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Abstract: Dynamics of solvent molecules restricted in poly (acryl amide) gels immersed in solvent
mixtures of acetone–, 1,4-dioxane–, and dimethyl sulfoxide–water were analyzed by the time domain
reflectometry method of dielectric spectroscopy and the pulse field gradient method of nuclear
magnetic resonance. Restrictions of dynamic behaviors of solvent molecules were evaluated from
relaxation parameters such as the relaxation time, its distribution parameter, and the relaxation
strength obtained by dielectric measurements, and similar behaviors with polymer concentration
dependences for the solutions were obtained except for the high polymer concentration in collapsed
gels. Scaling analyses for the relaxation time and diffusion coefficient respectively normalized by
those for bulk solvent suggested that the scaling exponent determined from the scaling variable
defined as a ratio of the size of solvent molecule to mesh size of polymer networks were three and
unity, respectively, except for collapsed gels. The difference in these components reflects characteristic
molecular interactions in the rotational and translational diffusions, and offered a physical picture of
the restriction of solvent dynamics. A universal treatment of slow dynamics due to the restriction
from polymer chains suggests a new methodology of characterization of water structures.

Keywords: poly (acryl amide) gel; time domain reflectometry (TDR) of dielectric spectroscopy;
pulse field gradient spin echo method of nuclear magnetic resonance (PFG-NMR); scaling analysis;
fractal analysis

1. Introduction

Polymer gels, i.e., crosslinked polymer networks with solvent have been extensively applied
in diverse fields such as medical, environment, and food science and industries because of the
characteristic behaviors. One of the most typical and characteristic behaviors of polymer gels is
a volume phase transition with which the late Professor Tanaka has first indicated that fundamental
physics of polymer gels, leading to expanded usage in applied science. Poly (acryl amide) (PAAm)
gels swell and shrink sensitively with a change in environment, such as temperature, electric field,
composition of solvent, ion concentration, pH, etc. [1–6]. However, there still exist some ambiguities in
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physical properties of the polymer gel related to the volume phase transition, especially from a view
point of molecular interactions among the solvent molecules and polymer chains.

One of the authors (M.T.) has reported that diffusion coefficients of probe molecules obtained
by the pulsed field gradient spin echo method of nuclear magnetic resonance (PFG-NMR) [7,8]
showed dynamic behaviors of probe molecules restricted in polymer gels [9–11]. The mesh size of
the network could be evaluated from the restriction of various probe molecules with different sizes.
This methodology can be an effective tool for the evaluation of gels of not only synthetic but also
natural polymers [12,13]. However, this method generally requires some probe molecules, since water
protons cannot be used with the recent high-resolution equipment because of oscillation dumping.
There has not been a lot of techniques to evaluate the volume phase transition without addition of
probe molecules.

We have investigated the dynamic behavior of solvent molecules restricted in polymer networks
of gels [14,15] by using the time domain reflectometry (TDR) method [16–18] of microwave dielectric
spectroscopy. The TDR method is capable of observing relaxation processes in the GHz frequency
region including the most important frequencies for liquid molecules at ordinary temperatures and
those slow dynamics with restrictions in polymer gels. Furthermore, open-end coaxial electrodes,
which can be attached to the surface of gel and solid materials for dielectric measurements with the
fringing field, are easily used in TDR measurements [14]. Therefore, in the case of dielectric studies
on the volume phase transition, the TDR measuring system is not simply a conventional method,
and various refinements makes the TDR method the most effective tool for detailed analysis and
discussion, especially for cooperative dynamics of mixed solvent.

Recently, Yang and Zhao, et al. [19–21], reported dielectric properties of the temperature-sensitive
phase transition of poly (N-isopropylacrylamide) (PNiPAM)-based microgels, for which conventional
electrodes are available. The PNiPAM gel is also typical polymer gels expected to be applied for medial
usages like microcapsules and drug delivery systems. Relaxation processes observed at frequencies
lower than 110 MHz are of interest in chain dynamics, however, solvent dynamics and behaviors are
not directly reflected in the frequency region.

In the present work, we examined acetone, 1,4-dioxane, and dimethyl sulfoxide (DMSO)
as organic solvents of aqueous mixtures with various compositions, in order to investigate the
molecular mechanism bringing abrupt volume changes of PAAm gels with the composition of the
organic solvent–water mixtures. PFG-NMR and TDR measurements were performed to compare
dynamic behaviors of solvent molecules inside gels with those for bulk liquid mixtures. Various
difficulties, such as the contact of TDR electrodes with samples, high frequency measurements of water,
and oscillation dumping for water protons in TDR and NMR measuring techniques for the gel study
require more creative treatments of the equipment. Furthermore, the complementarily analysis with
the characteristic time scales of 1 ms for NMR and 10 ps for TDR measurements offers us more detailed
analysis of the fluctuation of the order parameters, such as the relaxation time distributions. The three
organic solvents were chosen because of their different characteristics: 1,4-dioxane is a non-polar
liquid; acetone and DMSO have a similar chemical structure. Each component of the solvent mixtures
respectively interacts with polymer chains with different affinity. The differences in their dynamics
reflected the restricted behavior of these solvent molecules and led us to more detailed analysis of the
intermolecular interactions among solvent molecules and polymer chains.

2. Results and Discussion

2.1. Swelling Ratio of Gels

Figure 1 shows mole fraction dependences of the swelling ratio, V/V0, for PAAm gels immersed
in aqueous mixtures of acetone, 1,4-dioxiane, and DMSO, respectively, with some concentrations raised
step by step to reach an equilibrium volume at the target concentration. Here, V was determined from
the equilibrium volume of the gel at certain composition of the solvent mixtures and V0 is the initial
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volume of the gel prepared in pure water. The initial volume, V0, was determined when the gels were
synthesized at the polymer concentration of about 5.1 wt %. Upon immersing the initial gel in pure
water, the gel swelled and reached the equilibrium volume. Then, the value, V/V0, was larger than
unity in water. The result for the acetone–water mixtures shows an abrupt change in the mole fraction
region of 0.1 < χorganic < 0.2 as reported by Tanaka et al. [1]. A similar result was also obtained for the
gel immersed in 1,4-dioxane aqueous solution. On the other hand, the PAAm gel with DMSO aqueous
solution showed a similar but a smaller volume change and an opposite volume change appeared in
the DMSO-rich region.
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Figure 1. The swelling ratio for poly (acryl amide) (PAAm) gel normalized by the initial value in
water, V/V0, dependent on the mole fraction of organic solvent in the aqueous solution for acetone,
1,4-dioxane, and dimethyl sulfoxide (DMSO).

2.2. PFG-NMR Measurements

Usual application of the PFG-NMR method to gel materials requires probe molecules [9,11,13].
We have reported that liquid structures, including hydrogen bonding networks, reflect larger scales of
interactions [22,23]. Thus, protons of water and organic solvent molecules were used to examine the
molecular diffusion processes in the present work. Figure 2a shows acetone and DMSO mole fraction,
χorganic, dependences of the diffusion coefficients for water molecules of the solvent mixtures inside
gels and the bulk solvent obtained from PFG-NMR method.

All plots decreased with increasing mole fraction of organic solvents in the region, χorganic < 0.2.
The diffusion coefficient of solvent molecules restricted in the gels were smaller than those in the bulk
solvents. However, composition dependences of the diffusion coefficient for DMSO were different
from those for acetone. Former dielectric studies on aqueous solutions of organic solvent usually
showed changes in composition dependences of relaxation parameters at around the mole fraction
of water, 0.83, even if those changes are only apparent [24,25]. Actually, our results on the diffusion
coefficient for the present solvent mixtures also apparently indicated changes in the composition
dependences as shown at around the mole fraction of the organic solvent, 0.17. The solvent mixtures
take characteristic values of the diffusion coefficient in the region, χorganic > 0.2, as shown in Figure 2a.

Figure 2b shows similar results of the restrictions of dynamic behaviors also for the organic
solvent molecules. The smaller values of the diffusion coefficient for the organic solvents than those
for water molecules mean more restrictions because of the larger size of molecules. It is available
even in the case of solvent mixtures without gels. Furthermore, comparing with the size of solvent
molecules, the mesh size is generally large enough, since the ratio of the tetrafunctional monomer used
for crosslinking was just 1/20 against the bifunctional monomers for chains. Therefore, the restrictions
were almost entirely from polymer chains and the effect of shrinking is accompanied with increasing
polymer concentrations. The restriction we compared among the organic solvents indicated the solvent
size dependency in the diffusion coefficient.
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Figure 2. Acetone and DMSO mole fraction dependence of the diffusion coefficient for solvent
molecules inside gel or bulk solvent obtained from: (a) Proton of water molecules; (b) Methyl proton of
organic solvent molecules.

In order to focus attention on the restriction from the polymer chain networks in the gels,
the diffusion coefficient of solvent molecules in the gels was normalized by those obtained in the
bulk solvent mixtures. Figure 3a shows plots of the logarithm of the normalized diffusion coefficient,
Dgel/Dsol, against the composition of solvent mixtures for acetone, 1,4-dioxane, and DMSO aqueous
solutions. The normalized diffusion coefficient for acetone and 1,4-dioxane became smaller with
shrinking gels, but DMSO did not show similar behavior, since the swelling ratio of gels for DMSO
aqueous solutions was too large to restrict solvent dynamics. The same explanation is available for
larger values of the normalized diffusion coefficient for water molecules. The composition dependence
of the normalized diffusion coefficient for 1,4-dioxane aqueous solution was similar to the acetone
aqueous solution as their swelling ratio behaviors were also similar. Figure 3b shows composition
dependences of density for the organic solvent aqueous solutions. Characteristic properties of density
for each organic solvent’s aqueous solution were not directly reflected in the dynamic behaviors, since
the dynamics restricted by polymer chain networks were affected more by the swelling ratio.
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2.3. TDR Meserments

Figures 4 and 5 show dielectric dispersion and absorption curves obtained by TDR measurements
for acetone and DMSO aqueous solutions with PAAm gels. The binary mixtures of polar molecules
show only one relaxation process, even if these diffusion coefficients show two values. This is also
an indication of an averaging effect of the dielectric properties with the large-scale behaviors of
hydrogen bonding liquids. Restrictions of the dynamic behaviors appear as a lower frequency shift
of the peak frequency and a decrease in the relaxation strength. Differences between the curves
for the solvent inside and outside the gel is larger in the water poor region with smaller swelling
ratio. Then, comparing Figures 4 and 5, the larger differences between solvent molecules inside and
outside the gels shown for acetone aqueous solutions are simply explained from a larger decrease
in the swelling ratio. The difference indicating the restriction of molecular dynamics of solvent in
the polymer network is characterized by a lower frequency shift of the peak frequency and a smaller
relaxation process with increasing polymer concentration with the shrinkage of gels.
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Figure 4. Dielectric dispersion and absorption curves for acetone–water mixtures: (a) Outside PAAm
gels; (b) Inside PAAm gels.
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gels; (b) Inside PAAm gels.

The relaxation parameters were obtained from the fitting procedures to dielectric relaxation data
with the following Equation,

ε∗ = ε′ − jε′′ = ε∞ +
∆ε

[1 + (jωτ)β]
α − j

σDC

ε0ω
(1)

where ε′ and ε” are the real and imaginary parts of the complex dielectric constant, ε*, respectively,
j is the imaginary unit, ε∞ is the limiting high-frequency dielectric constant, ∆ε is the relaxation
strength, ω is the angular frequency, τ is the relaxation time, α and β (0 < α, β ≤ l) is the relaxation
time distribution parameter, and σDC is the dc conductivity, ε0 is the dielectric constant of vacuum.
The relaxation function used for the fitting procedure was Cole–Cole Equation (α = l) [26] for
1,4-dioxane and acetone aqueous solutions, Cole-Davidson Equation (β = l) [27] for bulk DMSO
aqueous solutions [28,29], and Havriliak–Negami Equation (0 < α, β ≤ l) [30] for DMSO aqueous
solutions inside gels.

Figure 6 shows composition dependences of the relaxation time and the relaxation strength.
The larger relaxation time corresponds to the large frequency shift to the lower frequency side.
The relaxation strength was smaller for the solvent inside gels because of the decrease in the density of
solvent molecules.

Figure 7 shows polymer concentration dependence of the normalized relaxation strength for
each solvent mixture. The normalized relaxation strength for aqueous solutions of PAAm and poly
(acryl acid) (PAA) were also shown for comparison. DMSO aqueous solutions kept larger values, since
the gel did not shrink enough even at low water content. Results for acetone- and 1,4-dioxane-water
mixtures show similar dependency of decreasing swelling ratio, but the values of normalized relaxation
strength for 1,4-dioxane–water mixtures were larger than those for acetone–water solutions, since the
1,4-dioxane is a non-polar organic solvent. Furthermore, the polymer concentration dependence of
the normalized relaxation strengths for acetone aqueous solutions showed similar values to those
shown for water in PAA aqueous solution and the same kind of behavior as those for PAA and PAAm
aqueous solutions in the polymer concentration region less than 0.6, but the dependency exhibited
a different manner in the region above 0.6. This result suggests the existence of another phenomenon
in collapsed gels.
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The relaxation time for solvent mixtures in gels normalized by those outside gels are plotted
against the composition of each solvent mixture in Figure 8. Characteristic behaviors were shown for
the normalized relaxation time in the mole fraction region of 0.1 < χorganic < 0.2, in which the swelling
ratio abruptly changed. Aqueous molecular liquids apparently show a discontinuous behavior around
a characteristic mole fraction of water, 83%, though Buchner et al. reported that there exists no
corresponding characteristic liquid structure [31]. In the mole fraction region of 0.2 < χorganic < 0.5,
the normalized relaxation time for each solvent mixture seems to increase simply with shrinking gel.
The normalized relaxation parameters reflect the swelling ratio well.
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Composition dependence of the normalized relaxation time is shown in Figure 8, the normalized
relaxation time reflects much more restrictions from the polymer network through the swelling ratio.
Considering that the chain dynamics are slower than those of solvent molecules in the present study,
it is reasonable that slow dynamics of solvent molecules are determined by chain dynamics of low
mobility polymer networks more than solvent dynamics with high mobility.

The relaxation time for the dipole relaxation process is a characteristic time of molecular dynamics
of the rotational diffusion, but it is just a measure of the average value. Then, the distribution
of the relaxation time is necessary for more exact analysis and detailed discussion. Figure 9a
shows composition dependence of the relaxation time distribution parameters, α and β, defined
by Equation (1), and the β values are plotted against the polymer concentration in Figure 9b.
The parameters, α and β, are related to asymmetric and symmetric broadening of the relaxation
curve [31]. The physical meanings of the parameters, α and β, are molecular interactions similar to the
chain connectivity of polymers and fractal fluctuations of density, respectively [32]. Then, parameters
α and β can be respectively treated even in the case of relaxation processes described by the
Havriliak–Negami Equation. Figure 9b shows similar broadening for three organic solvent mixtures
with increasing restriction of shrinking gels in the concentration region between 0.1 and 0.6, except for
the characteristic behaviors shown at concentration below 0.1. In the high concentration region above
0.6, no clear concentration dependence is shown. This result suggests a possible explanation in which
the composition of the solvent mixtures inside the gel is different from that outside the gel. The organic
solvent concentration in the gel is considered to be lower than that expected at the same composition
of solvent mixtures existing outside gel, since PAAm chains are hydrophilic.
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Logarithm of the normalized relaxation time, τgel/τsol, and the normalized diffusion coefficient,
Dgel/Dsol, are plotted against polymer concentration in Figure 10a,b. Polymer concentration
dependence of the relaxation time and the diffusion coefficient show reasonable tendencies,
respectively, reflecting restrictions from shrinking polymer networks except for the low polymer
concentration region less than 0.1 g/cm3, in which characteristic behaviors are shown.
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2.4. Scaling Concepts

The interactions among mixed solvents and polymer chains in gels clearly showed characteristic
features of those dynamic properties. Though the dynamic properties of solvent mixtures in gels were
normalized by those in bulk solvent mixtures, each system still shows characteristic behavior. Scaling
concepts were used to examine the universal property of the restrictions.
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Solvent dynamics restricted by shrinking gels have been analyzed by scaling law, especially
for translational diffusion constants obtained from PFG-NMR measurements for probe or solvent
molecules [9,10,33]. To investigate the molecular dynamics of solvent restricted in polymer networks,
the scaling variable expressed by a ratio of sizes of the solvent molecule and the mesh size of the
polymer networks can suggest a physical picture of the molecular mechanism, as

x = R/ξ (2)

where the scaling variable, x, is expressed as a ratio of sizes of the solvent molecule, R, and the mesh
size, ξ, of the polymer chain networks. Following power law relationship, R and ξ are rewritten by the
molecular weight of solvent molecules, M, and polymer concentration, Cp [34] as

R ∝ M
1
3 , ξ ∝ Cp

−3
4 (3)

Using Equation (3) and suitable exponents, the normalized relaxation time, τgel/τsol, and the
diffusion coefficient, Dgel/Dsol, were finally expressed by

τgel

τsol
∝ f
(

x3
)
= f

{(
R
ξ

)3
}

= exp
{(

M
1
3 Cp

3
4

)3
}

(4)

and
Dgel

Dsol
∝ f
(

x−1
)
= f

{(
R
ξ

)−1
}

= exp
{(

M
1
3 Cp

3
4

)−1
}

(5)

Here, the scaling exponents were three and unity, respectively, for Equations (4) and (5). The M
values used for the scaling analysis with Equation (5) were determined as those for the probe of solvent
molecules. On the other hand, the M values used for the scaling analysis with Equation (4) were
determined as averages following the composition of water and organic solvent molecules, since only
a single cooperative relaxation process is observed for the solvent mixtures. Other values of scaling
exponent could not represent straight lines. These analyses of the scaling law suggest that the scaling
variable x (=M1/3Cp

3/4) is available for the normalized diffusion coefficient Dgel/Dsol obtained by the
PFG-NMR method and x3 (=MCp

9/4) for the normalized relaxation time, τgel/τsol obtained by the
TDR method.

Figure 11a,b finally shows linear relationships if the plot for the most collapsed gel for the acetone
aqueous solution is neglected. Error bars shown in Figure 11 express the accuracy reflecting volume,
NMR, and dielectric measurements. These obvious differences for the plot for the most collapsed
gel for acetone aqueous solution were also shown in Figures 7 and 9b. Considering the effect of
the existence of a small amount of water molecules remaining in the most collapsed gel with the
hydrophilic properties of PAAm, the plot shifts to the larger value of Dgel/Dsol and the smaller value of
τgel/τsol, respectively, in Figure 11a,b. These compensations tend to return those plots to straight lines.

The result of different scaling exponents obtained for Equations (4) and (5) is supposed to
reflect the difference in the physical meanings of the relaxation time and the diffusion coefficient.
Both physical properties related to diffusive dynamics of molecules in the medium are expressed with
friction described by the Stokes law, as

D =
kT

6πηr
(6)

and
τrot =

Vη

kT
(7)

here k is the Boltzmann constant, T is the absolute temperature, r and V are the radius and the
volume of molecules, respectively. Equation (7) implies that the relaxation time is determined by
the intermolecular interactions expressed by the ratio of volumes for the solvent molecule and the
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mesh of polymer network. Therefore, this expression for the relaxation time seems to be reasonable,
since typical expression of dynamic behaviors are often treated with the free volume theory.
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2.5. Fractal Analysis with τ–β Diagram

Recently, we have examined fractal analysis for evaluation of the water structure [35–37].
Ryabov et al. expressed the relationship between the Cole–Cole relaxation time distribution parameter
and the relaxation time [38,39] as

β =
dG
2

ln(τωs)

ln(τ/τ0)
(8)

where τ0 is the cutoff time of the scaling in time domain, dG is the fractal dimension of the point set
where relaxing units are interacting with the statistical reservoir,

ωs = 2dEG2/dG Ds/R0
2 (9)

is the characteristic frequency of the self-diffusion process where dE is the Euclidean dimension, Ds is
the self-diffusion coefficient, R0 is the cutoff size of the scaling in the space, and G is a geometrical
coefficient approximately equal to unity. This analysis requires a fractal dimension to combine both the
average value of characteristic time of dynamics (the relaxation time) and the fluctuation (Cole–Cole
relaxation time distribution parameter), and it is not necessary to know any exact values of the
water content. Finally, we know how water molecules aggregate and disperse in materials from the
fractal analysis.

Equation (8) was examined for the GHz frequency process observed in the present work. Generally,
the fractal analysis requires plotting of the Cole–Cole relaxation time distribution parameter against
the logarithm of the relaxation time, and obtained hyperbolic curve is analyzed. In the present work,
the normalized relaxation time, τgel/τsol, was used for the analysis, since slow dynamics due to
restriction from shrinkage of the polymer network were treated. Figure 12 shows the τ–β diagram
for the present PAAm gels with organic solvent aqueous solutions. The plots obtained for the solvent
molecules restricted in polymer chains show hyperbolic curves for aqueous solutions. Usually, plots
for gels are located in the region lower than those for solutions in the Figure, and the water structures
in gels are more heterogeneous than those for solutions. In the present work, however, the curves
obtained for organic solvent aqueous solutions restricted in PAAm gels take similar shape and occur
in a slightly lower region compared to curves for aqueous solutions of PAAm and PAA. The plot
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for the collapsed gel occurs in the upper right region because of the under-estimation of τsol for the
remaining water molecules. This tendency means that the mesh size of the polymer network cannot be
more homogeneous than the polymer chains in the solutions, and this result follows the characteristic
behaviors of gel, solution, and dispersion systems which we have obtained in recent works [35,37,40].Gels 2018, 4, x FOR PEER REVIEW  13 of 17 
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The fractal analysis performed for the GHz frequency process with 10 ps time scale obtained from
TDR measurements cannot be treated in the same manner as NMR measurements with 1 ms time scale.
The dynamic properties of cooperative interactions of hydrogen bonding networks treated by TDR
measurements were not reflected in larger scale observation of diffusion coefficients caused by the
averaging effect [37]. The fractal analysis used in dielectric study is remarkably useful for evaluation
of water structures, especially for investigating how water molecules are coagulated and dispersed.

3. Conclusions

Restrictions of solvent molecule dynamics in PAAm gels were analyzed by TDR and PFG-NMR
measurements for mixed solvents of acetone–, 1,4-dioxane–, and DMSO–water. The restrictions could
be expressed by the scaling law with a scaling variable of the ratio between the size of solvent molecules
and the mesh size of the PAAm network. Suitable exponents were determined as unity and three for
the diffusion coefficient and the relaxation time, respectively. The fractal analysis suggests that the
water structure of polymer networks cannot be more homogeneous than those in polymer solutions.

4. Materials and Methods

4.1. Materials

The preparation of the poly (acrylamide) (PAAm) gel was following Tanaka et al. [1].
Acrylamide (5 g), N,N’-methylene-bis-acrylamide (0.133 g), ammonium persulfate (40 mg), and N,N,
N,N-tetra-methylethylene-diamin (TEMED) (240 µL) were dissolved in distilled and deionized water
(milli-Q system: Merck Millipore Japan Co., Ltd., Tokyo, Japan) to a final volume of 100 mL.
The solution was poured into glass tubes with a diameter of 7 mm. It appears to take approximately
2 h for gelation at room temperature. The gel was cut in the 10 mm column and immersed in
deionized water for 3 days to wash away residual acrylamide, bis-acrylamide, ammonium persulfate,
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and TEMED. The volume of the gels decreased with increasing the organic solvent composition and
volume phase transitions were observed. The aqueous solution of monomer, initiator, and reaction
accelerator was prepared and was put into a glass tube (length: 50 mm, diameter: 8 mm) and was kept
for 2 h. The gel was cut in the 10 mm column and immersed in pure water for 2 days to wash away
residual acrylamide, bis-acrylamide, and other impurities. The gels were immersed in the solvent of
various compositions.

Acetone, 1,4-dioxane, and dimethyl sulfoxide (DMSO) were used as organic solvent to decrease
the volume of the gels. The gels were placed in acetone–water and 1,4-dioxane–water mixtures with
those concentrations from 0 to 70 wt % at 10 wt% intervals. In addition, DMSO–water mixtures with
those concentrations from 0 to 100 wt % at same intervals.

In NMR measurements, the samples were cut out by cover glass and put into the aspirator tube
with outer diameter: 2.0 mm and the inner diameter: 1.4 mm. In the case of acetone and 1,4-dioxane
aqueous solutions, the size of samples obtained for more than 70 wt % organic solvent were too small
to make measurements.

4.2. Experimental Methods

4.2.1. Volume, Density, and Viscosity

The volume of the gel was calculated from diameter and length determined by caliper.
The diameter and length were averages of 5 times measurements. Density measurements for 10 wt %
organic solvent–water mixtures were performed at 25 ◦C by density meter DMA48 (Anton Paar,
Tokyo, Japan).

4.2.2. NMR Measurements

Nuclear magnetic resonance (NMR) was used to determine the diffusion coefficient.
The experiments were performed on a nuclear magnetic resonance spectrometer (EX-90, JEOL, Tokyo,
Japan), which was equipped with a pulsed field gradient spin echo (PFG-SE). Figure 13a shows the
pulse sequence used for PFG-SE NMR measurements. The principles of the PFG-SE technique have
already been reported in detail [32]. For the calibration of the gradient magnetic field strength, the
diffusion coefficient of Reference [41] was used. The temperature was controlled to 25.0 ± 0.2 ◦C.
The diffusion coefficients of the probe molecules are determined from the intensity of spin echo
signal [7]. The intensity of the spin echo signal, A, in the presence of the field gradient pulses is
expressed as follows:

A = A0exp
[
−γ2δ2G2

(
∆− δ

3

)
D
]

(10)

here, A0 is the echo amplitude in absence of the field gradient pulses, γ is the magnetogyric ratio of
the observed nucleus, δ is the duration of the field gradient pulse, 0.1~2.0 ms. G is the intensity of
pulse field gradient, 87 gauss/cm. ∆ is the time interval, 20 ms, between the leading edges of the field
gradient pulses, and D is the diffusion coefficient of the probe molecule, respectively.

Figure 13b shows an example of spin echo signal attenuation of two peaks, respectively, for water
and DMSO protons obtained at every 0.4 ms of δ between 0 and 2.0 ms. Each D value was obtained
from fitting procedures of the attenuation of normalized amplitude obtained at every 0.1 ms of δ

between 0.3–1.3 ms with Equation (10).
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4.2.3. Dielectric Measurements

TDR measurements were performed by digitizing oscilloscope (HP54120B, Agilent Technology,
Tokyo, Japan) and Four Channel Test Set (HP54124A, Agilent Technology) with a homemade open-end
coaxial electrode with an outer diameter of 2.2 mm. Contact of the open-end of the electrodes to the
surface of the gels offers a fringing field penetrating inside the gel and practical dielectric measurements.
Dielectric measurements of the solution were performed for solvent outside the gel. Applied voltage
was 200 mV and time ranges used were 50, 100, 200, 500, and 1000 ps/div. Temperature was controlled
by a homemade temperature jacket at 25.0 ± 0.5 ◦C.
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