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Abstract: Chiral and helical polymers possess special helical structures and optical property, and
may find applications in chiral catalysis and optical devices. This work presents the preparation
and formation process of helical phenolic resins through a sol-gel transcription method. A pair of
bola-type chiral low-molecular-weight gelators (LMWGs) derived from valine are used as templates,
while 2,4-dihydroxybenzoic acid and formaldehyde are used as precursors. The electron microscopy
images show that the phenolic resins are single-handed helical bundles comprised of helical ultrafine
nanofibers. The diffused reflection circular dichroism spectra indicate that the helical phenolic resins
exhibit optical activity. A possible formation mechanism is proposed, which shows the co-assembly
of the LMWGs and the precursors.
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1. Introduction

Chiral and helical structures can often be found in nature, for instance, α-helical polypeptides,
double helical nucleic acids, spirulina and spiral shells. In the past decades, various methods have
been developed for the synthesis of chiral and helical nano-materials for their potential applications in
chiral catalysis and separation [1–3]. Remarkable progress has been achieved by a sol-gel transcription
method using the self-assemblies of chiral low-molecular-weight gelators (LMWGs) as templates [4–7].
These chiral LMWGs can self-organize into a variety of chiral nanostructures such as coiled ribbons,
twisted nanofibers and bundles [8], and lots of chiral and helical, inorganic or organic materials,
such as silica and polysilsesquioxane nanotubes, nanoribbons and nanofibers have been successfully
synthesized from these templates [9–12].

Phenolic resins are widely used as industrial materials because of their thermostability, mechanical
stability and acid resistance. In recent years, ordered mesoporous phenolic resins have attracted
much attention because they can act as a promising carbon source to fabricate ordered mesoporous
carbons [13–15]. The organic–organic organization of the phenolic resin precursor with the
structure-directing agent—generally triblock copolymers—determined the morphology and pore
architecture of the mesoporous phenolic resins [13]. As reported, single-handed helical phenolic resin
nanotubes have also been prepared using chiral gelators as the templates [16]. The co-assembly of the
chiral templates and the phenolic resin precursors determined the chiral structure and optical activity
of the nanotubes. Therefore, it is necessary to further investigate the interaction between the chiral
templates and the resin precursors.

In this work, helical phenolic resins are prepared using a pair of bola-type chiral LMWG
enantiomers derived from valine as templates, 2,4-dihydroxybenzoic acid and formaldehyde as
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precursors. The morphology of the product is characterized by taking field-emission scanning
electron microscopy (FE-SEM) and transmission electron microscopy (TEM) images. Besides, the
optical activity is measured by diffused reflection circular dichroism (DRCD) analysis. A possible
formation mechanism is proposed according to the FE-SEM images of the reaction mixture taken
during the reaction.

2. Results and Discussion

Bola-type compounds LL-1 (derived from L-valine) and DD-1 (derived from D-valine), as shown
in Figure 1, can aggregate and form physical gels in deionized water at a concentration of 30 g·L−1

at 25 ◦C [5]. In this work, their self-assemblies are used as the templates to prepared phenolic
resins. The FE-SEM and TEM images of the phenolic resin samples are shown in Figure 2. They are
single-handed helical bundles comprised of many ultrafine nanofibers. Left-handed helical (Figure 2a)
and right-handed helical (Figure 2b) phenolic resins, named as L-HPR and D-HPR, were prepared
using LL-1 and DD-1, respectively. The diameters of the bundles range from 300 nm to 1 µm while
those of the ultrafine nanofibers are uniform at about 40 nm. The lengths of nanofibers can reach
tens of microns, although part nanofibers are broken due to the serious stirring. From the TEM
images, it is found that the ultrafine nanofibers are helical too (Figure 2c,d). Moreover, there are no
clear mesopores identified on the nanofibers. The isothermal nitrogen adsorption–desorption plots
for the helical phenolic resins are shown in Figure S1. The samples show type-II isotherms with a
capillary-condensation step appearing at relative pressure (P/P0) between 0.8 and 1.0, which originates
from voids within and among the bundles. The Barrett–Joyner–Halenda (BJH) pore size distribution
plot, determined from the desorption branch, is shown in Figure S1b. The average void width within
the bundles is 21 nm. After the D-HPR sample was pyrolyzed at 600 ◦C for 2.0 h, carbonaceous fibers
with diameter of 200–500 nm were obtained (Figure S2). However, no obvious helix could be discerned
from Figure S2. It seemed that the surface of helical bundles merged together during carbonization.
The possible reason was that the obtained phenolic resin was liner when using 2,4-dihydroxybenzoic
acid as the precursor [17].
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Figure 1. Molecular structures of gelators LL-1 and DD-1.

The diffused reflection ultraviolet-visible absorption (DRUV-vis) and DRCD spectra of the helical
phenolic resins are shown in Figure 3. Broad absorption bands at 200–700 nm are observed on
the DRUV-vis spectra. For D-HPR, it shows two positive signals at 355 and 278 nm on the DRCD
spectrum. The first positive DRCD signal indicates the right-handed packing of the aromatic rings in
the phenolic resins [4]. On the contrary, L-HPR exhibits opposite signals at 364 and 280 nm, and the first
negative DRCD signal indicates the left-handed packing of the aromatic rings in the phenolic resins.
The obtained helical phenolic resins possess optical chirality, which might find potential applications
in chiral separation and catalysis.
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Figure 2. FE-SEM (a,b); and TEM (c,d) images of left-handed (a,c); and right-handed (b,d) helical 
phenolic resin bundles. 

 
Figure 3. DRUV-vis and DRCD spectra of left-handed and right-handed helical phenolic resin 
bundles. 

To investigate the formation process of the helical phenolic resins, the FE-SEM images of the 
reaction mixture were taken at different reaction times, as shown in Figure 4. Before the addition of 
formaldehyde, the reaction mixture was a transparent viscous solution. Fibrous aggregates were 
observed in Figure 4a, and some nanofibers exhibited right-handedness. When the aqueous 
ammonia solution and formaldehyde were added into the mixture, the solution became cloudy 
quickly, and brown precipitation appeared after 5 min (Figure 4b). Right-handed helical nanofibers 
and nanobundles were observed in Figure 4c. The nanofibers became longer with time (Figure 4d). 
The possible formation mechanism of the helical phenolic resins is illustrated in Figure 5. Firstly, 
gelator DD-1 combined with 2,4-dihydroxybenzoic acid through electrostatic interaction between 
the carboxylate radical and pyridinium in the aqueous solution. Meanwhile, the gelator molecules 
self-assembled through non-covalent interactions to form single-stranded helical fibrous aggregates. 
The 2,4-dihydroxybenzoic groups were distributed on the two sides of the gel fibers. Under the 
shear force action, these single-stranded gel fibers twisted together to form helical bundles, as 
shown in Figure 4a. Secondly, when the aqueous ammonia solution and formaldehyde were added 
into the reaction mixture, the formaldehyde molecules adsorbed onto the surface of gel fibers and 
reacted with 2,4-dihydroxybenzoic groups under basic condition. Therefore, the polycondensation 
reaction was carried out on the outer surface of the helical gel fibers, and a phenolic resin-template 
composite bundles were soon formed at room temperature, as shown in Figure 4b. At that time, the 
helical morphology of the composite was basically settled. The following thermosetting reaction at 
high temperature (90 °C) for a certain time just improved the cross-linking degree of resin. Finally, 
the organic templates embedded in the phenolic resin nanofibers were removed by ethanol 

Figure 2. FE-SEM (a,b); and TEM (c,d) images of left-handed (a,c); and right-handed (b,d) helical
phenolic resin bundles.
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Figure 3. DRUV-vis and DRCD spectra of left-handed and right-handed helical phenolic resin bundles.

To investigate the formation process of the helical phenolic resins, the FE-SEM images of the
reaction mixture were taken at different reaction times, as shown in Figure 4. Before the addition
of formaldehyde, the reaction mixture was a transparent viscous solution. Fibrous aggregates
were observed in Figure 4a, and some nanofibers exhibited right-handedness. When the aqueous
ammonia solution and formaldehyde were added into the mixture, the solution became cloudy
quickly, and brown precipitation appeared after 5 min (Figure 4b). Right-handed helical nanofibers
and nanobundles were observed in Figure 4c. The nanofibers became longer with time (Figure 4d).
The possible formation mechanism of the helical phenolic resins is illustrated in Figure 5. Firstly,
gelator DD-1 combined with 2,4-dihydroxybenzoic acid through electrostatic interaction between
the carboxylate radical and pyridinium in the aqueous solution. Meanwhile, the gelator molecules
self-assembled through non-covalent interactions to form single-stranded helical fibrous aggregates.
The 2,4-dihydroxybenzoic groups were distributed on the two sides of the gel fibers. Under the shear
force action, these single-stranded gel fibers twisted together to form helical bundles, as shown in
Figure 4a. Secondly, when the aqueous ammonia solution and formaldehyde were added into the
reaction mixture, the formaldehyde molecules adsorbed onto the surface of gel fibers and reacted
with 2,4-dihydroxybenzoic groups under basic condition. Therefore, the polycondensation reaction
was carried out on the outer surface of the helical gel fibers, and a phenolic resin-template composite
bundles were soon formed at room temperature, as shown in Figure 4b. At that time, the helical
morphology of the composite was basically settled. The following thermosetting reaction at high
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temperature (90 ◦C) for a certain time just improved the cross-linking degree of resin. Finally, the
organic templates embedded in the phenolic resin nanofibers were removed by ethanol extraction,
and the obtained phenolic resins preserved the single-handed helical morphology of the original
organic aggregates.
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3. Conclusions

In summary, single-handed helical phenolic resin bundles were synthesized through a sol-gel
transcription approach using a pair of bola-type chiral LMWGs as templates, 2,4-dihydroxybenzoic
acid and formaldehyde as precursors. A co-assemble process was proposed for the formation of helical
phenolic resin bundles. These helical bundles exhibited optical chirality, and produced carbonaceous
fibers after carbonization, which threw light on the synthesis of chiral carbons.

4. Materials and Methods

4.1. General Methods

TEM images were obtained using an FEI TecnaiG220 (Hillsboro, OR, USA) at 200 kV. FE-SEM was
performed using a Hitachi 4800 instrument (Ibaraki prefecture, Japan) at 3.0 kV. DRCD and DRUV-vis
spectra were obtained using a JASCO 815 spectrophotometer (Tokyo, Japan). The specific surface area
and pore-size distribution were determined by the Brunauer–Emmett–Teller (BET) and BJH methods,
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using N2 adsorption isotherms measured using a Micromeritics Tristar II 3020 instrument (Norcross,
GA, USA).

4.2. Materials

The compounds LL-1 and DD-1 were synthesized according to the literature [5]. Concentrated
ammonium hydroxide aqueous solution (25–28 wt %), formaldehyde (37 wt %), ethanol,
2,4-dihydroxybenzoic acid and methanol were purchased from Sinophram Chemical Reagent Co., Ltd.
(Shanghai, China).

Synthetic procedure for helical phenolic resin (HPR): LL-1 (or DD-1) (25 mg, 0.025 mmol) and
2,4-dihydroxybenzoic acid (20 mg, 0.13 mmol) were dissolved in 5 mL of distilled water at room
temperature to form a viscous solution. Aqueous ammonia solution (40 µL) and formaldehyde (12 µL)
were added into the solution. The reaction mixture was stirred at vortex for 1 min, followed by
aging at 90 ◦C for 2 h. The resultant brown precipitate was filtered and dried to yield as-prepared
polymer. The organic low-molecular-weight compounds were removed by extracting the as-prepared
product with 80 mL of methanol for 24 h. After being further heated in an oven at 100 ◦C for 24 h for
thermosetting, the cross-linked helical phenolic resin was obtained.

Supplementary Materials: Supplementary data associated with this article can be found in the online version
at www.mdpi.com/2310-2861/3/1/9/s1. Figure S1. (a) Nitrogen sorption isotherms and (b) BJH pore size
distributions calculated from the desorption branch of L- and D-HPR; Figure S2. FE-SEM image of D-HPR
after carbonization.
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