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Abstract: Since its first clinical application, methotrexate (MTX) has been widely used for the
treatment of human diseases. Despite great advantages, some properties such as poor absorption,
short plasma half-life and unpredictable bioavailability have led researchers to seek novel delivery
systems to improve its characteristics for parenteral and oral administration. Recently, great attention
has been directed to hydrogels for the preparation of MTX formulations. This review describes the
potential of hydrogels for the formulation of MTX to treat cancer, rheumatoid arthritis, psoriasis and
central nervous system diseases. We will delineate the state-of-the-art and promising potential of
hydrogels for systemic MTX delivery as well as transdermal delivery of the drug-using hydrogel-
based formulations.

Keywords: methotrexate; drug delivery; hydrogels; cancer; rheumatoid arthritis; psoriasis

1. Introduction

Methotrexate (MTX) has been considered as a standard therapeutic agent for various
diseases including cancer and autoimmune diseases [1]. Regarding the potential effect
of folic acid antagonists in the treatment of childhood leukemia, two molecules were
synthesized as folic acid competitive inhibitors called aminopterin and amethopterin
(methotrexate, MTX). It was found that MTX is less toxic and more stable than its analogue
aminopterin. Therefore, it was first used for the treatment of acute leukemia in children [2].
Since the 1940s, the clinical applications of MTX has not been limited to treat various
neoplasms such as acute myeloid leukemia, osteosarcomas, non-Hodgkin’s lymphoma,
breast and bladder cancers [3–5]. The potential of MTX for rheumatoid arthritis was also
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approved in the mid-1980s. Currently, it is widely used for the treatment of Crohn’s
disease [6], multiple sclerosis (MS), myasthenia gravis (MG) [7] and psoriasis [8–10]. This
drug could also be used for termination of ectopic pregnancy [11]. Interestingly, MTX might
be considered as a prodrug since its polyglutamate form could be found in erythrocytes
after the clearance of parent molecule from plasma. The effect of such a derivative has been
studied for long-term therapy in children with juvenile idiopathic arthritis and juvenile
dermatomyositis [12,13]. This wide range of clinical applications of MTX is the result of the
various mechanisms by which this molecule affects different pathways and enzymes in the
cells. For example, dihydrofolate reductase (DHFR) could be inhibited by MTX due to the
structural similarities between folic acid and MTX. It has been shown that DHFR plays a
crucial role in the process of thymidylate synthesis. Therefore, its competitive inhibition by
MTX results in a decrease in purine and pyrimidine synthesis. This leads to the decrease in
cell proliferation particularly in immune cells including T lymphocytes. This mechanism
leads to the anti-inflammatory effect of MTX while the inhibition of de novo synthesis of
purine and pyrimidine results in the antineoplastic effects of MTX [2]. The other proposed
mechanism for MTX is its effect on cyclooxygenase and lipo-oxygenase enzymes which
have demonstrated a significant impact on the induction of inflammatory reactions. Some
studies are indicating that MTX can selectively inhibit COX-2 in the plasma of patients with
rheumatoid arthritis [14,15]. Altogether, the diverse pharmacological effects of MTX could
be considered as the result of different mechanisms and pathways affected by the drug.

Another important point which must be considered in the administration of MTX in
various diseases is its pharmacokinetic properties. Tremendous investigations have been
carried out to reveal the absorption and distribution of MTX as well as its metabolism
and excretion. MTX is actively absorbed following the oral administration. However, its
absorption profile is capacity-limited. In other words, the saturation of transporter of
reduced folates (RFC1) results in the decrease in MTX absorption following the increase
in initial doses [16]. Following oral administration of MTX, approximately 10% of the
drug is metabolized due to the first-pass effect in the liver. Once MTX reaches the blood
circulation, its plasma concentration rapidly reduces. This is the result of RFC1 activity
transferring the drug to the cells including erythrocytes, hepatocytes, synoviocytes as well
as white blood cells [17]. The major excretion route of MTX is urine while around 30%
of the medication is excreted through bile. Following the long-term administration of
MTX, its renal clearance decreases due to the increase of adenosine concentration in plasma
and consequent effects on the adenosine receptors in the kidney [18]. Following the oral
administration, inter-individual variability of MTX bioavailability has been reported [19].

Since MTX is used for various diseases via different routes of administration, the
development of novel drug delivery systems to improve its pharmacokinetic properties
and targetability is a necessary step for future investigations. Controlling the burst release
and the introduction of new routes of administration would be possible if the drug could
be formulated using different delivery systems [20–25]. Among various drug delivery
systems proposed for MTX delivery, great attention has been directed to hydrogels due
to their unique and attractive characteristics. These 3D polymeric structures with a great
tendency to biological fluids can absorb water leading to swelling. The porous network of
hydrogels and the controlling of the swelling process enable these structures to be used as
controlled drug delivery platforms. These properties have shown great benefits for MTX
delivery. Besides the advantages such as controlling the MTX release profile by hydrogels,
this delivery system could be used as an appropriate candidate for transdermal delivery
of MTX to treat various diseases including psoriasis. On the other hand, the minimally-
invasive and localized drug delivery could be possible using the injectable thermosensitive
hydrogels. These delivery platforms can facilitate the formation of syringeable solutions at
room temperature as well as gels at the physiological condition. This article aims to review
the potential application of hydrogels for MTX delivery. The latest developments in the
usage of hydrogel formulations of MTX for the treatment of rheumatoid arthritis, psoriasis,
cancer and CNS diseases have been discussed. Additionally, the transdermal delivery
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of MTX using hydrogel as well as the injectable MTX formulations based on hydrogel
platforms has been explained. In the end, the future perspectives for hydrogel-based
delivery platforms have been discussed.

2. Hydrogels: Types, Properties, and Biomedical Application

Hydrogels are polymeric networks in which their hydrophilic functional groups
provide swelling of the system by holding the water in their 3D network while cross-
linking of network chains resist to water dissolution [26,27]. The hydrogels are classified
based on the source to natural, semi-synthetic and synthetic polymers; however, synthetic
polymers can have higher water adsorption capacity, long service life, and gel strength
based on their monomers. The synthetic hydrogel more efficiently than natural ones can be
tailored and functionalized for the special target.

Noteworthily, they can be classified based on their composition to homopolymeric,
copolymeric, semi-interpenetrating polymer network (IPN), and multipolymer IPN hy-
drogels. In brief, homopolymeric and copolymeric are derived from a single and two or
more diverse monomer species with at least one part of the hydrophilic component. Semi
IPN and multipolymer IPN are composed of two independent cross-linked polymers; how-
ever, in semi IPN, one component can be non-cross-linked and just have one cross-linked
polymer [28]. Besides composition, a hydrogel can be categorized based on its configura-
tion to amorphous, semi-crystalline, and crystalline [29]. Based on their applications in
medicine, they can be categorized into implantable, injectable, sprayable and endogenously,
exogenously and bio-responsible triggered drug release hydrogels [30–32].

As mentioned earlier, the cross-linking of hydrogels is critical to avoid water dis-
solution. There are two types of chemical and physical cross-linking agents; physical
cross-linkers provide physical interactions and polymer chain entanglements [33]. By
altering the degree of cross-linking, the mechanical strength is modulated. However, they
may have different network electrical charge such as non-ionic (neutral), ionic, amphoteric
electrolyte (containing both acidic and basic groups), zwitterionic (containing both cationic
and anionic groups).

Several methods for the preparation of hydrogels include solution polymerization/
cross-linking, bulk polymerization, suspension polymerization or inverse-suspension
polymerization, grafting to support, and polymerization by irradiation (microwave and ul-
traviolet techniques), complex coacervation, hydrogen-bonding, enzymatic, self-assembly,
etc. In other words, polymeric hydrogels are prepared by polymerization of hydrophilic
components and or functionalization of existing polymers [26]. The hydrogel can respond
to physical and chemical environmental conditions. In other words, temperature, electric
and magnetic fields, light, pressure, and sounds are the physical stimuli responses [34–36].
At the same time, pH, ionic strength, solvent composition, and molecular species are
chemical stimuli responses that change the swelling or de-swelling extent of the hydrogel
in the form of volume collapse or phase transition [37–40]. These responses provide a
variety of applications.

Hydrogels can be used in diverse industries; for example, agriculture, artificial snow,
coal dewatering, sealing, contact lenses, hygiene products, pharmaceuticals, drug de-
livery systems, regenerative medicine [41,42], biomedical applications, wound dressing,
separation of cells and biomolecules, diagnostics, and biosensors [43–47].

Hydrogels in biomedical applications should be biocompatible. In other words, they
must be bio-safe and bio-functional. In the content of bio-functionality, it might be said
that the hydrogel should have the ability to function for the specific designed mission. This
context usually is important for tissue engineering and drug delivery applications [48].
There are many patents in the field of application of hydrogels in biomedicine, but just a
few of them have reached the market.

In 1971, the FDA approval for contact lenses of poly-2-hydroxyethyl methacrylate
(PHEMA) was issued. The method preparations for the soft contact lenses (hydrogel-
based lenses) are spin-casting, mold-casting, lathe-cutting, etc. However, the silicon-
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based hydrogel contact lenses are more favorable in the market due to more user-friendly
and higher oxygen permeability but suffer from protein deposition [49]. Besides vision
correction, they can act as a drug reservoir for eye diseases. For example, by incorporating
drug- colloidal structures, ligand, and multilayer including hydrogels in the contact lenses
can deliver H1-antihistamines in a time-dependent manner. Furthermore, hydrogels may
be applied for wound dressing application. An ideal wound dressing should adsorb the
toxin and exudates, preventing infection and extra heat while providing gas penetration
and wettability. In 1994, the transparent thin film of wound dressing was patented by
Cartmell and Sturtevant. It was made from polypropylene glycol or polyethene glycol,
and isophorone diisocyanate [50]. However, later, others added other material such as the
antibiotic and wound healing agents.

Moreover, hydrogels owing to their porous structure, can load drugs and sustain re-
lease them into the environment. The mechanisms behind the release of drugs by hydrogels
are environmentally-responsive release and chemically, diffusion, and swelling controlled
release [51]. One of the successful products is vaginal insert Cervidil. It is made from
polyethene oxide/urethane polymer and is containing 10 mg dinoprostone in 1995 [52].
The following section explains the MTX delivery by the hydrogel-based structures.

3. Hydrogels for Methotrexate Delivery

Hydrogels of various compositions of synthetic and natural components have been
widely investigated for MTX delivery systems [53–57]. Major properties addressed to
hydrogels for MTX delivery are thermo-stability and sustained release of a drug in vivo.
Both features can be modified and are controlled according to chemical crosslinking, the
addition of nanostructures, for instance, carbon nanotubes, or applying various additional
stimuli, such as temperature, electric potential, ionic strength, and pH [56,58].

Thermo-stability is achieved when a solution of a hydrogel changes its state from
the liquid solution to gel after injecting it in vivo upon the stimulation of a body tem-
perature. Thermo-stable hydrogels have been tested in different diseases in vivo, for
instance, osteosarcoma, rheumatoid arthritis, and ocular inflammatory diseases [54,59–62].
Controlled release of MTX depends on the biodegradability of a hydrogel in vivo. Chi-
tosan is mostly favourable natural polymer for thermosensitive hydrogel formation, as it
possesses antibacterial, biocompatible and biodegradable properties [56,63]. One of the
examples of the commercially available chitosan hydrogels (ChitoClear®) was used for
hydrogel-nanoparticle system preparation with MTX by ionotropic gelation technique.
These hydrogels have been tested for stability during electron bombardment in transmis-
sion electron microscopy, which resulted in perfect stability of a hydrogel system with
specific drug release kinetic [64]. Modification of chitosan hydrogels with black phospho-
rus nanosheets (BPNs) also provided promising results in a case of rheumatoid arthritis.
These systems combined BPNs with platelet-rich plasma (PRP)-chitosan thermoresponsive
hydrogel, where BPNs could generate local heat in response to infrared irradiation and
provide raw materials for osteanagenesis. PRP effectively improved adhesion and capacity
of mesenchymal stem cells to chitosan hydrogels, which can serve as additional protection
for articular cartilage [59].

Chitosan and hyaluronic acid (HA) have been extensively studied in hydrogel systems
due to their biodegradability and biocompatibility. HA conjugated with MTX (HA-MTX)
systems have been tested in vivo arthritis models, psoriasis [65–67]. Therefore, hydrogels
developed for sustained release of MTX are promising in different disease areas and provide
more advantageous properties as compared to direct injection of MTX to diseased tissues,
or oral consumption.

3.1. Transdermal Methotrexate Delivery

There are various strategies to deliver therapeutics for human diseases therapy. Oral,
rectal, ocular, vaginal, and transdermal routes are considered to design the drug delivery
systems. Hydrogels possessing unique properties widely used for transdermal drug
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delivery [68–70]. Recently, microneedles are considered as an enhanced delivery technique
and applying this method for transdermal drug delivery provides a promising alternative
to previous methods [71]. It is well established that balance between drug loading and
mechanical strength of the microneedle is important. Hydrogel-forming microneedles
making by biocompatible, non-ionic triblock amphiphilic thermosensitive copolymer, could
pass these barriers. Drug delivery from these microneedles can be controlled by altering
the crosslink density of the polymer [72].

Transdermal delivery presents an attractive alternative administration route [73].
However, MTX passive permeation through the skin is hindered by the skin barrier and
MTX physicochemical properties. In the recent study by Tekko et al. [74], they developed
a novel hydrogel-forming microneedle arrays (HFMN) and a patch-like reservoir loaded
with MTX (MTX-RV). Both the HFMN and MTX-RV were completely characterized and
then combined to form an integrated patch. Their results showed the MTX-RV incorporated
a high dose of MTX (150.3 ± 5.3 µg/mg) without any precipitation. Eventually, they could
develop a promising minimally invasive transdermal drug delivery system that could
overcome the skin barrier and deliver MTX in a sustained manner (Figure 1).
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Figure 1. (a) Schematic representation of preparation procedures for hydrogel-forming microneedle
arrays (HFMN). PVA-based polymeric blends (green) and MTX (yellow). (b) Experimental setup
for measuring the mechanical strength of HFMN. (c) Schematic diagram for the experimental setup
for the ex vivo permeation studies. (d) The experimental setup for the in vivo study, where two
integrated patches were applied to the back of the rat and MTX aqueous solution administered
orally. (e) Microscopic images of HFMN-F10 before insertion into skin, the black scale bar represents
a length of 0.5 mm. (f) Swollen intact HFMN-F10 after removing from rats skin following 24 h
application. (g) Digital images showing the micro holes created by HFMN in rats skin immediately
after HFMN removal and that no irritation at the application site but only mild erythema. (h) The
microholes visibly closed after 30 min from removing the HFMN. (i) The microholes cannot be
identified visibly after 2 h from removing the HFMN. (j) No sign of infection (redness, swelling, pus,
oozing or weeping) at the application site even after 24 from removing the HFMN. [74]. Reprinted
with the permission from International Journal of Pharmaceutics. Copyright Elsevier, 2020.
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Additionally, Sivaraman et al. [75] developed a novel in situ forming hydrogel mi-
croneedles using a biocompatible non-ionic triblock amphiphilic thermosensitive copoly-
mer. MTX delivery using the prepared microneedles was evaluated in the porcine ear
and dermatomed human skin. The results showed the sol-gel transition in the porated
site of the skin at 32 ◦C and the in situ formed hydrogel microneedles embedded within
the microporated skin site. The formulation provided a steady and sustained delivery of
MTX. Likewise, Alvarez-Figueroa et al. [76] studied MTX transdermal administration for
treatment of psoriasis by iontophoretic delivery from two types of hydrogel and passive
delivery from two types of the microemulsion. For passive delivery assays, they used both
water/oil and oil/water microemulsions. The effectiveness of the delivery system was
higher from oil/water systems. At the end of all assays, they could find that significant
amounts of MTX were detected in the skin. Therefore, they concluded that both hydrogels
and microemulsions may be of value for the topical administration of MTX in the treatment
of psoriasis.

3.2. Injectable Hydrogels for Methotrexate Delivery

Low molecular weight injectable hydrogels, due to their inherent biocompatibility
and physical properties, are considered advantageous over pre-formed implants because
of their minimal invasiveness. These injectable hydrogels can be delivered into the body
through a catheter or by direct injection via syringe [77,78]. Injectable thermosensitive
hydrogels undergo a sol-gel phase transition in response to temperature change [79] and
facilitate syringeable solution at room temperature and gelling at physiological temperature
followed by minimal invasion and localized release of drug at the desired site of action. The
enhanced gelation under a biological environment and thereby improved overall biological
performance of a hydrogel is a significant factor for this purpose. For this, both natural and
synthetic polymers have been used to control the delivery of drugs in various biomedical
applications [80,81]. However, the burst release of the drug prevents the clinical application
of such type of hydrogels. Therefore, Dang et al. prepared CS-based microspheres (CMs)
and developed a double-component injectable system by incorporating CMs into CS-
α,β-glycerophosphate hydrogel (CS-HG) to eliminate this limitation [82]. CMs-CS-HG
exhibited excellent injectability and drug-loaded CMs led to the localized release of the
drug. Further, both in vitro and in vivo MTX release analyses showed long-term sustained
release of MTX from MTX-loaded CMCs-CS-HG. Here, double-component CMs-CS-HG
sol was easily be injected into dorsal subcutaneous tissue. For comparative analysis,
three separate injections of NaCl solution, CMs suspension, and CMs-CS-HG sol were
used. After injection, CMs-CS-HG sol was observed to show quick gel formation (i.e.,
oval-shaped protrusions) at physiological temperature environment. Further, HE staining
also confirmed this semi-solid gel formation at the site of injection, whereas diffusion
of CMs throughout the subcutaneous tissue. However, after injection, no macroscopic
inflammation was observed in all three groups around injected-site. Moreover, the obtained
double-component CMs-CS-HG maintained excellent injectability, biocompatibility, and
prolonged drug release time as compared to the single component CMs or CS-HG.

In another study, Nutan et al. reported on the formulation where gold nanoparticles
(AuNPs) accelerated rapid formation of injectable nanocomposite hydrogels in vitro and
in vivo with enhanced modulus, cell attachment, cell proliferation, and cytocompatibility
compared to pristine hydrogel system. These Au (0.19) NPs-based nanocomposite hydro-
gels showed sustained co-release of MTX (anti-rheumatic arthritis drug) and AuNPs [83]
over an extended time duration (see Figure 2b,d), whereas a burst-release leading to a
sustained release of MTX was observed from pristine hydrogel (see Figure 2c,d). Further,
MTX drug release was faster than that of AuNPs and this was due to the relatively slow
diffusion of hydrated NPs as compared to a low-molecular-weight drug (see Figure 2d).
Moreover, this slow and sustained release ability is attributed to low swelling behavior,
high crosslinking density, and low degradation rate of the nanocomposite hydrogel.



Gels 2021, 7, 2 7 of 20

Gels 2021, 7, x FOR PEER REVIEW 7 of 20 
 

 

diffusion of hydrated NPs as compared to a low-molecular-weight drug (see Figure 2d). 

Moreover, this slow and sustained release ability is attributed to low swelling behavior, 

high crosslinking density, and low degradation rate of the nanocomposite hydrogel. 

 

Figure 2. (a) Schematic illustration and digital photographs of the hydrogel formation (prepolymer 

solution = 7.5% w/v). The vials were inverted after a certain time for recording the photographs. (b,c) 

Lowering of UV-Vis spectra intensity of entrapped methotrexate (MTX) and AuNPs (λmax = 514 

nm) with incubation period. (d) Cumulative release (%) of MTX and AuNPs with incubation period 

(at pH 7.4). (e,f) Injection of a prepolymer containing no NPs and Au(0.19) NPs [83]. Reprinted with 

the permission from Biomacromolecules. Copyright American Chemical Society, 2020. 

It is known that 5-Fluorouracil (5-FU) as a model cytotoxic drug (i.e., anticancer drug) 

exhibits poor selectivity to the cancer cell and its systematic administration exposes nor-

mal cells to drug-induced toxicity through oral or injection process. Therefore, Moham-

med et al. developed CS-based thermosensitive hydrogels loaded with 5-FU and cross-

linked with various agents such as β-glycerophosphate (β-GP), pluronic F127, and hy-

droxyapatite. In addition, MTX was added to 5-FU to obtain the synergistic effect of both 

drugs. CS-based hydrogel crosslinked with β-glycerophosphate and 10% pluronic F127 in 

combination exhibited the most suitable physicochemical properties and release behavior 

[63]. Carbon nanomaterials have also been applied to various drug delivery systems and 

cancer/tumor therapies. In this way, carbon nanotubes (CNTs) were incorporated into a 

thermosensitive and injectable hydrogel composed of CS and β-GP. The developed hy-

drogel loaded with MTX (CS-β-GP-CNT-MTX) was a syringeable solution at room tem-

perature and became a solidified gel at physiological temperature (i.e., body temperature). 

Figure 2. (a) Schematic illustration and digital photographs of the hydrogel formation (prepolymer
solution = 7.5% w/v). The vials were inverted after a certain time for recording the photographs. (b,c)
Lowering of UV-Vis spectra intensity of entrapped methotrexate (MTX) and AuNPs (λmax = 514 nm)
with incubation period. (d) Cumulative release (%) of MTX and AuNPs with incubation period (at
pH 7.4). (e,f) Injection of a prepolymer containing no NPs and Au(0.19) NPs [83]. Reprinted with the
permission from Biomacromolecules. Copyright American Chemical Society, 2020.

It is known that 5-Fluorouracil (5-FU) as a model cytotoxic drug (i.e., anticancer drug)
exhibits poor selectivity to the cancer cell and its systematic administration exposes normal
cells to drug-induced toxicity through oral or injection process. Therefore, Mohammed et al.
developed CS-based thermosensitive hydrogels loaded with 5-FU and crosslinked with
various agents such as β-glycerophosphate (β-GP), pluronic F127, and hydroxyapatite. In
addition, MTX was added to 5-FU to obtain the synergistic effect of both drugs. CS-based
hydrogel crosslinked with β-glycerophosphate and 10% pluronic F127 in combination
exhibited the most suitable physicochemical properties and release behavior [63]. Carbon
nanomaterials have also been applied to various drug delivery systems and cancer/tumor
therapies. In this way, carbon nanotubes (CNTs) were incorporated into a thermosensitive
and injectable hydrogel composed of CS and β-GP. The developed hydrogel loaded with
MTX (CS-β-GP-CNT-MTX) was a syringeable solution at room temperature and became
a solidified gel at physiological temperature (i.e., body temperature). Hydrogels having
0.1% CNT were not toxic to 3T3 cells and demonstrated a reduced release rate of MTX
as compared to control hydrogel (without CNT). Furthermore, the CS-β-GP-CNT (0.1%)-
MTX hydrogel system improved the MTX antitumor activity [56]. Graphene NPs (GNPs)
having unique optical, electrical, and mechanical properties demonstrated good potential
in drug delivery applications. MTX loaded CS/GNPs-based thermo-sensitive injectable
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hydrogels could easily deliver anticancer activity of MTX as a locally targeted and sustained
chemotherapy through a simple injection. It exhibited a slow and more controllable release
of MTX compared to control. MTX loaded CS/GNPs hydrogels could inhibit the growth of
breast cancer cells [84].

Intra-articular delivery of drugs at the joints directly is a promising approach to
reduce undesirable side effects that are associated with systematic delivery of drugs.
Miao et al. prepared an injectable thermosensitive poly (ε-caprolactone)-poly (ethylene
glycol)-poly(ε-caprolactone) (PCL-PEG-PCL) (PEP) hydrogels for controlled delivery of
MTX for intra-articular drug delivery for treating arthritis disease. The synthesized PEP
copolymers aqueous solutions showed rapid in-situ gel after the injection and exhibited
good biocompatibility. The results showed controlled release of loaded MTX from PEP
network and following to intra-articular injection, PEP hydrogels reduced the clearance
rate of MTX in the joint cavity [85]. In another study, MTX-loaded nanostructured lipid
carrier (NLC)-based injectable smart gel for effective rheumatic disease treatment. The
optimized NLC-based gel (F-10) was found thermo-sensitive and showed a 92.41% drug
release at 108 h. Further, MTX was homogeneously distributed in this optimized gel
and showed injectability through 18 gauze-syringe needles. Moreover, MTX-NLC based
smart gel exhibited a significant reduction in rat joint swelling during 28 days [86]. In a
recent study, MTX was formulated with hydroxypropyl methylcellulose K4M (HK4M),
polycarbophil (PCL), and pluronic F-127 and this developed in-situ thermoresponsive
and injectable gel (M4) exhibited 93.26 ± 2.39% release of MTX at 96 h. Additionally, the
gel was biocompatible at the injection site and in vivo analyses on Wistar rats showed a
considerable decrease in paw oedema during 28 days [87].

4. Methotrexate-Loaded Hydrogels for Arthritis Therapy

MTX is a first-line disease-modifying drug proposed for treating the inflammatory
forms of arthritis [88]. Rheumatoid arthritis (RA) and osteoarthritis (OA) are one of the
leading forms of arthritic diseases, causing global disability [89], where RA is a chronic
autoimmune disease and OA has been considered as a load-bearing disease, with low-
grade inflammation [90–92]. MTX is the initial preferred drug for rheumatic diseases
and is considered to be the gold standard for treatment of RA, used for more than three
decades [93], however, it has been also proposed for treating OA [94]. MTX efficiently
reduces pain, swelling and slows down the arthritic disease progression [90].

Oral administration hampers MTX efficacy by poor solubility, short plasma half-life
and might cause gastrointestinal toxicity, which is therefore being changed to parenteral
administration [88,95]. MTX-carrying hydrogel systems are more potential than the direct
injection, as MTX release can be controlled, enabling its prolonged effects. For instance,
thermo-sensitive hydrogels, composed of disulfide-crosslinked polyethyleneimine (PEI-SS)
nanoparticles loaded with MTX and indomethacin were injected into rat collagen-induced
RA knees, demonstrated significant reduction of joint swelling, bone resorption and in-
flammatory cytokine expression after the controlled release of both drugs, as compared to
single MTX/indomethacin injections [96]. Additionally, same hydrogels were additionally
modified by incorporating small interfering RNAs (siRNA), targeting matrix metallo-
proteinase 9 (MMP-9), which is involved in extracellular matrix degradation [97]. After
intra-articular injection into arthritic mice, hydrogels effectively reduced joint swelling,
expression of MMP-9 and even restored morphological parameters of joint close to nor-
mal [98]. Furthermore, HA–MTX conjugates are popular due to specific HA binding to
CD44 in macrophages, which prevents severe inflammation in RA mice and are considered
promising therapeutic agents for RA [99]. As an example, high molecular weight product
DK226, consisting of both HA and MTX has shown promising, anti-arthritic effects in
rat RA model, by reducing the swelling and synovial inflammation was proposed not
only for treating RA but also OA [66]. Another hydrogel system proposed for MTX de-
livery contained click-crosslinked HA (Cx-HA) depots, which were cross-linked between
tetrazine-modified HA and trans-cyclooctene-modified HA. These hydrogels demonstrated
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efficient delivery of MTX into rat RA joints. They persist at the joint site, as compared to
MTX alone or HA-MTX, maintain therapeutic MTX concentrations for an extended period
and significantly restored RA-affected joints [65].

In addition to intra-articular injection, MTX-carrying hydrogel systems are also being
applied trans-dermally. Different lipid-based systems have been suggested as MTX carriers,
however, they exhibited poor stability [100,101], therefore, additional carriers have been
developed. For instance, MTX-loaded aspasomes exhibit high drug entrapment efficiency
with controlled release and adequate drug permeation in the trans-dermal application.
The developed aspasomes were prepared using carbopol, loaded with MTX and used
for arthritic rats, has revealed reduced paw diameter, cartilage damage, inflammation, as
compared to arthritic control rats [55]. Moreover, nano micelles are also potent carriers
for MTX. Polycaprolactone-polyethylene glycol-polycaprolactone (PCL-PEG-PCL)-based
self-assemble nanomicelle carrier system, prepared by nanoprecipitation technique for
MTX delivery has shown promising results in RA mice model. It was shown that after
loading nano micelles into the carbopol-934 hydrogel, together with eucalyptus oil for
better penetration, resulted in higher accumulation of nano micelles in the inflamed tissues,
as well as reduction of inflammatory cytokine expression (Figure 3) [57]. Transdermal
approaches are attractive as non-invasive treatment with reduced side effects and MTX-
related toxicology. Therefore, hydrogel systems for MTX delivery have become one of the
most potential spheres for local drug delivery in RA joints, without affecting other tissues.

Gels 2021, 7, x FOR PEER REVIEW 9 of 20 
 

 

product DK226, consisting of both HA and MTX has shown promising, anti-arthritic ef-

fects in rat RA model, by reducing the swelling and synovial inflammation was proposed 

not only for treating RA but also OA [66]. Another hydrogel system proposed for MTX 

delivery contained click-crosslinked HA (Cx-HA) depots, which were cross-linked be-

tween tetrazine-modified HA and trans-cyclooctene-modified HA. These hydrogels 

demonstrated efficient delivery of MTX into rat RA joints. They persist at the joint site, as 

compared to MTX alone or HA-MTX, maintain therapeutic MTX concentrations for an 

extended period and significantly restored RA-affected joints [65]. 

In addition to intra-articular injection, MTX-carrying hydrogel systems are also being 

applied trans-dermally. Different lipid-based systems have been suggested as MTX carri-

ers, however, they exhibited poor stability [100,101], therefore, additional carriers have 

been developed. For instance, MTX-loaded aspasomes exhibit high drug entrapment effi-

ciency with controlled release and adequate drug permeation in the trans-dermal appli-

cation. The developed aspasomes were prepared using carbopol, loaded with MTX and 

used for arthritic rats, has revealed reduced paw diameter, cartilage damage, inflamma-

tion, as compared to arthritic control rats [55]. Moreover, nano micelles are also potent 

carriers for MTX. Polycaprolactone-polyethylene glycol-polycaprolactone (PCL-PEG-

PCL)-based self-assemble nanomicelle carrier system, prepared by nanoprecipitation 

technique for MTX delivery has shown promising results in RA mice model. It was shown 

that after loading nano micelles into the carbopol-934 hydrogel, together with eucalyptus 

oil for better penetration, resulted in higher accumulation of nano micelles in the inflamed 

tissues, as well as reduction of inflammatory cytokine expression (Figure 3) [57]. Trans-

dermal approaches are attractive as non-invasive treatment with reduced side effects and 

MTX-related toxicology. Therefore, hydrogel systems for MTX delivery have become one 

of the most potential spheres for local drug delivery in RA joints, without affecting other 

tissues. 

 

Figure 3. (a–e) Visual representation of skin irritation is shown in the second row of four different 

treatments, that is, (a) normal control (no treatment), (b) 0.8% formalin treated as a negative control, 

(c) free MTX-loaded hydrogel, (d) free MTX-loaded hydrogel with EO, and (e) MTX-NMs along 

with EO-based hydrogel. (f–i) Photographs of representative mice hand paws among the four treat-

ment groups (plantar view). (j–m) X-ray images of hind paws among the different treatment groups. 

(j) normal control (not immunized with CFA and treated with normal saline), (k) negative control 

(immunized with CFA and treated with normal saline), (l) rheumatoid arthritis (RA) mice model 

treated with free MTX-based hydrogel, and (m) RA mice model treated with MTX-NMs + EO-based 

Figure 3. (a–e) Visual representation of skin irritation is shown in the second row of four different
treatments, that is, (a) normal control (no treatment), (b) 0.8% formalin treated as a negative control,
(c) free MTX-loaded hydrogel, (d) free MTX-loaded hydrogel with EO, and (e) MTX-NMs along with
EO-based hydrogel. (f–i) Photographs of representative mice hand paws among the four treatment
groups (plantar view). (j–m) X-ray images of hind paws among the different treatment groups.
(j) normal control (not immunized with CFA and treated with normal saline), (k) negative control
(immunized with CFA and treated with normal saline), (l) rheumatoid arthritis (RA) mice model
treated with free MTX-based hydrogel, and (m) RA mice model treated with MTX-NMs + EO-based
hydrogel [57]. Reprinted with the permission from ACS Nano. Copyright American Chemical
Society, 2020.
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5. Methotrexate-Loaded Hydrogels for Psoriasis Therapy

The first investigation on the application of folic acid antagonist for the treatment of
psoriasis was reported in 1958, where the low doses of aminopterin led to a significant
improvement in the patients with psoriasis [102]. However, the wide clinical application of
MTX for its anti-inflammatory effects was reported in the 1980s [12]. Psoriasis could be de-
fined as an inflammatory autoimmune disease which affects skin resulting in the formation
of lesions in several parts of the body including elbows, knees, scalp and back. Various
types of cells and immune mediators are involved in the progression of the disease. For
example, autoantigens such as LL-37 peptide are secreted from keratinocytes leading to the
activation of T cell lymphocytes and dendritic cells. This activation results in the secretion
of various cytokines including IL-17, IL-20, IL-22, IL-23 and IFN-γ which promotes the
proliferation of keratinocytes [103–105]. To control the diverse immune cascades associ-
ated with the progression of the disease, the different drug has been suggested including
immunosuppressant and corticosteroids. These medications could be used as systemic
or topical dosages forms. However, the systemic administration of such medications is
limited to the severe cases not responding to topical treatments [106,107]. In addition
to the above-mentioned drugs, oral or parental forms of MTX have also been adminis-
trated for severe cases of plaque psoriasis. The application of MTX for severe psoriasis
not responding to other treatments has been approved by FDA and EMA [108]. Although
great achievements have been observed following the administration of MTX in patients
with psoriasis, there are some concerns regarding its long-term application in terms of
drug resistance. In addition, variable adsorption and fluctuations in bioavailability as well
as non-selective toxic activity in high doses have led researchers to seek topical dosage
forms for psoriasis treatment [109]. Various types of formulations have been developed for
topical administration of MTX including liposomes, nanogels [110,111], nanostructured
lipid carriers as well as hydrogels [112,113]. For example, Ali and colleagues prepared a
liposomal MTX hydrogel from DPPC, soy PC, egg yolk PC, and cholesterol and tested the
formulation either topically or as targeted delivery [112]. The gel formulation was used
every day followed by the irradiation from a 650 nm diode laser for 3 months in albino
mice. The results revealed that this formulation of MTX hydrogel was useful for psoriasis
treatment and did not lead to systemic toxicity. In another study conducted by Katare
group [109], microemulsion based MTX hydrogel was prepared and evaluated in ex vivo
and in vivo models. The results indicated that the formulation is able to deliver MTX at
the desired layers of the skin with reduced systemic toxicity [109]. In another investigation,
the effectiveness and adverse reactions of a topical MTX (0.25%) preparation in a hydrogel
base were evaluated in the patients suffering from palmoplantar psoriasis [114]. Although
the formulation was well tolerated, the effectiveness in controlling the lesions was not
significant. Therefore, higher drug concentrations as well as modification of formulation
were suggested for better clinical results [114]. Recently, nanostructured supramolecular
hydrogels using dicationic imidazolium-based amphiphile was prepared as topical formu-
lation for psoriasis treatment [115]. The results of ex vivo study demonstrated successful
skin permeation of the drug and its retention inside the target site. In vivo experiments
indicated that this formulation decreases the hyperplasia and tissue damage more that the
formulations such as solutions (Figure 4) [115]. Altogether, hydrogels could be considered
as suitable candidates for topical delivery of MTX.
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6. Methotrexate-Loaded Hydrogels for Cancer Therapy

Cancer is the second leading cause of death after cardiovascular worldwide, which
accounts for millions of deaths every year [116] Although significant progress has been
achieved in the cancer treatment field, numerous issues must be addressed to improve
cancer therapy [117]. Scientists across the globe are working hard day and night in devel-
oping efficient therapies to overcome the problems concerning the existing conventional
therapies [118]. Numerous technologies are currently undertaking clinical trials, and some
have already been introduced into practice [119].

Nanomedicine contributes a great impact on the development of biocompatible nano-
materials for diagnostic and therapeutic purposes [120–122]. Among several platforms,
hydrogels possess their role in the drug delivery field in several diseases, including can-
cer [78,123,124]. Due to recent advances in hydrogel-based drug delivery systems, this
field is getting more and more attractive to exploring further [125]. Hydrogels provide a
vast range of benefits in drug delivery applications, such as easy preparation, improved
high local drug concentration at the tumor site, prolonged drug retention time, reduced
drug dose in vivo, good biocompatibility, and improved patient compliance [126,127].

MTX is an anticancer and immunosuppressive drug used to treat breast, blood, bone,
lung, head, neck cancer, osteosarcoma, and treat rheumatoid arthritis psoriasis [60,128,129].
However, its poor water solubility and side effects limit its usage in the clinic. Hence,
several scientists developed MTX loaded hydrogel to improve solubility and lower the
side effects and treat cancer [61,130]. For example, a novel MTX and alendronate co-
loaded mPEG45–PLV19 containing thermosensitive hydrogel was developed by scientists,
demonstrating synergistic inhibition osteosarcoma with sustained release of drugs [131].
In another study, investigators developed in situ MTX loaded gelatin and poly(vinyl)
alcohol (Gel/PVA) hydrogel and used to treat colorectal disorders [132]. Similarly, Ma et al.
developed a new approach of multiple drugs (doxorubicin, cisplatin, and MTX) co loaded
thermosensitive PLGA-PEG-PLGA hydrogels for the localized treatment of osteosarcoma
(Figure 5). Subsequently, a single dose injection of these multiple drug-loaded hydrogels
into Saos-2 bearing human osteosarcoma displayed superior tumor growth inhibition.
Importantly these multiples drug-loaded hydrogels did not show any toxicity in the mice
body change. The histopathological examination of the major organs directed that the
localized treatments showed no apparent damage to the normal organs and less systemic
toxicity [133]. Further, scientists prepared MTX loaded hydrogel using PAAm-g-Gg (gum
ghatti) polymer, which was successfully synthesized by free radical polymerization. This
MTX loaded hydrogel protects from premature release and allows the MTX release at the
desired site. Therefore, these gum ghatti hydrogel NPS are the prospective system for colon
delivery of MTX for colon cancer chemotherapy [134].
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Figure 5. (a) Schematic illustration of the localized and sustained co-delivery of DOX, CDDP, and
MTX using PLGA-PEG-PLGA hydrogels for synergistic treatment of tumor. (b,c) Cytotoxicity of the
hydrogels containing the single drug or multiple drugs against Saos-2 or MG-63 cells, after incubation
for 48 h. (d) Tumor weights obtained from the BALB/c nude mice bearing human osteosarcoma
Saos-2 xenografts after single injection to the vicinity of the tumors at day 16. Data were presented as
mean ± standard deviation (n = 6). (* p < 0.05, ** p < 0.01) [133]. Reprinted with the permission from
ACS Applied Materials & Interfaces. Copyright American Chemical Society, 2015.

Recently, electric-field sensitive hydrogels are of great interest for several investigators
from the features of their usage in numerous biomaterials applications. These hydrogels
were able to control drug release under voltages, which offers enormous benefits for the
drug delivery systems [135]. Similarly, MTX, rhodamine B co-loaded and near-infrared
stimulated hybrid hydrogel patches were developed using alginate (Alg), polyacrylamide
(PAAm), for thermoresponsive MTX delivery [136]. Scientists developed a sensitive, rapid
method for measuring MTX in biologic fluids using hydrogels based solid-phase radioim-
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munoassay. From this method, the authors can measure drug concentrations of less than
1 ng/mL [137].

Hybrid hydrogels from the magnesium oxide and natural polymer-based copolymer
of acrylic acid (AAc) and xanthan gum (Xan) were prepared using radiation-induced
copolymerization cross-linking procedures and used as a drug delivery system. Integration
of MgO into (Xan-AAc) hydrogel improved the drug loading efficiency and enhanced the
(MTX) release to reach the maximum in the simulated intestine with a sustained drug
release profile [138]. Both psyllium and MTX possess anticancer natures, and psyllium
can be appropriately tailored to prepare the hydrogels. So, researchers used psyllium for
developing the hydrogels for delivery of MTX in a sustained and controlled manner [139].

A novel hydrogel was prepared for the local delivery of multiple antineoplastic agents
(MTX, doxorubicin, and mitoxantrone), demonstrating the different release types. Here the
authors chemically modified alginate into low molecular weight oligomers and cross-linked
with a biodegradable adipic dihydrazide spacer, which ultimately forms biodegradable
hydrogels. MTX, doxorubicin, and mitoxantrone (a three-model drug system) were loaded
into the hydrogel through three mechanisms. MTX was integrated within the hydrogel
pores, which was released by diffusion. Doxorubicin was chemically added to the polymer
backbone using a hydrolytically labile linker, which was released by chemical hydrolysis.
Finally, mitoxantrone was ionically complexed to polymer, was released with disconnec-
tion of the complex. Hence, these three release mechanisms could potentially deliver a
wide range of drugs based on their chemical structure [140]. Another study, researchers
developed and characterized MTX loaded de-esterified tragacanth-chitosan hydrogels as
a novel carrier to improve drug efficacy and targetability [141]. Similarly, MTX-loaded
pH-responsive magnetic hydrogel beads based on Fe3O4 nanoparticles and chitosan were
prepared through a very facile, economical and environmentally friendly one-step gelation
process. MTX-encapsulated magnetic chitosan hydrogel beads showed good cytocompati-
bility and high anti-tumor activity [142]. In summary, MTX-loaded hydrogels showed their
potentials for the treatment of cancer.

7. Methotrexate-Loaded Hydrogels for Central Nervous System Diseases Therapy

The mechanistic roles on MTX-loaded chitosan-based hydrogel nanoparticles intended
for central nervous system (CNS) drug delivery were considered in studies. Previous
studies showed that Chitosan-based hydrogel nanoparticles could provide a higher concen-
tration of MTX in the brain. Jahromi et al. [143] demonstrated that following administration
of MTX containing chitosan nanogel intravenously, spherical nanogels (mean diameter of
<200 nm), zeta potential (22.8 ± 6.55 mv), Loading efficiency (72.03 ± 0.85), and loading
capacity (1.41 ± 0.02) produce a considerably higher brain concentration compared with
the simple solution. They give one group a verapamil dose 30 min before MTX. They could
show a higher brain concentration of MTX in this group. Moreover, they could display that
less than one hour after drug administration, nanogels can help MTX passage like “Trojan
horse effect”. It can provide a high concentration of drug in contact with the blood–brain
barrier (BBB). It has to be noticed that during the extended time, this nanogel could cross
the BBB and release a substance beyond that.

Drug delivery to the NS has always been a big challenge, particularly for MTX because
of the poor BBB passage. Recent studies have been done on intranasal drug administration
for brain drug delivery intentions. This is because this method of drug administration is
noninvasive, being independent of blood and the gastrointestinal tract. By this method of
administration, therapeutic agents can bypass the BBB and hepatic first-pass effect, which
ultimately leads to a low dose of the drug and fewer side effects.

Recently, applying MTX-loaded hydrogel nanoparticles via intranasal delivery was
studied by means of survey. Jahromi et al. [144] showed that for the treatment of primary
CNS lymphoma, MTX-loaded hydrogel nanoparticles produced a significantly higher
concentration of MTX in the brain but not in the plasma when compared to the free drug
solution. Drug targeting efficiency and direct transport percentage for nanogel (as a test)
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and free drug solution (as control) were 424.88% and 76.46% and 34,842.15% and 99.71%,
respectively. In comparison to intravenous administration of the same nanogel, it was
indicated that intranasal administration significantly increases the brain concentration
of MTX.

8. Conclusions and Future Perspectives

MTX has been widely used for the treatment of cancer as well as inflammatory and
CNS diseases. Various drug delivery platforms have been proposed for MTX including
hydrogel-based formulations. This delivery system provides a substantial opportunity to
overcome some major drawbacks of MTX administration such as its low bioavailability,
dose-dependent adverse reactions and resistance following the long-term applications.
The specific properties of hydrogels enable this system to release MTX in a controlled
manner. In addition, the injectable hydrogel is promising formulations for the preparation
of parenteral controlled delivery of MTX. Additionally, the hydrogel formulation of MTX
could be considered as a brilliant approach for transdermal delivery to reduce the side
effects associated with the systemic administration. On the other hand, the hydrogel
formulation of MTX opens up new horizons for novel routes of administrations.

However, several major points must be considered for further developments of hydro-
gels. The drug release rate, cross-linking degree and loading efficiency could be controlled
through different cross-linking chemistries as well as preparation methods. In other words,
the improvements of MTX novel formulations based on hydrogel platforms need more
precise adjustments in their preparation procedures. Non-immunogenic and biocompatible
materials for the preparation of hydrogel-based formulations are a critical prerequisite
for their further clinical translation. In another words, only the formulations prepared
by biocompatible starting materials via simple and well-established chemistry have the
chance for clinical applications. Additionally, batch-to-batch reproducibility and scalable
production method guarantee their large-scale production in a well-controlled and high
throughput manner. Another critical issue in the hydrogel formulations of MTX is the
delivery of an active compound to the precise site of action. This highlights the functional-
ization of hydrogels with targeting ligands. MTX has shown pharmacological activity in
different cells through various mechanisms. Therefore, it is necessary to direct the drug
to the desired site of action. Therefore, fabricating targeted hydrogels via simple and
efficient process may reduce some side effects associated with the impact of the drug on
healthy tissues.

Co-delivery of small molecule drugs such as MTX and oligonucleotides might be
considered as a novel approach to overcome some adverse reactions associated with the
long-term application of MTX. Oligonucleotide-based therapeutics can decrease the drug
resistance particularly in long-term usage of the drug. Therefore, several oligonucleotides
including siRNA, plasmid encoding shRNA and miRNA could be used in combination
with MTX [98,145–148]. The properties of hydrogels must be modified to make them
as suitable oligonucleotide carriers. In other words, these systems must be engineered
in a smart way to be able to carry a conventional drug (e.g., MTX) and oligonucleotide
therapeutics. This combination increases the pharmacological impact of the drug without
increasing its initial dose. Hence, such novel cocktails of drug and gene may reduce the
adverse reactions facilitating their clinical applications even for new purposes.
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