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S1. Microscopy Images of Microgels 
Pictures of microgels A, B, and C at various stages during the binding process in 800 mg/L 
lysozyme are displayed in Figures S1, S2, and S3, respectively. Figure S4 shows the behavior 
of microgel E in 500 mg/L lysozyme solutions. Shown are also the same particles in protein-
free solutions at various ionic strengths. Fig. S4 shows pictures of a PSS microgel interacting 
with cytochrome c (cyt c), and Fig. S5 shows pictures of PSS macrogel with a pre-formed 
lysozyme rich shell after the subsequent absorption of cyt c.  

 

           
Figure S1. Light microscopy images of microgel A at different times during deswelling in 800 mg/L lysozyme 
solutions (NaCl/tris buffer; pH 8.0, I=10 mM). UV-vis: illumination by mixture of UV and and visible light. Inset: 
Gel A in equilibrium with protein-free electrolyte solutions of ionic strengths 0 and 10 mM. 



         
Figure S2. Light microscopy images of microgel B at different times during deswelling in 800 mg/L lysozyme 
solutions (NaCl/tris buffer; pH 8.0, I=10 mM); scale bar = 50 µm. Inset: Gel B in equilibrium with protein-free 
solutions NaCl solutions of various concentrations. “β=0.55”: Macrogel with lysozyme-rich shell.  

 

 

             

Figure S3. Microgel C at different times during deswelling in 800 mg/L lysozyme solutions (NaCl/tris buffer; pH 
8.0, I=10 mM). Lower row: Gel C after 24 h in the protein solution, after flushing with 20 mM SDS for 5-10 s, 
170 s, and 5 minutes (fluorescence microscopy image). Left inset: Gel C in equilibrium with protein-free NaCl 
solutions of various concentrations.  



           
Figure S4. Microgel E at different times during deswelling in 500 mg/L lysozyme solutions (NaCl/tris buffer; pH 
8.0, I=10 mM). Two left-most columns: Gel E in equilibrium with protein-free NaCl solutions of various 
concentrations prior to measurement. Right: Core-shell formation observed with different optical settings with or 
without fluorescent light. Volume decrease is observed upon reduction of pH. Scale bar = 25 µm.  

 

  

           
Figure S5. Time resolved volume decrease of a PSS microsphere in a cytochrome solution of 729 ppm and in 
the standard. Scale bar = 50 µm. 



 

 

               
Figure S6. Pictures of a PSS macrosphere sliced apart to display a 1 mm thick centerpiece afer consecutive binding 
of lysozyme and cyt c. The rightmost image shows that cyt c (red) has diffused through the lysozyme rich surface 
phase. The core spontaneously detached from the shell after additional incubation of the slice in a closed container, 
possibly the result of the stress from cyt c-induced contraction of the core. 

 

 

S2. Application of the scaling law for the swelling of macrogels to microgels. 

In the Article the concentration of network charges in PSS microgels at swelling equilibrium in 
10 mM NaCl solution ( ) is calculated using the empirical scaling law for spherical PSS 
macrogels (diameter ~1 cm ) given in Fig. 2 in the Article: = 125 ×  .

     (S1) 

with  and  being the volume in pure (milli-q) water (C0) and in 10 mM NaCl, respectively. 
In the thermodynamic sense, the present microgels are of macroscopic size, and so eq. (S1) 
should be applicable to them as long as they have the same type of network structure as the the 
macrogels. The data in Figure 1b in the Article strongly suggest that this is the case for microgel 
B. In that case the comparison is straightforward since, by coincidence, microgel B has nearly 
the same V0/V10 value as one of the macrogel batches. For the other micogels this is not the 
case. To justify the validity of eq. (S1) for these microgels we show that a theoretical model 
that gives a reasonable description of eq. (S1) in the relevant range of V0/V10 –values can also 
be fitted to the salt response curves for all the microgels.  

The model takes into account the contributions to the free energy from elastic deformation of 
the network and the entropy of mixing. The former is described using the inverse Langevin 
theory of rubber elasticity from which the contribution to the osmotic pressure of a uniformly 
swollen network is [1,29]: = − ∗ − ∗ − ∗ − ∗ − ⋯   (S2) 

Here, R is the ideal gas constant, T is the absolute temperature, C is the concentration of styrene 
sulfonate (ss) units in the swollen gel, C* is the corresponding concentration in a relaxed 
reference state, x is the number of ss units in a statistical segment and s is the number of 
statistical segment between cross-links. The contribution from the entropy of mixing of the 
mobile ions to the osmotic pressure difference between the gel and the salt solution is calculated 
as: 



∆ = (( ) + 4 ) − 2     (S3) 

Here,  is the concentration of monovalent salt in the solution. Eq. (S3) takes into account 
the partitioning of salt between the gel and the solution and the effect of counterion binding to 
the network. The latter effect is handled in a simple way by assuming that a constant fraction  
of the network charges are dissociated from their counterions. The dissociated counterions and 
the salt ions that have entered from the solution are treated as freely mobile in the gel. The 
contributions to the osmotic pressure from the non-electrostatic interactions between the 
network chains and from the entropy of mixing the network and water are neglected, as justified 
by the swollen state of the network and the dominating contribution from eq. (S3) in gels with 
highly charged networks.  

Equilibrium swelling is obtained when the condition Π + ∆Π = 0 is fulfilled. Figure S7 
shows a fit of the model to eq. (S1). The curve was obtained by calculating C0 and C10 as a 
functions of s with the parameters x, C*and  as fitting parameters, and using the relationship =  . The shape of the curve is largely independent on the parameters but the position in 

the vertical direction is very sensitive to ; it is less sensitive to x and practically independent 
on C*. Clearly the model does not reproduce the linear scaling law but the agreement is quite 
good in the interval covering the swelling amplitudes of microgels A – F (marked by the arrows 
in the figure).  

             
Figure S7. The concentration of network charges in NaPSS macrogels in 10 mM NaCl solution (C10) as a function 
of the ratio of the gel volume in pure water (V0) and in 10 mM NaCl (V10). Symbols: Experimental data. Dashed 
line: Eq. (S1) fitted to the experimental data. Solid line: Theoretical curve calculated from eqs. (S2) and (S3) with 
x=16, =0.35 and C*=2 M.  

 

The values of the parameters obtained from the fit are quite reasonable for the present type of 
network. There is a covariance in such a way that the value of  required to make the fit good 
in the relevant interval increases with increasing x. The highest possible -value, corresponding 
to x=1, is 0.60, showing that, within the model, a certain degree of counterion binding to the 
network is necessary.  With x=16 one obtains =0.35, a value equal to the inverse of the linear 



charge density parameter ( ) for PSS in the Osawa-Manning counterion condensation theory. 
This equals the inverse of the apparent degree of dissociation of the polyelectrolyte in the 
simplest version of that theory, in agreement with the above definition of . Furthermore, a 
Kuhn statistical segment of 16 ss units, corresponding roughly to a persistent length of 2 nm, is 
not at all unphysical. Figure S8 shows fits of the model to the salt response curves for microgels 
A – F in the relevant lower range of salt concentrations. The curves were obtained by adjusting 
the parameters s and C*, keeping the set {x=16; =0.35} fixed. Again there is covariance 
between the parameters so that different s - C* pairs yield identical fits. The displayed curves 
are valid for C*=2 M and the following s-values: 15 (A), 11 (B), 8.7 (C), 8.4 (D), and 6.7 (E, 
F). The value of C* is arbitrarily selected, of course, but quite reasonable for the present gels 
considering the concentration of ss in the reaction mixture (1.2 M). The resulting number of ss 
units between crosslinks (=xs) is: 238 (A), 176 (B), 139 (C), 134 (D), and 107 (E, F).  

In conclusion, the theoretical model provides a reasonable description of the macrogel data in 
the range of V0/V10 displayed by the microgels. The same model, with the parameters 
determined for the macrogels fixed, can also be fitted to independent swelling data for the 
microgels. The result suggests a similarity between the networks in the macrogels and the 
microgels. 

 
Figure S8. Volume (V) of microgel in NaCl solution relative that in pure water (V0) plotted vs. the concentration 
of NaCl in the solution (Csalt). Symbols: Experimental data. Curves: Theoretical model calculated with x=16, 

=0.35, C*=2 M; s = 15 (A), 11 (B), 8.7 (C), 8.4 (D), and 6.7 (E, F). 
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S3. Guinier plot 
Figure S9 shows a Guinier plot of the scattering data at low q in Figure 7 in the Article. From 
the slope of the linear function fitted to the data the radius of gyration is calculated as =√3 ∙ 1361.4 Å ≈ 63.9 Å 

  
Figure S9. Logarithm of the scattering intensity in the low q-range (ln I) plotted vs. the square of the scattering 
vector (q2) (Guinier plot). Data from synchrotron SAXS experiments on the shells formed in PSS macrogels after 
absorbing lysozyme from solution.  

 

S4. Kinetic model 
Consider the uptake of protein molecules by a spherical gel. The microscopy images indicate 
that a core-shell morphology is created and maintained during the course of binding. After an 
initial short period of volume decrease there is an extended period of much slower volume 
decrease. During the latter period the core-shell boundary continues to move toward the centre 
and the shell appears to become inhomogeneous. Interestingly, the rate of the moving boundary 
increases with decreasing (apparent) degree of crosslinking. It is proposed in the Article that 
the period of slow volume decrease begins at some degree of binding, denoted β’, independent 
of the degree of crosslinking. If that is correct it follows from geometry that the thickness of 
the shell at β’ will decrease with decreasing degree of crosslinking (largest intrinsic swelling) 
and therefore the rate of protein transport through the shell will increase. To test if this 
hypothesis can explain the experimental observations we derive here a kinetic model in which 
the change of the gel volume and growth of the shell is coupled to the rate of protein transport 
through the shell. For simplicity, we consider an idealized case where the inhomogeneous shell 
is replaced by two homogeneous layers with different compositions.   

The model is derived based on the following assumptions. At each radial distance from the 
centre, freely mobile protein molecules are in equilibrium with protein molecules forming 
complexes with the network chains. The molecules in the latter state are immobilised and take 
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part of a dense “phase” permeable to the mobile protein molecules. During a first period, where 
the degree of protein binding increases from zero to β’, the phase grows from the gel boundary 
and inward at constant network/protein charge ratio (fs) and volume per network charge (vs). In 
this way a sharp boundary between the “shell” and the protein-free “core” is maintained. The 
boundary moves toward the centre with a rate controlled by the rate of mass transport of mobile 
protein molecules from the liquid solution to core boundary. During this process the volume of 
the gel is given by the volume of a protein-free core and the volume of the shell as described 
by eq. (6) in the Article. When the degree of binding reaches β’ the volume change of the gel 
stops. For β > β’ the shell is unchanged but a ‘core diffusion layer’ (cdl) develops with a sharp 
diffusion front migrating toward the centre of the gel. Like in the shell, a fraction of the protein 
molecules are immobilised by their interaction with the network, and cdl grows inward at 
constant network/protein charge ratio (fcdl) and volume per network charge (vcdl = v0). The rate 
of migration of the diffusion front is limited only by the rate of protein transport through the 
shell and the cdl. 

The diffusive transport through a spherical surface is given by = −4      (S4) 

For steady state transport through a spherical layer one obtains after integration 

  = ( )     (S5) 

Consider a core/shell gel of radius  and core radius . Define the rate of incorporating 
lysozyme molecules into the shell as the rate of lysozyme molecules reaching , thereby letting 
the core act as a sink ( = = 0). By introducing the scaled radii defined in the Article 
we can then write: = − = ̅ ̅, ( ̅ ̅ )    (S6) 

 is the concentration of lysozyme in the liquid in contact with the gel, ,  is the concentration 
of polymer network charges in the gel prior to binding, and  is the initial gel radius.  is the 
permeability of the shell to lysozyme: =       (S7) =       (S8) 

with  being the diffusion coefficient in the shell,  the concentration of mobile lysozyme in 
the shell at , and  a partition coefficient. In eq. (S6), ̅  and ̅  are considered to be functions 
of β given by eqs. (9) - (11) in the Article. Furthermore, we apply quasi-steady state conditions, 
meaning that steady state concentration profile is quickly reestablished for each shell thickness, 
i.e., for each pair ̅ ; ̅ . It is straight forward to extend the model to include a second layer to 
describe the transport of lysozyme simultaneous through the (outer) shell and cdl. The rate of 
increasing the degree of binding to the gel becomes: = ̅ ̅ ̅, ̅ ( ̅ ̅ ) ̅ ( ̅ ̅ )     (S9) 



where  is the position of the boundary between the core and cdl. Again, we have assumed that 
the concentration of lysozyme in the core is zero ( = = 0), and introduced a 
permeability : =      (S10) =       (S11) 

with  being the diffusion coefficient in cdl,  the concentration of mobile lysozyme in 
cdl at , and  a partition coefficient.  

By using eqs. (9) – (11) in the Article to substitute for ̅ , ̅  and ̅  in eq. (S9), the expression 
can be integrated to give relationships between time and . The formation of the shell ends 
abruptly at a given β’, after which no further deswelling and growth takes place. Thus, 
integration is made in two steps according to: ≤ :      ̅ = ̅=   
 

> :     ̅ = ̅ ( )̅ = ̅ ( )=  

For the first step ( ≤ ) the result is:  = , 1 − (1 − ) − ( ( )( )) / = , 1 − ̅ − ̅ .
      (S12) 

For the second step ( > ) the result is: 

 − ′ = , ̅ − ̅ − ( − ) + ̅ − ̅ − ̅ ( − )  

      (S13) 

where ′ is the time when = .  
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