantly.

Despite the fact that all the components necessary for the polymerization were already
at the interface before the reaction started, as opposed to the nylon polymerization, the UV
photopolymerization disrupted entirely the crystalline arrangement of the particles at the interface,
as can be seen in the fluorescence micrographs of Figure 7c–e. This was probably due to the fact
that, as the polystyrene membrane grew at the interface, it pushed the particles around in a random
fashion, distorting completely the pre-existing arrangement of the particles. Partial swelling in styrene,
albeit not detectable by optical microscopy, could also be partly responsible for altering the electrostatic
interactions between particles during membrane formation. Similar results were observed when using
the 1.08 µm PS particles.

Finally, we attempted the deposition of the photo-polymerized composite membrane onto a solid
support to investigate its structural and mechanical properties. The bottom inset to Figure 7a shows a
flake of such a membrane deposited on a pitted silicon wafer with 5× 5 µm2 holes. The membrane
was scooped up from the interface onto the substrate. Unfortunately, the deposited membrane was
still too fragile to perform atomic-force microscopy (AFM) investigations and tended to rupture over
the cavities on the silicon wafer.

a b c

d

e

f

Figure 7. (a) MSD calculated after 10 s for 2.8 µm PS particles at a water–decane interface during
the interfacial photopolymerization of polystyrene as a function of time after starting the UV
illumination tw. Top inset: schematics of the sample cell. Bottom inset: micrograph of a composite PS
particle-polystyrene membrane deposited onto a pitted silicon wafer with 5× 5 µm2 cavities; (b) MSD
versus time for different representative times during the photopolymerization; (c–f) fluorescence
images of the 2.8 µm PS particles at the interface before UV illumination (c) and after 50 s (d), 40 (e) and
90 (f) minutes. Scale bar: 25 µm.
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Figure 8. Image and description of the custom microscopy setup.

3. Conclusions

Our experimental results show that there are several open routes for the immobilization of
colloidal particles at fluid interfaces. The first option involves the formation of thin elastic films
generated by surface-active substances leaking from the particles themselves. Previous work [36]
has shown that exposure to organic solvents (and relatively high temperatures) causes plasticization
of polystyrene particles, which can even be strongly deformed as a consequence of adsorption at
an oil–water interface. Additional work has also shown that the presence of soluble impurities can
very strongly affect the wetting behavior of PS ellipsoids at water–decane interfaces, which had to be
subjected to rather harsh cleaning conditions in order to eliminate any undesired contamination [37].
Our work instead showed that this process can be used to our advantage to create very stable crystalline
arrays of colloids at the interface. The other two approaches that we investigated went one step further
and immobilized the particle monolayer within a polymer membrane.

Immobilizing particle monolayers at an interface has proved to be a very successful way to
measure a posteriori the contact angle of particles at the interface. A wide range of strategies have
been proposed to this end [38], including freezing [39] or gelling the water phase [40], growing
metallic caps [41] or swelling the particles [42]. A recent method also involved the growth of a thin
cyanoacrylate glue layer at the water–air interface, embedding particles that could be later imaged in
an scanning electron microscope (SEM) [43]. Our strategies could provide an extension to the latter
technique to oil–water interfaces, even though additional studies elucidating the role of membrane
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growth on the particle position relative to the interface (e.g., by comparison with the methods above)
would be required.

On the other hand, composite particle membranes obtained from interfacial assembly have been
previously demonstrated [44,45], and we proposed here two conceptually very simple alternative
approaches. Interestingly, both approaches showed that the onset of the polymerization reactions
coincided with a a strong increase of particle mobility at the interface caused by Marangoni flows.
The interplay between polymerization kinetics and the evolution of the microstructure of the interfacial
composite membrane becomes then a very interesting direction for future research, where new
strategies to reduce or harness Marangoni flows need to be proposed. The next steps to be carried
out after this work are to devise suitable strategies to transfer the interfacial membranes onto solid
supports to investigate their structure, e.g., thickness or roughness, and mechanical properties as a
function of polymerization conditions in a systematic way.

4. Experimental Section

4.1. Materials

The particles used in the experiments were polystyrene colloids purchased from microParticles
GmbH (Berlin, Germany). We used 2.8 ± 0.04 µm diameter green-fluorescent particles
and 1.08± 0.04 µm diameter red-fluorescent particles. The particles were received as 2.5
w/v% water stock suspensions and diluted to 0.75 and 0.5 w/v% in 50:50 ultra-pure
water:isopropanol mixtures, for the green and red particles, respectively. Isopropanol (99.95%,
Fisher Chemicals, Leicestershire, UK), acetone (99.9%, Sigma-Aldrich, St. Louis, MO, USA),
1,6-Diaminohexane (Sigma-Aldrich), sebacoyldichloride (Merck, Darmstadt, Germany) and
2-Hydroxy-4′-(2-Hydroxyethoxy)-2-Methylpropiophenone (Irgacure 2959) (98%, Aldrich Chemistry,
St. Louis, MO, USA) were used as received. Decane (99%, ABCR, Karlsruhe, Germany) was purified
to remove polar impurities by five consecutive basic alumina column filtrations, using fresh powder
for each one. The purified decane showed a stable interfacial tension of 53 ± 0.5 mN/m against
water for a minimum of 2 h. Styrene (>99%, TCI, Portland, OR, USA) and p-divinylbenzene (80%,
Aldrich Chemistry) were each filtered through a basic alumina column to remove the inhibitor. The
activated liquids were kept in the fridge until use. Borosilicate glass slides and the pitted silicon wafers
(MakroPore-12-70, Smartmembranes, Germany) were cleaned by consecutive ultra-sonication for
10 min in acetone, isopropanol and then ultra-pure water. This was followed by rinsing with ultra-pure
water and drying with a nitrogen stream. Shortly before use they were placed in a UV/ozone
cleaner for 2 min (UV/Ozone Procleaner Plus, Bioforce Nanosciences, Ames, IA, USA). Finally,
monodisperse polystyrene 300 Da (Polyscience Inc., Warrington, PA, US), monodisperse polystyrene
2200 Da (Alfa Aeser, Heysham, UK), pyrromethene (BODIPY c© 493/503, Invitrogen, Carlsbad, CA,
US) and Macrolex RedG (Lanxess, Leverkusen, Germany) were used to prepare the test solutions for
UV-visible spectroscopy and pendant drop tensiometry.

The chemicals for the UV photo-polymerization of styrene were prepared as follows. The water
phase and the oil phase were prepared separately inside two round-bottom flasks. The initiator Irgacure
2959 was dissolved in ultra-pure water at a concentration of 4.46 mM and stirred for approximately half
an hour. Afterwards, remaining particulate was removed by pressing the solution through a syringe
filter. The oil-phase was prepared by adding styrene and p-divinylbenzene to decane at concentrations
of 1.56 mM and of 0.14 mM, respectively. Before use, oxygen was removed by bubbling the two
separate solutions with nitrogen for at least one hour. Fresh solutions were prepared before each
experiment.

4.2. Sample Cells

Sample cells for observation under the microscope were custom-made by cutting 50 mL TPP
centrifuge tubes (Sigma-Aldrich) and gluing them onto borosilicate glass slides using the UV-curable
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adhesive Norland NOA 61 Norland Products, Cranbury, NJ, US. The interface was created and pinned
at polished aluminium or galvanized steel rings of thicknesses and diameters in the range of few
millimeters. MN 615 (MACHEREY-NAGEL, Duren, Germany) filter paper was used as a physical
barrier for the nylon interfacial polymerization and mounted above the interface by screwing the sides
of a TPP centrifuge tube onto its cap glued onto the glass slide.

4.3. Microscopy Experiments

Microscopy experiments were carried out on the custom-built optical line shown in Figure 8.
The setup allowed for simultaneous bright-field or fluorescence imaging and UV illumination by
means of a UV LED lamp with a wavelength of 365 nm. The interface was viewed through a 20×
infinity-corrected long-working-distance objective with a 20 mm working distance and an additional
fixed in-line magnification of 1.5×. Images were captured with a xiQ USB3 CCD camera (Ximea,
Munster, Germany) and recorded using the freeware µManager (Micro-Manager, US). The sample cell
was placed on a stage which allowed for illumination of the interface both in reflection (fluorescence)
and transmission. Image series of the particles at the interface were acquired at four frames per second
at regular intervals to follow the time evolution of the particle dynamics. The images were analyzed
using freely available Matlab code [46] based on the standard code by Cocker and Grier [47].

4.4. Pendant Drop Tensiometry and UV-Visible Spectroscopy Experiments

The interfacial activity of the various substances described in the Results section was measured
by a pendant drop device (DSA100, Krüss GmbH, Hamburg, Germany). Depending on the substances
of interest, the interfacial tension of either aqueous droplets in decane or decane droplets in water
(with an inverted needle) was measured as a function of time. The accuracy of the measurements is of
±0.5 mN/m. Spectroscopic analysis to prove the presence of polystyrene oligomers and fluorescent
dyes released by the PS in decane was carried out with a UV-Visible spectrometer (Jasco V660,
Hachioji, Japan) calibrated against pure decane. Each sample was diluted appropriately before
the measurements, since only the nature of the released impurities was of interest and no quantitative
analysis was carried out.
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