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Abstract:



Hydrogels based on reversible covalent bonds represent an attractive topic for research at both academic and industrial level. While the concept of reversible covalent bonds dates back a few decades, novel developments continue to appear in the general research area of gels and especially hydrogels. The reversible character of the bonds, when translated at the general level of the polymeric network, allows reversible interaction with substrates as well as responsiveness to variety of external stimuli (e.g., self-healing). These represent crucial characteristics in applications such as drug delivery and, more generally, in the biomedical world. Furthermore, the several possible choices that can be made in terms of reversible interactions generate an almost endless number of possibilities in terms of final product structure and properties. In the present work, we aim at reviewing the latest developments in this field (i.e., the last five years) by focusing on the chemistry of the systems at hand. As such, this should allow molecular designers to develop a toolbox for the synthesis of new systems with tailored properties for a given application.
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1. Introduction


In the last few years, a renewed interest in hydrogels has arisen due to an extended range of applications [1]. This stems from the characteristics of these materials such as biocompatibility and responsiveness to a variety of external stimuli [2]. While “classical” applications such as their use as an adsorbent in waste water treatment [3,4] are still heavily investigated, other areas are gaining significant attention at the moment. In particular, biomedical applications are very popular and include cell culture [5], wound dressing and healing [2,6], drug delivery [2,7,8], tissue engineering scaffolds [9], bone repair [10], and cartilage regeneration [11]. Such wide variety of biomedical applications stems from the peculiar characteristic of hydrogels, namely the fact that they can retain a large amount of water in their structure [1]. This makes it, in turn, also possible to incorporate water-soluble moieties in the final product such as proteins and DNA [5], but also dispersible (nano)particles [12,13] and (nano)emulsions [14].



Particularly important is the adhesion at the interface between the polymeric chains and several different substrates to be then released (where and when needed) upon action of an external stimulus. On a molecular level, this translates in the presence of reversible bonds between the polymeric network and such “loading.” For example, the catechol chemistry (Figure 1) can actually be employed to ensure adhesion of the polymeric chains to several different moieties while crosslinking the network in an irreversible way [15].


Figure 1. Incorporation of catechol groups in a polymeric network. Adapted and re-drawn from [15].
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In this particular case, the crosslinking via metal free click chemistry is practically quantitative and does not result in the formation of any by-product, and this rendering it ideal for biomedical applications [16,17,18].



The catechol chemistry is not the only example of a reversible yet covalent bond that can be formed and broken on command upon an external stimulus. Indeed, along the same strategy, the imine formation chemistry can be used to tune the adhesion [18].



The molecular reversibility can be actually achieved in two different ways: either by making use of equilibrium reactions (e.g., the Diels-Alder one) or through dynamic exchange reactions (e.g., reaction of an excess amino groups with epoxide ones). Both approaches have been widely used for tuning the adhesion of different substrates on different polymeric networks and for the network formations (and disruption) itself. These are discussed in the following paragraph.




2. Dynamic Hydrogels Based on Reversible (Covalent) Interactions


The same concept of covalent reversible bonds can be used for the hydrogel formation and disruption. Examples of interactions used in this case are (Figure 2) electrostatic ones [19,20], cycloadditions [8,21], redox reactions [22,23,24], and other ones such as imine [25,26,27,28] and enamine formation [29], acylhydrazone [30,31,32,33], and borax acid reaction with hydroxyls [13,34,35,36].


Figure 2. Schematic representation of reversible covalent bonds. (A): catechol-Fe chemistry; (B): furan-maleimide as example of cycloaddition reactions; (C): imine/enamine formation; (D): dynamic acylhydrazone exchange reaction; (E): boric ester formation and hydrolysis.
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The general idea is that the use of dynamic covalent bonds allows the polymeric network to adjust itself as a result of an external stimulus. This can be achieved in principle through other weaker interactions, e.g., hydrogen bonding. In particular, a clear trend is detected in the last year, according to which self-assembly driven processes [10,37] can be conveniently used for hydrogel preparation. However, the use of covalent bonds displays two distinct and clear advantages [25]. In first instance, the network is still covalently linked, which renders it quite robust against small random fluctuations in environmental conditions such as temperature. Furthermore, exchange reactions such as the one of an amine with an imine are often kinetically controlled by the use of catalysts. In turn, this allows the possibility to freeze the network conformation (by slowing the kinetics) when desired.



The general concept behind the use of reversible interactions for the hydrogel polymeric chains is the (reversible) network disruption with immediate release of any loading (Figure 3).


Figure 3. Schematic diagram for the strategy behind the use of reversible covalent bonds in hydrogels. (●) = reversible bonds along the backbone; (∆) = reversible bonds as crosslinking points; (●) = loading of the network (substrate).
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Reversible bonds can be incorporated along the backbone (red circles) or at the crosslinking point (green triangles). The network, when subjected to an appropriate external stimulus, can then break at the crosslinking point (route A) or along the backbone (route B). This generates network fragments that can be quite different in terms of chemical structure even if in both cases the loading (blue circles) will be released. As a result of the network disruption, the load is released as the polymeric chains become soluble and not able anymore to entrap the load. In the specific case of drug delivery, this mechanism entails a controlled release rate depending on the kinetics of the network disruption, which in turn can be linked, at the molecular level, to the kinetics of the reversible bonds.



An interesting example is based, once more, on the catechol chemistry [38] for which a hydrogel containing di-methylacrylamide units (DMA) can be reversibly crosslinked by reversible complexation with Fe3+ ions (see Figure 4).


Figure 4. Schematic drawing of reversible complexation of DMA with Fe3+ ions. Adapted and re-drawn from [38] with permission.
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In this particular case, the reversibility is cleverly achieved by switching between a tri- and a mono-chelate complex based on the pH of the solution. The corresponding final product displays a shape memory effect triggered by the pH value.



In order to achieve a sol-gel transition and, possibly, self-healing properties in response to multiple stimuli, different functional groups might be embedded along the backbone, e.g., di-sulfide and acylhydrazone ones, as shown in Figure 5 [39].


Figure 5. Dynamic hydrogels based on di-sulfide and acylhydrazone chemistry. Adapted and re-drawn from [39].
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The advantage of such approach is that different functional groups are factually responsible for the response under different environmental conditions. Similar to this, hydrogels have been prepared for which both Diels-Alder and acylhydrazone groups are present along the backbone (Figure 6) [9].


Figure 6. Double cross link network based on Diels-Alder and acylhydrazone reversible chemistry. Adapted and re-drawn from [9].
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In this case, it has been proposed that the Diels-Alder adducts preserve the gel integrity and endow it with good mechanical properties while the acylhydrazone reversible chemistry is conveniently employed to fine-tune the crosslinking density. The latter is in turn responsible for the self-healing behavior. The same hydrazone reversible chemistry can be conveniently combined with self-assembly of block copolymers to yield (see Figure 7) hydrogels with improved mechanical properties [33].


Figure 7. Dynamic covalent hydrogels with triblock copolymer micellization. Adapted and re-drawn from [33]. Yellow: hydrophobic block and/or domain. Blue: hydrophilic block and/or domain. Green: crosslinker.
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The resulting hydrogels still display self-healing properties and elongations up to 10.000%, the latter being a function of the pH. This stems from the dependency of the crosslinking density (acylhydrazone bonds) on the pH values. Such outstanding mechanical behavior (i.e., strain values) can also be attributed to the presence of the micelles, which actually act as physical crosslinking points for the all system.



This approach, i.e., the use of two different reversible covalent bonding, represents a very popular choice in the last five years [40,41]. This stems from the fact that, besides the synergy in terms of reversible behavior as result of external stimuli and of combination of different properties, an additional one can be pursued in terms of the synthetic approach. A paradigmatic example is represented by the synthesis of hydrogels based on poly(ethylene-glycol) (PEG) with the use of thiol-ene addition as well as borax-diol chemistry (Figure 8) [35].


Figure 8. Hydrogels based on poly(ethylene-glycol) (PEG) with the use of thiol-ene addition and a borax-diol chemistry. Adapted and re-drawn from [35].
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Borax acts in this case as catalyst for the thiol-ene reaction, thus factually helping in building the polymeric backbone, but also as crosslinking agent via the reversible borax-diol chemistry. The reversibility of the crosslinking was demonstrated by self-healing experiments and confirmed by rheology measurements. As typical for these systems, i.e., covalently and reversibly crosslinked gels, a cross over point between the elastic (G′) and loss (G″) modulus is observed for relatively moderate frequency values (1 < ω < 100 rad/s). This is in fact a very general characterization technique and observation [35] that can be used to characterize the response of the hydrogel to shear force.



Very recently host-guest chemistry (molecular recognition) has been also reported for the synthesis of hydrogels [42,43]. In one example the proposed approach is rather versatile as it relies on fixed molecular recognition interaction even if in different matrixes prepared by in situ polymerization, as illustrated in Figure 9 [43].


Figure 9. Adapted and re-drawn from [43]. Insert: green denotes the polymeric network. Yellow/orange structure: see (B,C). (A) chemical structure of host (B) chemical structure (C) host guest coupling (D) dynamic equilibrium for reversible crosslinking. Di-methylacrylamide is used here as an example of a monomer that can be used.
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The versatility of this method and its compatibility with several different monomeric precursors and polymeric end-products render it particularly attractive.



An interesting consequence of the dynamic character of these bonds is the fact that this significantly favors the adhesion between hydrogels and organo-gels (when in contact with each other), provided that such reaction can take place at the interface between these two gels [44].



A shown above, the choice of covalent reversible bonds for the network formation endows the final product with a multifaceted portfolio of properties (i.e., multiple responses to multiple stimuli). This can be achieved on the basis of several different substrates. Indeed, synthetic polymers are still widely used for the preparation of hydrogels, with polyacrylamide representing the most popular choice [45]. On the other hand, hydrogels based on natural products (e.g., chitosan [4,17], proteins [11,31,36], modified alginate [46], peptides [28,47]) represent a very convenient choice in view of clear advantages related to biological applications, but also to general sustainability principles. Indeed, attention is being paid also to novel synthetic pathways in agreement with green chemistry principles [48].



The choice of PEG as the main constituent of the polymeric backbone is an obvious one [49,50] when making allowances for the commercial availability of many (functionally modified) PEG varieties as well as their well-known thickening effect even in the presence of salts. On the other hand, polysaccharides also represent a popular choice mainly in view of the easiness of the modification and their availability in nature. An elegant example is the combination of modified cellulose with chitosan (Figure 10) [29].


Figure 10. Polysaccharide hydrogels based on covalent enamine bond. Adapted and re-drawn from [29].
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The presence of an amino group along the chitosan chain is exploited here in order to achieve high reactivity (even at room temperature) with modified cellulose through enamine formation, in this case or via imine formation in other reported examples [51,52]. A combination of a natural polysaccharide with PEG combines the best of both worlds and has been recently reported [53].




3. Conclusions and Future Perspectives


As clearly seen form the example discussed above, the use of reversible covalent bonds in hydrogels endows the final product with very peculiar chemical structures, which in turns translate into a kaleidoscopic ensemble of possibilities in terms final properties. As also observed in other chemistry-related research fields, the study of synergistic phenomena seems to represent a very popular trend. In the specific case of hydrogels, this translates into the combination of multiple reversible interactions (and more specifically, reversible covalent bonds) in the same final product. This allows control of the network structure in processes such as self-healing in response to several different external stimuli. This is particularly attractive for biomedical applications where physiological parameters (e.g., pH, temperature, shear stress, etc.) might change in a simultaneous manner. On a molecular level, this generates the need for synthetic strategies allowing the incorporation of such reversible covalent bonds on the polymeric network. The above review of the most recent trends clearly show on one side the high sophistication level of the synthetic strategies employed and the multifaceted properties toolbox achievable in this way.



It must be stressed here that such research trends will probably continue in the coming years as the number of possibilities in terms of chemical bonds is certainly not yet exhausted. On the other hand, it is also conceivable that, as the topic will reach more scientific maturity, more attention will be paid to industrially feasible preparation routes. In this context, the choice of suitable substrates (i.e., polymeric materials) as well as synthetic strategies will probably constitute a focal point of future research projects.







Conflicts of Interest


The authors declare no conflict of interest.




References


	1. 
Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015, 6, 105–121. [Google Scholar] [CrossRef] [PubMed]

	2. 
Chen, L.; Yin, Y.; Liu, Y.; Lin, L.; Liu, M. Design and fabrication of functional hydrogels through interfacial engineering. Chin. J. Polym. Sci. 2017, 35, 1181–1193. [Google Scholar] [CrossRef]

	3. 
Liu, J.; Zhu, K.; Jiao, T.; Xing, R.; Hong, W.; Zhang, L.; Zhang, Q.; Peng, Q. Preparation of graphene oxide-polymer composite hydrogels via thiol-ene photopolymerization as efficient dye adsorbents for wastewater treatment. Colloids Surf. A Physicochem. Eng. Asp. 2017, 529, 668–676. [Google Scholar] [CrossRef]

	4. 
Piatkowski, M.; Janus, L.; Radwan-Praglowska, J.; Raclavsky, K. Microwave-enhanced synthesis of biodegradable multifunctional chitosan hydrogels for wastewater treatment. Express Polym. Lett. 2017, 11, 809–819. [Google Scholar] [CrossRef]

	5. 
Zhang, Z.; Du, J.; Li, Y.; Wu, J.; Yu, F.; Chen, Y. An aptamer-patterned hydrogel for the controlled capture and release of proteins via biorthogonal click chemistry and DNA hybridization. J. Mater. Chem. B 2017, 5, 5974–5982. [Google Scholar] [CrossRef]

	6. 
Yang, D.H.; Seo, D.I.; Lee, D.; Bhang, S.H.; Park, K.; Jang, G.; Kim, C.H.; Chun, H.J. Preparation and evaluation of visible-light cured glycol chitosan hydrogel dressing containing dual growth factors for accelerated wound healing. J. Ind. Eng. Chem. 2017, 53, 360–370. [Google Scholar] [CrossRef]

	7. 
Xu, L.; Cooper, R.C.; Wang, J.; Yeudall, W.A.; Yang, H. Synthesis and Application of Injectable Bioorthogonal Dendrimer Hydrogels for Local Drug Delivery. ACS Biomater. Sci. Eng. 2017, 3, 1641–1653. [Google Scholar] [CrossRef] [PubMed]

	8. 
Gregoritza, M.; Messmann, V.; Abstiens, K.; Brandl, F.P.; Goepferich, A.M. Controlled Antibody Release from Degradable Thermoresponsive Hydrogels Cross-Linked by Diets-Alder Chemistry. Biomacromolecules 2017, 18, 2410–2418. [Google Scholar] [CrossRef] [PubMed]

	9. 
Yu, F.; Cao, X.; Du, J.; Wang, G.; Chen, X. Multifunctional Hydrogel with Good Structure Integrity, Self-Healing, and Tissue-Adhesive Property Formed by Combining Die Is Alder Click Reaction and Acylhydrazone Bond. ACS Appl. Mater. Interfaces 2015, 7, 24023–24031. [Google Scholar] [CrossRef] [PubMed]

	10. 
Lu, S.; Bai, X.; Liu, H.; Ning, P.; Wang, Z.; Gao, C.; Ni, B.; Liu, M. An injectable and self-healing hydrogel with covalent cross-linking in vivo for cranial bone repair. J. Mater. Chem. B 2017, 5, 3739–3748. [Google Scholar] [CrossRef]

	11. 
Zhu, D.; Wang, H.; Trinh, P.; Heilshorn, S.C.; Yang, F. Elastin-like protein-hyaluronic acid (ELP-HA) hydrogels with decoupled mechanical and biochemical cues for cartilage regeneration. Biomaterials 2017, 127, 132–140. [Google Scholar] [CrossRef] [PubMed]

	12. 
Ono, R.J.; Lee, A.L.Z.; Voo, Z.X.; Venkataraman, S.; Koh, B.W.; Yang, Y.Y.; Hedrick, J.L. Biodegradable Strain-Promoted Click Hydrogels for Encapsulation of Drug-Loaded Nanoparticles and Sustained Release of Therapeutics. Biomacromolecules 2017, 18, 2277–2285. [Google Scholar] [CrossRef] [PubMed]

	13. 
Deng, R.; Derry, M.J.; Mable, C.J.; Ning, Y.; Armes, S.P. Using Dynamic Covalent Chemistry to Drive Morphological Transitions: Controlled Release of Encapsulated Nanoparticles from Block Copolymer Vesicles. J. Am. Chem. Soc. 2017, 139, 7616–7623. [Google Scholar] [CrossRef] [PubMed]

	14. 
Lei, L.; Zhang, Y.; He, L.; Wu, S.; Li, B.; Li, Y. Fabrication of nanoemulsion-filled alginate hydrogel to control the digestion behavior of hydrophobic nobiletin. LWT-Food Sci. Technol. 2017, 82, 260–267. [Google Scholar] [CrossRef]

	15. 
Slegeris, R.; Ondrusek, B.A.; Chung, H. Catechol- and ketone-containing multifunctional bottlebrush polymers for oxime ligation and hydrogel formation. Polym. Chem. 2017, 8, 4707–4715. [Google Scholar] [CrossRef]

	16. 
Fu, S.; Dong, H.; Deng, X.; Zhuo, R.; Zhong, Z. Injectable hyaluronic acid/poly(ethylene glycol) hydrogels crosslinked via strain-promoted azide-alkyne cycloaddition click reaction. Carbohydr. Polym. 2017, 169, 332–340. [Google Scholar] [CrossRef] [PubMed]

	17. 
Guaresti, O.; Garcia-Astrain, C.; Palomares, T.; Alonso-Varona, A.; Eceiza, A.; Gabilondo, N. Synthesis and characterization of a biocompatible chitosan-based hydrogel cross-linked via ‘click’ chemistry for controlled drug release. Int. J. Biol. Macromol. 2017, 102, 1–9. [Google Scholar] [CrossRef] [PubMed]

	18. 
Marin, L.; Ailincai, D.; Morariu, S.; Tartau-Mititelu, L. Development of biocompatible glycodynameric hydrogels joining two natural motifs by dynamic constitutional chemistry. Carbohydr. Polym. 2017, 170, 60–71. [Google Scholar] [CrossRef] [PubMed]

	19. 
Selegard, R.; Aronsson, C.; Brommesson, C.; Danmark, S.; Aili, D. Folding driven self-assembly of a stimuli-responsive peptide-hyaluronan hybrid hydrogel. Sci. Rep. 2017, 7, 7013. [Google Scholar] [CrossRef] [PubMed]

	20. 
Shi, L.; Carstensen, H.; Hoelzl, K.; Lunzer, M.; Li, H.; Hilborn, J.; Ovsianikov, A.; Ossipov, D.A. Dynamic Coordination Chemistry Enables Free Directional Printing of Biopolymer Hydrogel. Chem. Mater. 2017, 29, 5816–5823. [Google Scholar] [CrossRef]

	21. 
Tsurkan, M.V.; Jungnickel, C.; Schlierf, M.; Werner, C. Forbidden Chemistry: Two-Photon Pathway in [2 + 2] Cycloaddition of Maleimides. J. Am. Chem. Soc. 2017, 139, 10184–10187. [Google Scholar] [CrossRef] [PubMed]

	22. 
Casuso, P.; Odriozola, I.; Perez-San Vicente, A.; Loinaz, I.; Cabanero, G.; Grande, H.; Dupin, D. Injectable and Self-Healing Dynamic Hydrogels Based on Metal(I)-Thiolate/Disulfide Exchange as Biomaterials with Tunable Mechanical Properties. Biomacromolecules 2015, 16, 3552–3561. [Google Scholar] [CrossRef] [PubMed]

	23. 
Barcan, G.A.; Zhang, X.; Waymouth, R.M. Structurally Dynamic Hydrogels Derived from 1,2-Dithiolanes. J. Am. Chem. Soc. 2015, 137, 5650–5653. [Google Scholar] [CrossRef] [PubMed]

	24. 
Gong, C.; Shan, M.; Li, B.; Wu, G. Injectable dual redox responsive diselenide-containing poly(ethylene glycol) hydrogel. J. Biomed. Mater. Res. Part A 2017, 105, 2451–2460. [Google Scholar] [CrossRef] [PubMed]

	25. 
Whitaker, D.E.; Mahon, C.S.; Fulton, D.A. Thermoresponsive Dynamic Covalent Single-Chain Polymer Nanoparticles Reversibly Transform into a Hydrogel. Angew. Chem. Int. Ed. 2013, 52, 956–959. [Google Scholar] [CrossRef] [PubMed]

	26. 
Ding, F.; Wu, S.; Wang, S.; Xiong, Y.; Li, Y.; Li, B.; Deng, H.; Du, Y.; Xiao, L.; Shi, X. A dynamic and self-crosslinked polysaccharide hydrogel with autonomous self-healing ability. Soft Matter 2015, 11, 3971–3976. [Google Scholar] [CrossRef] [PubMed]

	27. 
Mukherjee, S.; Hill, M.R.; Sumerlin, B.S. Self-healing hydrogels containing reversible oxime crosslinks. Soft Matter 2015, 11, 6152–6161. [Google Scholar] [CrossRef] [PubMed]

	28. 
Popescu, M.; Liontos, G.; Avgeropoulos, A.; Voulgari, E.; Avgoustakis, K.; Tsitsilianis, C. Injectable Hydrogel: Amplifying the pH Sensitivity of a Triblock Copolypeptide by Conjugating the N-Termini via Dynamic Covalent Bonding. ACS Appl. Mater. Interfaces 2016, 8, 17539–17548. [Google Scholar] [CrossRef] [PubMed]

	29. 
Liu, H.; Sui, X.; Xu, H.; Zhang, L.; Zhong, Y.; Mao, Z. Self-Healing Polysaccharide Hydrogel Based on Dynamic Covalent Enamine Bonds. Macromol. Mater. Eng. 2016, 301, 725–732. [Google Scholar] [CrossRef]

	30. 
Chang, R.; Wang, X.; Li, X.; An, H.; Qin, J. Self-Activated Healable Hydrogels with Reversible Temperature Responsiveness. ACS Appl. Mater. Interfaces 2016, 8, 25544–25551. [Google Scholar] [CrossRef] [PubMed]

	31. 
Wang, H.; Zhu, D.; Paul, A.; Cai, L.; Enejder, A.; Yang, F.; Heilshorn, S.C. Covalently Adaptable Elastin-Like Protein-Hyaluronic Acid (ELP-HA) Hybrid Hydrogels with Secondary Thermoresponsive Crosslinking for Injectable Stem Cell Delivery. Adv. Funct. Mater. 2017, 27, 1605609. [Google Scholar] [CrossRef]

	32. 
Yang, X.; Liu, G.; Peng, L.; Guo, J.; Tao, L.; Yuan, J.; Chang, C.; Wei, Y.; Zhang, L. Highly Efficient Self-Healable and Dual Responsive Cellulose-Based Hydrogels for Controlled Release and 3D Cell Culture. Adv. Funct. Mater. 2017, 27, 1703174. [Google Scholar] [CrossRef]

	33. 
Wang, P.; Deng, G.; Zhou, L.; Li, Z.; Chen, Y. Ultrastretchable, Self-Healable Hydrogels Based on Dynamic Covalent Bonding and Triblock Copolymer Micellization. ACS Macro Lett. 2017, 6, 881–886. [Google Scholar] [CrossRef]

	34. 
Yang, T.; Ji, R.; Deng, X.; Du, F.; Li, Z. Glucose-responsive hydrogels based on dynamic covalent chemistry and inclusion complexation. Soft Matter 2014, 10, 2671–2678. [Google Scholar] [CrossRef] [PubMed]

	35. 
He, L.; Szopinski, D.; Wu, Y.; Luinstra, G.A.; Theato, P. Toward Self-Healing Hydrogels Using One-Pot Thiol-Ene Click and Borax-Diol Chemistry. ACS Macro Lett. 2015, 4, 673–678. [Google Scholar] [CrossRef]

	36. 
Seidler, C.; Ng, D.Y.W.; Weil, T. Native protein hydrogels by dynamic boronic acid chemistry. Tetrahedron 2017, 73, 4979–4987. [Google Scholar] [CrossRef]

	37. 
Li, Y.; Liu, Y.; Ma, R.; Xu, Y.; Zhang, Y.; Li, B.; An, Y.; Shi, L. A G-Quadruplex Hydrogel via Multicomponent Self-Assembly: Formation and Zero-Order Controlled Release. ACS Appl. Mater. Interfaces 2017, 9, 13056–13067. [Google Scholar] [CrossRef] [PubMed]

	38. 
Liao, J.; Huang, J.; Wang, T.; Sun, W.; Tong, Z. Rapid shape memory and pH-modulated spontaneous actuation of dopamine containing hydrogels. Chin. J. Polym. Sci. 2017, 35, 1297–1306. [Google Scholar] [CrossRef]

	39. 
Deng, G.; Li, F.; Yu, H.; Liu, F.; Liu, C.; Sun, W.; Jiang, H.; Chen, Y. Dynamic Hydrogels with an Environmental Adaptive Self-Healing Ability and Dual Responsive Sol-Gel Transitions. ACS Macro Lett. 2012, 1, 275–279. [Google Scholar] [CrossRef]

	40. 
Chen, J.; Su, Q.; Guo, R.; Zhang, J.; Dong, A.; Lin, C.; Zhang, J. A Multitasking Hydrogel Based on Double Dynamic Network with Quadruple-Stimuli Sensitiveness, Autonomic Self-Healing Property, and Biomimetic Adhesion Ability. Macromol. Chem. Phys. 2017, 218, 1700166. [Google Scholar] [CrossRef]

	41. 
Collins, J.; Nadgorny, M.; Xiao, Z.; Connal, L.A. Doubly Dynamic Self-Healing Materials Based on Oxime Click Chemistry and Boronic Acids. Macromol. Rapid Commun. 2017, 38, 1600760. [Google Scholar] [CrossRef] [PubMed]

	42. 
Zhou, L.; Li, J.; Luo, Q.; Zhu, J.; Zou, H.; Gao, Y.; Wang, L.; Xu, J.; Dong, Z.; Liu, J. Dual stimuli-responsive supramolecular pseudo-polyrotaxane hydrogels. Soft Matter 2013, 9, 4635–4641. [Google Scholar] [CrossRef]

	43. 
Liu, J.; Tan, C.S.Y.; Lan, Y.; Scherman, O.A. Toward a Versatile Toolbox for Cucurbit[n]uril-Based Supramolecular Hydrogel Networks through In Situ Polymerization. J. Polym. Sci. Part A Polym. Chem. 2017, 55, 3105–3109. [Google Scholar] [CrossRef] [PubMed]

	44. 
Deng, G.; Ma, Q.; Yu, H.; Zhang, Y.; Yan, Z.; Liu, F.; Liu, C.; Jiang, H.; Chen, Y. Macroscopic Organohydrogel Hybrid from Rapid Adhesion between Dynamic Covalent Hydrogel and Organogel. ACS Macro Lett. 2015, 4, 467–471. [Google Scholar] [CrossRef]

	45. 
Yan, F.; Zhang, X.; Ren, H.; Meng, X.; Qiu, D. Reinforcement of polyacrylamide hydrogel with patched laponite-polymer composite particles. Colloids Surf. A Physicochem. Eng. Asp. 2017, 529, 268–273. [Google Scholar] [CrossRef]

	46. 
Inal, M.; Isiklan, N.; Yigitoglu, M. Preparation and characterization of pH-sensitive alginate-g-poly(N-vinyl-2-pyrrolidone)/gelatin blend beads. J. Ind. Eng. Chem. 2017, 52, 128–137. [Google Scholar] [CrossRef]

	47. 
Wang, L.; Hui, X.; Geng, H.; Ye, L.; Zhang, A.; Shao, Z.; Feng, Z. Synthesis and gelation capability of mono- and disubstituted cyclo(L-Glu-L-Glu) derivatives with tyramine, tyrosine and phenylalanine. Colloid Polym. Sci. 2017, 295, 1549–1561. [Google Scholar] [CrossRef]

	48. 
Nunes, C.S.; Rufato, K.B.; Souza, P.R.; de Almeida, E.A.M.S.; da Silva, M.J.V.; Scariot, D.B.; Nakamura, C.V.; Rosa, F.A.; Martins, A.F.; Muniz, E.C. Chitosan/chondroitin sulfate hydrogels prepared in [Hmim][HSO4] ionic liquid. Carbohydr. Polym. 2017, 170, 99–106. [Google Scholar] [CrossRef] [PubMed]

	49. 
Yesilyurt, V.; Webber, M.J.; Appel, E.A.; Godwin, C.; Langer, R.; Anderson, D.G. Injectable Self-Healing Glucose-Responsive Hydrogels with pH-Regulated Mechanical Properties. Adv. Mater. 2016, 28, 86–91. [Google Scholar] [CrossRef] [PubMed]

	50. 
Czarnecki, S.; Rossow, T.; Seiffert, S. Hybrid Polymer-Network Hydrogels with Tunable Mechanical Response. Polymers 2016, 8, 82. [Google Scholar] [CrossRef]

	51. 
Raza-Karimi, A.; Khodadadi, A. Mechanically Robust 3D Nanostructure Chitosan-Based Hydrogels with Autonomic Self-Healing Properties. ACS Appl. Mater. Interfaces 2016, 8, 27254–27263. [Google Scholar] [CrossRef] [PubMed]

	52. 
Iftime, M.; Morariu, S.; Marin, L. Salicyl-imine-chitosan hydrogels: Supramolecular architecturing as a crosslinking method toward multifunctional hydrogels. Carbohydr. Polym. 2017, 165, 39–50. [Google Scholar] [CrossRef] [PubMed]

	53. 
Shao, C.; Wang, M.; Chang, H.; Xu, F.; Yang, J. A Self-Healing Cellulose Nanocrystal-Poly(ethylene glycol) Nanocomposite Hydrogel via Diels-Alder Click Reaction. ACS Sustain. Chem. Eng. 2017, 5, 6167–6174. [Google Scholar] [CrossRef]





























© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).






media/file13.jpg





media/file4.png
R=H or C





media/file18.png





media/file3.jpg
N,
Nw)\ H0 R=HorC






media/file19.jpg
cellulose.

H/g&/o * ﬂ\u rﬂ\o”
5 0’

HO™ oH

chitosan
OH

HO™ N,






media/file7.jpg





media/file10.png
]

‘‘‘‘‘

N -

|

self-healing at pH>7

di-sulfide bonds ]
redox responsive

‘‘‘‘‘

N -

acylhydrazone bonds
self-healing at pH<7






media/file14.png





media/file11.jpg
HO-

o
HO_ o HO
o

o—L4Td
NHCOCH, COONa

on
o Ho
o
o0 L5d
Rcodm 0
"
o

o.

oH
ﬁ o0 o—" R
o 0410
NHCOGH, -
o

H
HO_ oH :

B
0470
NHCOCH, COONa

.

HO_ O 4

‘ | -+ bis maleimide

Pwmenc mwo





media/file6.png





media/file15.jpg
BN

SH <)
Hs NS HOQ OH
H HO™ " OH





nav.xhtml


  gels-04-00021


  
    		
      gels-04-00021
    


  




  





media/file16.png
HS/\/\/SH . HO.©_OH
= HO "OH






media/file2.png
VKT O
O

O N O N
O O O
O.
N3N4 NH, deprotection
o o
@) @)
b |

j,o
o~ 0 0" N M:Ns

I I

o) 0
44 \ 44 ‘
NH NH
0 0

OR OR

R=protecting group OR OR

crosslinking

| O_S(:JJ[ OJN;—oﬁ@|

135 O

;:
by

O

o \N,OM: N3

3

@)
44 ‘
NH
@)

OH
OH

Polymeric
network






media/file20.png
cellulose






media/file5.jpg





media/file1.jpg
crossiinking

:
Oty O

—

Polymeric
network






media/file12.png
OH
OH HO ~ OH )
HO oH HO O o—~
HO O O O O
0O 0O 0O NHCOCH; COONa

- NHCOCH; COONa

HO  OH HO o—"" O 0 OH
0O HO
NHCOC + --0 O O )
NHCOCH3

o =0
HN . * NHCOCH3
ENH

HN

'NH2, ' + bis-maleimide ;

\ a ~ i
- -
~ -

______
- -~

-~
Rl R

Y

[Polymeric network ]






media/file9.jpg
selfheaiing at pH>7
redox responsive.






media/file0.png





media/file8.png
Fe'!

T~ P(DMAA-co-DMA)

¢ BIS crosslinking point

“ Cathecol

< Fe“

F

e

NaOH

HCI






media/file17.jpg





