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Abstract: Experiments on swelling and solute transport in polymeric systems clearly indicate
that the classical parabolic models fail to predict typical non-Fickian features of sorption kinetics.
The formulation of moving-boundary transport models for solvent penetration and drug release in
swelling polymeric systems is addressed hereby employing the theory of Poisson–Kac stochastic
processes possessing finite propagation velocity. The hyperbolic continuous equations deriving from
Poisson–Kac processes are extended to include the description of the temporal evolution of both
the Glass–Gel and the Gel–Solvent interfaces. The influence of polymer relaxation time on sorption
curves and drug release kinetics is addressed in detail.

Keywords: swelling; non-Fickian transport; drug release; Poisson–Kac processes; moving-boundary
models

1. Introduction

Many fluids and specifically polymeric liquids, suspensions, and gels possess vis-
coelastic properties, which, in the simplest case, can be characterized through a single
relaxation time [1], leading to constitutive equations with memory for the stress tensor as
a function of the deformation tensor. Since momentum transport is affected by changes
in the constitutive equations, it is natural to assume that the memory effects in viscoelas-
tic materials impact on the transport properties and the associated phenomena, such as
glassy-rubbery transition, swelling, and the release of a solute dispersed in the material.
Indeed, experiments on swelling and solute transport in polymeric systems indicate that
the classical parabolic models (in which the mass flux is proportional to the concentration
gradient) fail to predict typical and distinguishing features, such as Case II diffusion and
concentration overshoot in sorption experiments [2,3]. A systematic analysis of non-Fickian
sorption kinetics in polymer films can be found in Sanopoulou and Petropoulos, 2001 [4],
where a list, from 1 to 6, of characteristic deviations from Fickian sorption behaviour
is presented.

From the experimental point of view, the effect of polymer relaxation on sorption
curves can be investigated in many different ways. A couple of examples among the
many present in the literature are discussed here. Focusing on hydrogels, stress relaxation
experiments can be carried out to determine the time scale of macromolecular adjustments
during the swelling process. Peppas and Brazel [5] measured the characteristic time
for stress relaxation in a swollen polymer when subjected to a mechanical stress by the
Instron and then related this time to the time required for a dry polymer to adjust to
being placed in a solvent, assuming one-dimensional transport. These authors observed
that the stress relaxation time constants at 37 °C for redox- and thermally initiated free
radical solution polymerized samples of P(HEMA-co-MMA) crosslinked by EGDMA and
glutaraldehyde-crosslinked PVA samples changes significantly with the amount of cross-
linking agent and PVA molecular weight. Therefore, it is possible to design different
materials and different experiments to evaluate the contribution of polymer relaxation to
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the experimental sorption curves. Focusing on organic vapor sorption in polymer film,
Sanopoulou and Petropoulos [4] proposed different diagnostic criteria for the physical
origin of non-Fickian kinetic features, some strictly related to the presence of viscous
relaxation phenomena. Interval sorption as well as integral sorption experiments on films
with different thicknesses can be useful to identify the role and contribution of polymer
relaxation. By considering that the Deborah number is inversely proportional to the film
thickness squared, these authors analyzed the absorption kinetics of CA-Acetone systems
and observed significant differences between sorption curves when changing the film
thickness from 42 to 112 µm, thus decreasing the Deborah number by a factor of 10.

Form the theoretical point of view, a first coherent approach in this direction was
undertaken by Cattaneo [6,7] in order to solve some paradoxes in the parabolic theory
of heat transfer. The original articles by Cattaneo deal with the heat transfer (so that
the final result of this investigation is usually referred to as the Cattaneo heat equation),
but the extension to mass transport is straightforward. Cattaneo’s model is indeed a
hyperbolic model in which the diffusive flux satisfies a constitutive equation identical to
the constitutive equations used in linear viscoelasticity.

As Fickian diffusion corresponds microscopically to a stochastic motion described in
terms of Wiener processes, an important conceptual issue is the determination of the kine-
matic equations underlying the Cattaneo equation. In other words, which stochastic model
for particle transport determines macroscopically the concentration field representing the
solution of the Cattaneo equation. The ultimate answer to this fundamental question has
been given by Mark Kac, at least for one-dimensional spatial problems [8], and his approach
provides not only a simple kinematic model associated with the occurrence of memory
effects in transport equations, but also an alternative, and physically significant way of
describing transport processes via the concept of partial densities (or partial concentra-
tions). Both the Cattaneo hyperbolic transport theory and the Kac stochastic model played
a fundamental role in developing more refined theories for non-equilibrium processes,
and their stochastic characterization. Cattaneo’s model represented the cornerstone in the
development of the Extended Thermodynamics proposed by Müller and Ruggeri [9,10] to
generalize the classical theory of irreversible processes, and the Kac model is the starting
point in the development of a wide class of stochastic processes possessing Markovian
transitions, referred to as Generalized Poisson–Kac processes [11–13].

The variable surface concentration model proposed by Long and Richman as well as
the diffusion-relaxation model by Berens and Hopfenberg (see [14] for a detailed review of
these two classical models) represent the first attempts to describe the sorption process in
glassy polymers as a linear superposition of phenomenologically independent contribu-
tions from Fickian diffusion and polymeric relaxation, the latter influencing the sorptive
capacity of the polymer. The extension to more than one distinct structural relaxation
process with different relaxation time has been also proposed [15,16] within the framework
of a purely Fickian (diffusional) solvent transport with fixed boundaries.

A significant step ahead in the field is represented by the work by Cohen and
White [17], in which the major effect of a diffusing penetrant on the polymer entanglement
network is taken to be the inducement of a differential viscoelastic stress. This couples dif-
fusive and mechanical processes through a viscoelastic response, where the strain depends
upon the amount of penetrant. Subsequently, many authors, e.g., Grassi et al. [18,19] first,
and Wu and Brasel [20] later, following Camera-Roda and Sarti [21,22] and Cohen [17],
considered a solvent flux, different from the simple Fick’s law, to account for polymer
relaxation in mass transport, thus arriving at a hyperbolic formulation of the transport
problem. However, in these works, the effect of the moving boundaries—namely, the
Glass–Gel and the Gel–Solvent interfaces—has been neglected as well as the convective
contribution to mass transport induced by the presence of a swelling velocity. The “swelling
flux” has been accounted for in the model proposed by Lamberti et al. [23,24], but only
very low values of the Deborah number have been considered, thus disregarding the effect
of polymer relaxation time. In this article, the Poisson–Kac (PK) stochastic approach is
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adopted and extended to describe and investigate the effect of polymer relaxation time on
solvent penetration in glassy polymers. To this end, an extra convective term is included in
the classical partial wave transport equations to account for the contribution of the swelling
point-wise velocity. Indeed, the model accounts for the three contributions to solvent
transport—namely, the diffusive flux, the swelling convective flux, and the relaxation flux.
The movements of the two fronts, the Gel-Solvent and the Glass-Gel interfaces, are also
accounted for and described in terms of PK partial waves. This enables (I) to study the
influence of the Deborah number (from low to high values) on the sorption curves and
(ii) to compare the results of the hyperbolic and the classical parabolic transport schemes,
accounting for both swelling and moving boundaries.

The original PK model has been also generalized to define a broader class of processes
possessing Markovian transitions, where the characteristic velocity and the transition rate
are continuous functions of the overall density [13].

This extension permits the investigation of the effect of both a polymer relaxation time
and a solvent diffusivity that are exponential functions of the local solvent concentration,
as established by simplified versions of the free volume theory [25–27]. In particular, the
introduction of a non-constant polymer relaxation time leads to interesting and unex-
pected behaviours of the sorption curves, due to the presence of a nonlinear convective
term that facilitates solvent penetration and speeds up the outward movement of the
Gel-Solvent interface.

In the paper, we also investigate the influence of the polymer relaxation time on the
release kinetics of a drug initially loaded in the thin dry film. Release kinetics are strongly
influenced by the polymer relaxation time and, unexpectedly, are not necessarily slowed
down for intermediate values of the Deborah number.

2. Poisson–Kac Processes

The counterpart of a linear viscoelastic constitutive equation in mass transport is
represented by the Cattaneo equation. Let c(x, t) be the solvent concentration in a polymer-
solvent solution and Jc(x, t) its diffusive flux. We refer here to the concept of “diffusive flux”
as the flux associated with pure random molecular motion in the absence of any external
macroscopic drift. Below, one-dimensional spatial problems are considered for the sake
of simplicity.

In the absence of sources, the balance equation for c(x, t) reads:

∂c(x, t)
∂t

= −∂Jc(x, t)
∂x

(1)

In the classical Fickian transport theory, the constitutive equation for the flux is:

Jc(x, t) = −D
∂c(x, t)

∂x
(2)

In Cattaneo theory, the constitutive equation for the flux Jc(x, t) takes the form:

tr
∂Jc(x, t)

∂t
+ Jc(x, t) = −D

∂c(x, t)
∂x

(3)

where D is a diffusivity and tr is the characteristic relaxation time. For tr = 0, Equation (3)
reduces to the classical Fickian constitutive equation, in which the flux is proportional to
the concentration gradient.

The introduction of a constitutive equation with memory, such as Equation (3), deter-
mines major and significant changes in the nature of the diffusive propagation. To begin
with, from Equations (1)–(3), it follows that the evolution equation for the concentration
c(x, t) attains the form:

tr
∂2c(x, t)

∂t2 +
∂c(x, t)

∂t
= D

∂2c(x, t)
∂x2 (4)
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In other words, it attains a hyperbolic character due to the second-order derivatives
with respect to time. This corresponds to the evolution of solvent concentration in the form
of waves with dispersion, possessing the characteristic propagation velocity

√
D/tr.

For any problem in mass transport involving moving molecules and particles, it is of
the highest conceptual and practical interest to determine the structure of the microscopic
particle kinematics that originate the emergent macroscopic behavior for the concentration
field. Brownian motion, expressed with regard to the long-term properties by Wiener
processes, represents the kinematics of Fickian diffusion. For the hyperbolic transport
Equation (4) , M. Kac showed that the one-dimensional Cattaneo transport equation is
originated from the microscopic particle motion described by the following kinematic
equation [8]:

dx(t)
dt

= b0 (−1)χ(t,λ) (5)

where b0 > 0 is a constant possessing the dimension of a velocity and χ(t, λ) is a Pois-
son counting process characterized by the transition rate λ > 0. The Poisson process
χ(t, λ) attains values 0, 1, 2, . . . spanning the natural numbers. Meanwhile, in the classical
applications of probability theory, Prob[χ(0, λ) = 0] = 1, with reference to Equation (5)
it is more convenient to consider the following initial conditions Prob[χ(0, λ) = 0] =
Prob[χ(0, λ) = 1] = 1/2, Prob[χ(0, λ) > 1] = 0, in order to avoid any initial biasing
effects. From Equation (5), it follows that the trajectories associated with this kinematic
law correspond to the continuous union of straight segments, with slopes of either +b0
or −b0. The transition time θ between two consecutive velocity switches is controlled by
the parity of (−1)χ(t,λ) is a random variable characterized by an exponential probability
density function pθ(θ) = λ e−λ θ .

The process X(t), the realization of which is x(t) defined by the kinematics Equation (5),
is not Markovian, and this feature determines the occurrence of memory effects in the
flux of constitutive equations; Equation (3). Nevertheless, it is still possible to construct
a Markovian embedding for X(t) by considering the joint stochastic process (X(t), S(t)),
where S(t) = (−1)χ(t,λ) is the parity function attaining values ±1, and determining the
velocity direction. Since S(t) is a binary process attaining only two values, it is possible to
introduce the two partial probability densities p±(x, t) where:

p±(x, t) dx = Prob[X(t) ∈ (x, x + dx), (−1)χ(t,λ) = ±1] (6)

Additionally, the application of the Chapman–Kolmogorov equation to the embedding
process (X(t), S(t)) provides the following evolution equations for p±(x, t):

∂p+(x, t)
∂t

= −b0
∂p+(x, t)

∂x
− λ[p+(x, t)− p−(x, t)] (7)

∂p−(x, t)
∂t

= b0
∂p−(x, t)

∂x
+ λ[p+(x, t)− p−(x, t)] (8)

These correspond to a system of two first-order linear partial differential equations.
Given the partial densities p±(x, t), also referred to as partial waves, the overall probability
density function for X(t) is expressed by:

p(x, t) = p+(x, t) + p−(x, t) (9)

The associated probability flux Jp(x, t) takes the form:

Jp(x, t) = b0 [p+(x, t)− p−(x, t)] (10)

A probabilistic terminology is here adopted for describing the statistical properties
of an ensemble of particles. That is to say, once applied to a mass transport problem,
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the mass/molar concentration c(x, t) is related to the density function p(x, t), by a pro-
portionality relation, c(x, t) = K p(x, t), where the constant K admits the dimension of a
mass/number-of-moles, depending on the physical meaning of c(x, t).

The use of the partial densities provides a very clear statistical understanding on the
evolution of particle concentrations associated with the kinematics (5). The evolution of
the overall density p(x, t) can be decomposed into the superposition of two partial waves
p±(x, t) propagating at constant velocity in the two opposite directions along the x-axis,
and mutually recombining at the rate λ which defines the statistics of the transition times
of the Poisson process. For this reason, the stochastic process (5) can be defined as the
elementary Poisson–Kac process.

By summing Equations (7) and (8), the equation for the overall density p(x, t)
follows thus:

∂p(x, t)
∂t

= −
∂Jp(x, t)

∂x
(11)

Meanwhile, the constitutive equation for the probability flux Jp(x, t), defined by
Equation (10), is easily obtained by taking the difference between the two Equations (7) and (8)
multiplied by b0:

∂Jp(x, t)
∂t

= −b2
0

∂p(x, t)
∂x

− 2 λ Jp(x, t) (12)

Equation (12) coincides with the Cattaneo constitutive Equation (3) upon the identifi-
cation of the relaxation time tr and the diffusivity D as:

tr =
1

2 λ
, D =

b2
0

2 λ
(13)

The original Poisson–Kac model can be generalized to define a broader class of
processes possessing Markovian transitions, and referred to as Generalized Poisson–Kac
processes [11,12]. For the scope of the present article, it is interesting to consider a nonlinear
expansion of the model where both the characteristic velocity b0 and the transition rate λ
are continuous functions of the overall density p(x, t):

b0 = b0 β(p) , λ = λ0 `(p) (14)

In this case, the balance equations for the partial densities p±(x, t) are altogether
similar to Equations (7) and (8):

∂p+
∂t

= −b0
∂[β(p) p+]

∂x
− λ0 `(p)[p+ − p−] (15)

∂p−
∂t

= b0
∂[β(p) p−]

∂x
+ λ0 `(p)[p+ − p−] (16)

The equation for p(x, t) follows by summing Equations (15) and (16):

∂p
∂t

= −
∂[β(p)ψp]

∂x
, ψp(x, t) = b0[p+ − p−] (17)

Observe that, due to the nonlinearities, the density flux is given by:

Jp(x, t) = β(p)ψp(x, t) (18)

where ψp(x, t) is an auxiliary field. The evolution equation for the auxiliary field ψp(x, t) is
obtained by taking the difference between the two Equations (15) and (16) multiplied by b0:

∂ψp

∂t
= −b

2
0

∂[β(p) p]
∂x

− 2 λ0`(p)ψp (19)
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From this, the constitutive equation for the flux is recovered by enforcing definition (18).
Equation (19) implies that either the relaxation time tr or the diffusivity D are func-
tions of the space and time coordinates through their dependence on the overall density
p(x, t), namely:

tr(p) =
1

2 λ0

1
`(p)

, D(p) =
b

2
0

2 λ0

β2(p)
`(p)

= D0
β2(p)
`(p)

(20)

However, it is important to observe that, in the Kac limit b0, λ0 → ∞, b
2
0

2 λ0
→ const,

the equation for p(x, t) is, as expected, a parabolic transport equation:

∂p
∂t

= D0
∂

∂x

[
β2(p)
`(p)

∂p
∂x

]
− D0

∂

∂x

[
−β(p)

∂β(p)
∂p

∂p
∂x

p
]

, D0 =
b

2
0

2 λ0
(21)

However, a new highly nonlinear convective term appears (the second term in the
right-hand side of Equation (21)), that has no counterpart in the corresponding parabolic
formulation of a transport model, even accounting for a non-constant concentration-
dependent diffusion coefficient.

3. Parabolic Transport Model for Case II Diffusion

Swelling results from the solvent penetration into the polymer. The solvent enhances
the mobility of polymer chains by converting the glassy matrix into a swollen, rubbery
material. Sorption in glassy polymers, usually referred to as Case II diffusion, is typically
characterized by two moving fronts: (i) a sharp interface between unpenetrated glass
and swollen polymer (Glassy–Gel Interface GGI) that propagates inwards into the film
and (ii) a Gel–Solvent Interface (GSI) that, in the absence of dissolution, moves outwards
and progressively increases the gel layer thickness. A schematic representation of solvent
penetration in a glassy film is depicted in Figure 1.

φ0

φG

φeq

L0

glass gel

GGI GSI

solvent

x

symmetry
axis

x=0

initial film
thickness

Figure 1. Schematic representation of solvent penetration in a glassy film (1-d Case II diffusion in the
x direction). φ0, φG, and φeq are the solvent volume fractions in the glassy film, at the Glassy–Gel
interface (GGI), and at the Gel–Solvent interface (GSI), respectively.
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The classical 1-d transport equations, not accounting for the relaxation time of polymer,
describe the solvent penetration and the temporal evolution of the moving interfaces GGI
and and GSI in terms of parabolic partial differential equations for the solvent volume
fraction φ(x, t) in the gel layer:

∂φ

∂t
= − ∂J

∂x
= − ∂

∂x

(
−D

∂φ

∂x
+ vsw φ

)
=

∂

∂x

(
D

∂φ

∂x
(1− φ)

)
, GGI(t) < x < GSI(t), t > 0 (22)

where D is the solvent diffusivity and vsw is the point-wise swelling velocity, assumed to
be equal (and opposite in sign) to the solvent diffusive (volumetric) flux [28–33]:

vsw(x, t) = D
∂φ

∂x
(23)

The solvent and polymer are assumed to be incompressible and to mix with no volume
change [31].

At the Gel–Solvent interface GSI(t), solvent/polymer thermodynamic equilibrium
φ = φeq is assumed, and the temporal evolution of GSI(t) is described by the Stefan
equation [31]:

φ = φeq,
d GSI

dt
= vsw|GSI(t) at x = GSI(t). (24)

On the Glass–Gel front GGI(t), a threshold concentration to initiate swelling φ = φG > φ0
is assumed for the solvent [34], with φ0 being the initial solvent volume fractions in the dry
film. Correspondingly, the temporal evolution of GGI(t) reads as:

(φG − φ0)
d GGI

dt
= J|GGI(t) at x = GGI(t) (25)

When GGI(t) reaches the symmetry axis x = 0, the glassy phase disappears and the
zero-flux boundary condition applies: J(0, t) = 0.

The initial conditions for φ(x, t), GGI(t), and GSI(t) are GGI(0) = L0− ε, GSI(0) = L0,
and φ(x, 0) = φG, with ε ' 10−4L0—i.e., it is assumed that a gel layer of infinitesimal
thickness is already formed and, consistently, that the solvent volume fraction φ(x, 0) for
L0 − ε < x < L0 has attained the Glass–Gel threshold value φG.

Solvent diffusivity D in the swollen layer can be assumed constant or an increasing
exponential function of the point-wise solvent volume fraction: φ[22,35,36]

D(φ) = Deq exp
(
− γ

φ− φeq

φG − φeq

)
= DG exp

(
γ

φG − φ

φG − φeq

)
, γ > 0 (26)

where DG and Deq = DG exp γ are the minimum and maximum solvent diffusivities at the
minimum φG and at the maximum φeq solvent volume fractions in the gel layer.

The amount of absorbed solvent M(t) (per unit area of the film), at each time instant
during the course of the swelling process can be evaluated as:

M(t) = 2 ρs

∫ GSI(t)

GGI(t)
φ(x′, t) dx′ (27)

where ρs is the solvent mass density. When equilibrium (asymptotic) conditions are reached,
the glassy phase completely disappears—i.e., GGI∞ = 0—and the half-thickness of the
fully swollen film L∞ = GSI∞, in the absence of dissolution, reaches its asymptotic value.

L∞

L0
=

GSI∞

GSI0
=

1− φ0

1− φeq
(28)

Correspondingly, the asymptotic amount of absorbed solvent M∞ (per unit area of
the film) attains the form:
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M∞ = 2 ρs

∫ GSI∞

0
φeq dx = 2 ρs L∞ φeq = 2 ρs L0 φeq

1− φ0

1− φeq
(29)

4. Poisson–Kac Transport Model for Case II Diffusion

The main goal is to model the Case II diffusion process by including the effects of
polymer relaxation time. This can be addressed through the following steps:

1. identify the solvent volume fraction φ(x, t) with the overall probability density function
p(x, t) of the Poisson–Kac stochastic process—i.e., p(x, t) = p+(x, t) + p−(x, t) = φ(x, t);

2. include in the dynamics of the partial waves p+(x, t) and p−(x, t) a further convective
contribution accounting for the swelling velocity vsw(x, t) due to solvent penetration;

3. describe the movement of the Glass–Gel interface and Gel–Solvent interface in terms
of partial waves p±(x, t);

4. account for the effect of polymer relaxation time on the boundary condition at the
Gel–Solvent interface.

At first, we consider the simplest case of a constant relaxation time tr and a constant
diffusivity D— i.e., a constant transition rate λ and a constant characteristic velocity b0,
Equation (13). By considering that (i) the point-wise swelling velocity vsw(x, t) is assumed
to be equal and opposite in sign to the diffusive flux, and that (ii) the “diffusive” flux in the
Poisson–Kac formulation is given by Equation (10), it naturally follows that:

vsw(x, t) = −Jp(x, t) = −b0[p+(x, t)− p−(x, t)] (30)

The evolution equations for the partial densities p+(x, t) and p−(x, t) in the gel layer
GGI(t) < x < GSI(t) attain the form:

∂p+(x, t)
∂t

= −b0
∂p+(x, t)

∂x
− ∂[vsw(x, t) p+(x, t)]

∂x
− λ[p+(x, t)− p−(x, t)] (31)

∂p−(x, t)
∂t

= b0
∂p−(x, t)

∂x
− ∂[vsw(x, t) p−(x, t)]

∂x
+ λ[p+(x, t)− p−(x, t)] (32)

By introducing the dimensionless time τ = t/tr = 2λt and the dimensionless spatial
coordinate z = x/L0, the transport equation for the partial waves p±(z, τ) in the gel layer
GGI(τ) < z < GSI(τ) reads as:

∂p+
∂τ

= −
√

De
∂[(1− p+ + p−)p+]

∂z
− 1

2
[p+ − p−] (33)

∂p−
∂τ

=
√

De
∂[(1 + p+ − p−)p−]

∂z
+

1
2
[p+ − p−] (34)

De =
tr

td
=

(
b0

2λL0

)2
(35)

where De is the Deborah number, representing the ratio between the relaxation time tr and
the characteristic diffusion time td = L2

0/D.
Correspondingly, the Gel–Solvent interface GSI evolves according to the swelling

velocity at GGI:
dGSI(t)

dt
= −b0[p+(x, t)− p−(x, t)]|GSI(t) =⇒

dGSI(τ)
dτ

= −
√

De [p+(z, τ)− p−(z, τ)]|GSI(τ) (36)

The relaxation time tr also controls the relaxation of the solvent volume fraction φ at
GSI(t) towards the asymptotic equilibrium value φeq [22]. This can be accounted for, in the
partial wave formulation, as:

tr
dpeq(t)

dt
= φeq − peq(t) =⇒

dpeq(τ)

dτ
= φeq − peq(τ) (37)
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This implies a time-dependent boundary condition for the partial wave p−(z, τ)—namely:

p−(z, τ) = peq(τ)− p+(z, τ) at z = GSI(τ) (38)

For the partial wave p+(z, τ), the boundary condition at the Glass–Gel interface
GGI(τ) switches from a Dirichlet boundary condition p(z, τ) = φG to an impermeability
condition when the Glassy phase disappears—i.e.,:

p+(z, τ) = φG − p−(z, τ) at z = GGI(τ) > 0 (39)

p+(z, τ) = p−(z, τ) at z = GGI(τ) = 0 (40)

Meanwhile, the Glass–Gel interface evolves according to the Stefan condition:

(φG − φ0)
dGGI(t)

dt
= Jp + vsw p =⇒ dGGI(τ)

dτ
=
√

De
[p+ − p−][1− p+ − p−]

φG − φ0

∣∣∣∣
GGI(τ)

(41)

As for the parabolic transport scheme, the initial conditions for p±(z, τ), GGI(τ), and
GSI(τ) are GGI(0) = 1− ε, GSI(0) = 1, and p(z, 0) = φG that implies for the partial
waves p+(z, 0) = p−(z, 0) = φG/2.

This approach can be generalized to include the effect of both a relaxation time tr(p)
and a solvent diffusivity D(p) that are exponential functions of the point-wise solvent
volume fraction φ(x, t) = p(x, t), as established by simplified versions of the free volume
theory [25–27]. By setting in Equation (20):

`(p) = exp
(

γr
φG − p

φG − φeq

)
and β(p) = exp

(
γd

φG − p
φG − φeq

)
(42)

the case of an exponentially decreasing relaxation time and an exponentially increasing
diffusion coefficient in addressed, i.e.,:

tr(p) =
1

2 λ0
exp

(
− γr

φG − p
φG − φeq

)
, D(p) =

b
2
0

2 λ0
exp

(
(2γd − γr)

φG − p
φG − φeq

)
(43)

By setting γd = γr/2 the case of an exponentially decreasing relaxation time and a

constant diffusion coefficient D = D0 = b
2
0

2 λ0
can be described as well. For both cases, the

transport equations for the partial waves and moving boundaries become:

∂p+
∂τ0

= −
√

De0
∂[β(p)(1− p+ + p−)p+]

∂z
− 1

2
`(p)[p+ − p−] (44)

∂p−
∂τ0

=
√

De0
∂[β(p)(1 + p+ − p−)p−]

∂z
+

1
2
`(p)[p+ − p−] (45)

dpeq

dτ0
= `(peq)[φeq − peq(τ)] (46)

dGSI
dτ0

= −
√

De0 β(p)[p+ − p−]|GSI(τ) (47)

dGGI
dτ0

=
√

De0 β(p)
[p+ − p−][1− p+ − p−]

φG − φ0

∣∣∣∣
GGI(τ)

(48)

where τ0 = 2λ0t and De0 =
(

b0
2λ0L0

)2
is the Deborah number evaluated at p = φG, represent-

ing the maximum value of the Deborah number during the course of the swelling process.

5. Analysis of Sorption Curves

The numerical solution of the transport scheme Equations (33)–(41) furnishes the
spatio-temporal evolution of the partial waves p+(z, τ) and p−(z, τ), as well as the tempo-
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ral evolution of the moving interfaces GGI(τ) and GSI(τ) for constant relaxation time tr
and solvent diffusivity D.

The transport equations for the partial waves p±(z, τ) have been numerically solved with
a home-made Matlab code implementing a finite-difference approach with (i) N = 5× 103

discretization points for each partial wave, (ii) a second-order upwind representation
of convective terms, and (iii) a proper rescaling of the space variable z̃(τ) = ((z −
GGI(τ))/(GSI(τ) − GGI(τ)) to transform the moving boundary problem GGI(τ) ≤
z ≤ GSI(τ) into a fixed boundary problem 0 ≤ z̃(τ) ≤ 1, ∀τ > 0 [37,38]. The resulting set
of 2N + 2 ordinary differential equation has been numerically solved with the multistep
solver ode15s with specified relative tolerance 10−5 and absolute tolerance 10−8 .

Figure 2A–C show the solvent volume fraction profiles p(z, θ) at different time instants
during the course of the sorption process, for different values of the Deborah number,
De = 1, 0.1, 0.01. If it is assumed to keep constant the solvent diffusivity D and the
initial dry film thickness L0, the dimensionless time θ = t/td = tD/L2

0 = τ De can be
introduced and different experiments for different values of De correspond to different
polymer relaxation times.

Figure 2A–C show a sharp discontinuity of the solvent concentration at the Glass-Gel
interface [17] that moves towards the symmetry axis z = 0. When GGI(θ) reaches the
symmetry axis, the discontinuity, for larger values of De—i.e., for larger relaxation times
(Figure 2A,B)—is reflected back to the external surface while, for smaller values of De
(Figure 2C ) is rapidly smoothed away like in the parabolic case, solution of the transport
scheme Equations (22)–(25).

The comparison between the parabolic and the hyperbolic case is presented in Figure 3B,
showing the temporal evolution of the amount of absorbed solvent M(θ), normalized with
respect to its equilibrium value M∞, for De→ 0 (parabolic case, dot-dashed black curves)
and for increasing values of De. It can be observed that, the larger De—i.e., the larger the
relaxation time is, the slower the sorption curve that follows an “anomalous” θ3/2 scaling
before collapsing onto the sorption curve of the parabolic scheme when the boundary value
peq(θ) reaches its asymptotic value φeq, as shown in Figure 3A. The classical θ1/2 scaling of
the standard parabolic scheme represents the envelope of sorption curves only for small-
intermediate values of De, namely De ≤ 10−2. For higher values of De, the sorption curves
exhibit a smooth transition from the θ3/2 scaling to the asymptotic saturation behaviour
and no θ1/2 scaling can be detected.

A very similar behaviour is observed for the temporal evolution of the Gel–Solvent
interface GSI(θ) shown in Figure 3C. Additionally, for the rescaled Gel–Solvent interface,
slower dynamics and a net θ3/2 scaling are observed for larger values of De. The larger De,
the slower the swelling dynamics, and this also influences the dynamics of the Glass-Gel
interface GGI(θ), as shown in Figure 3D. Indeed, for this case the disappearance of the
Glass phase requires a longer time.

A more complex behaviour of the swelling system can be observed when the case
of a non-constant relaxation time is analyzed. The case of an exponentially decreasing
relaxation time tr(p) and a constant effective solvent diffusivity D is here addressed, see
Equation (43) with γd = γr/2. The results of the numerical integration of the transport
scheme Equations (44)–(48) for γr = log 10, log 100 are shown in Figure 4A–D together with
the results for a constant relaxation time γr = 0, data already shown in Figure 3A–D. Sorp-
tion curves for γr > 0 and high values of De clearly show good conformity to case II kinetics,
feature V in the classification of sorption kinetics by Sanopoulou and Petropoulos [4] .

It should be observed that, for γr = log 10, the relaxation time decreases by one order
of magnitude from tr(φG) to tr(φeq) while, for γr = log 100, it decreases by two orders
of magnitude. It is therefore natural to expect that, the larger γr the faster the sorption
dynamics as well as the evolution of the Gel–Solvent interface, as shown in Figure 4B,C.
However, it can be readily observed that the sorption curves for γr > 0 do not settle down
onto the asymptotic behaviour of the parabolic scheme Equations (22)–(25), as in the case
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of a constant relaxation time γr = 0. The same phenomenon is observed for the temporal
evolution of the Gel–Solvent interface, as depicted in Figure 4C.

This feature of the sorption process is intrinsically due to the nonlinear convective
term, introduced and discussed in Section 3, Equation (21), arising from a characteristic
velocity b0 and a transition rate λ that are continuous functions of the overall density p,
as introduced in the Generalized Poisson–Kac process to model a non-constant relaxation
time tr(p). Indeed, in the case under investigation that accounts for the swelling velocity,
the Kac limit for the overall density p(z, θ) satisfies the following parabolic equation:

∂p
∂θ

=
∂

∂z

[
β2(p)
`(p)

∂p
∂z

(1− p)
]
− ∂

∂z

[
− β(p)
`(p)

∂β(p)
∂p

∂p
∂z

(1− p) p
]

(49)
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Figure 2. Spatio-temporal evolution of the overall probability density p(z, θ) = φ(z, θ) for increasing
dimensionless time instants—namely, θ = 0, 0.2, 0.4 . . . up to θ = 2 (blue curves) and θ = 4, 6, 8 . . .
up to θ = 40 (red curves). (A) De = 1; (B) De = 0.1; (C) De = 0.01.
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Figure 3. Temporal evolution of the boundary solvent volume fraction peq(θ) (A), the normalized
amount of absorbed solvent (B), the rescaled Gel–Solvent interface (C) and the rescaled Glass–Gel
interface (D). Arrows indicate increasing values of De = 10−4, 10−3, 10−2, 10−1, 100. Dot-dashed
black lines represent the behaviour of the parabolic transport scheme, representing the limiting case
De→ 0.

By comparing Equation (49) with the corresponding Equation (22) of the parabolic
transport model, we can easily recognize the presence of a new convective term, highly non-
linear, characterized by a point-wise negative velocity, that facilitates solvent penetration
and speeds up the outward movement of the Gel-Solvent interface. More specifically, in
the case of a constant solvent diffusivity (2γd = γr), such as that presented in Figure 4A–D,
Equation (49) attains the form:

∂p
∂θ

=
∂

∂z

[
∂p
∂z

(1− p)
]
− γr

2(φG − φeq)

∂

∂z

[
∂p
∂z

(1− p) p
]

(50)
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This convective term (the second term in the right hand side of Equation (50)) can
be significant and amplified in interval absorption experiments, where the concentration
jump (φG − φeq) can be small. Its presence in the Kac-limit transport equation for the
overall density can describe the transition from the S-shaped to the two-stage regime
experimentally observed in interval absorption experiments [4].

 0

 0.2

 0.4

 0.6

 0.8

 1

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

A

p
eq

(θ
)

θ=t/td

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

B

θ
1/2

M
(θ

)/
M

∞

θ=t/td

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

C

θ
1/2

(G
S

I(
θ

)-
G

S
I 0

)/
(G

S
I ∞

-G
S

I 0
)

θ=t/td

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

D

θ
1/2

(G
G

I 0
 -

 G
G

I(
θ

))
/G

G
I 0

θ=t/td

Figure 4. Temporal evolution of the boundary solvent volume fraction peq(θ) (A), the normalized
amount of absorbed solvent (B), the rescaled Gel–Solvent interface (C), and the rescaled Glass–Gel
interface (D). Continuous lines represent the behaviour for a variable relaxation time (γr = log 10,
log 100) and constant diffusion coefficient (γd = γr/2). Dashed lines represent the behaviour for a
constant relaxation time and constant diffusivity (same data shown in Figure 3A–D). Larger black
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increasing values of γr.
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6. Drug Release

This section investigates the influence of the polymer relaxation time on the release
kinetic of a drug initially loaded in the thin dry film. In the absence of drug-polymer
interaction, drug release in a 1-d swelling system can be simply modeled by a 1-d advection-
diffusion equation for the drug concentration cd(x, t), describing drug transport in the gel
layer, along the preferential swelling direction x

∂cd
∂t

= −∂Jd
∂x

= − ∂

∂x

(
−Dd

∂cd
∂x

+ vsw cd

)
, GGI(t) < x < GSI(t). (51)

where Dd is the drug effective diffusivity in the swelling film.
Drug transport is strongly influenced by swelling dynamics not only because of the

presence of the swelling convective term but mainly because of the moving boundaries
GGI(t) and GSI(t). Specifically, the Glass–Gel interface GGI(t) controls the drug release
rate from the Glass to the Gel phase, while the Gel–Solvent interface GSI(t) controls
the length of the diffusive path for the drug to be released in the external environment.
Indeed, the drug transport Equation (51) must be solved simultaneously with the equations
describing the swelling dynamics that furnish, at each time instant, the point-wise swelling
velocity vsw(x, t), as well as the position of the GGI(t) and the GGI(t) interfaces.

The boundary condition adopted for drug concentration cd(x, t) at the GGI(t) interface
is the Stefan condition:

(cd − c0
d)

dGGI(t)
dt

= Jd at x = GGI(t) (52)

where c0
d is the initial drug concentration, supposed uniform in the dry film. A perfect

sink condition at the Gel–Solvent interface—i.e., cd|GSI(t) = 0—is assumed without loss
of generality.

The total amount of drug (per unit surface area) Md(t) released up to time t can be
evaluated as:

Md(t) = 2
∫ t

0
Dd

∂cd
∂x

∣∣∣
GSI(t′)

dt′ = 2
(

c0
dL0 −

∫ GSI(t)

GGI(t)
cd(x′, t)dx′

)
(53)

Correspondingly, given the perfect sink condition adopted, the total amount of drug
released at equilibrium is Md

∞ = 2 c0
dL0, equal to the total amount of drug initially loaded

in the dry film.
For the sake of simplicity, here we analyze the case of a constant drug diffu-

sion coefficient Dd. The swelling velocity vsw and the temporal evolution of the
GGI and GSI interfaces can be obtained from the solution of the parabolic transport
scheme Equations (22)–(25) corresponding to De→ 0 or from the solution of the hyper-
bolic transport scheme Equations (33)–(41) for different values of the Deborah number,
corresponding to different polymer relaxation times for a constant solvent diffusivity D. A
new parameter α needs to be introduced, representing the drug to solvent diffusivity ratio
α = Dd/D.

Figure 5A–C show drug release curves for α = 1, 0.1, 0.01. When drug and solvent
diffusivity are of the same order, i.e., α = 1 (Figure 5A), drug release curves for De > 0
approach monotonically the drug release curve for De = 0. The larger De, the slower the
release and the release curve for De > 0 is always below (slower than) the release curve for
De = 0.

This behaviour significantly changes when the drug diffusivity is one order (α = 0.1)
or two orders of magnitude (α = 0.01) smaller than solvent diffusivity. Indeed, Figure 5B,C
clearly show that, when α = 0.1, the drug release curves for De > 0, for intermediate time
scales, become faster and approach “from above” the release curve for De = 0. This effect
is amplified in intensity and time duration for the smaller value α = 0.01 analyzed.
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Figure 5. Drug release curves Md(θ)/Md
∞ for different values of De and α = Dd/D. Arrows indicate

increasing values of De = 10−4, 10−3, 10−2, 10−1, 100. Dot-dashed black lines represent the limiting
case De→ 0. (A) α = 1; (B) α = 0.1; (C) α = 0.01.

In order to explain this phenomenon, we need to consider that drug release is strongly
influenced by the movement of the two interfaces GGI and GSI. In particular, the Gel–
Solvent interface controls the length of the drug diffusive path. The larger De, the slower
the GSI velocity at short-intermediate time scale, the shorter the diffusive path and conse-
quently the faster the release kinetics. Moreover, the smaller the drug diffusivity, the more
important the effect of a shorter diffusive path on the release.

A shortcut estimation of the drug flux at the outer boundary GSI can be obtained
from the macroscopic concentration gradient:

− Dd
∂cd
∂x

∣∣∣∣
GSI

∝
∆cd
∆L

=
cd|GGI − cd|GSI

GSI − GGI
=

cd|GGI
GSI − GGI

(54)
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shown in Figure 6 for the three values of α analyzed. Dashed lines represent the temporal

evolution of the dimensionless macroscopic concentration gradient ∆cd/c0
d

∆L/L0
for De = 0, while

continuous lines represent the same quantity for De = 10−2. It can be readily observed
that, for α = 0.01, the macroscopic concentration gradient for De = 10−2 is significantly
larger than that for De = 0 (red curves) exactly in the time interval 10−4 ≤ θ ≤ 10−2 during
which there is an “inversion” of the release curves (see Figure 5C, azure curve). This effect
is still present but less intense for α = 0.1 (blue curves) and actually disappears for α = 1
(orange curves), in agreement with the observed behaviour of the release kinetics shown in
Figure 5A,B.
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Figure 6. Dimensionless macroscopic drug concentration gradient (∆cd/∆L)(L0/c0
d) vs θ for De = 0

(dashed lines) and for De = 10−2 (continuous lines). Arrows indicate increasing values of α =

Dd/D = 0.01, 0.1, 1.

As a confirmation of this explanation, Figure 7 shows the behaviour of the drug release
kinetics for a polymer relaxation time that is an exponentially decreasing function of the
solvent volume fraction. In this case, the faster movement of the Gel–Solvent interface for
De > 0 and γr > 0, already presented and discussed in Section 5, implies a faster increase
in the drug diffusion path and a consequent slow down of the release kinetics. Indeed,
Figure 7 shows that the larger γr, the smaller the overshoot of the release curve with a
consequent faster collapse onto the parabolic release curve (De = 0).
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Figure 7. Drug release curves Md(θ)/Md
∞ for De = 10−2, α = Dd/D = 0.01, γd = γr/2 and

γr = 0, log 10, log 100. The arrow indicates increasing values of γr. The dot-dashed black line
represents the limiting case De→ 0.
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7. Conclusions

The article investigates the influence of polymer relaxation time on sorption curves
and drug release kinetics. Case II diffusion processes are addresses and analyzed through
the theory of Poisson–Kac stochastic processes possessing finite propagation velocity.

The article provides a first, physically significant application of Poisson–Kac processes
to moving-boundary problems associated with the swelling dynamics in polymeric matri-
ces. Moreover, it corresponds to a physically relevant example in which the parameters
of the process depend in a nonlinear way on the concentration of the diffusing species.
This case has been treated theoretically in [13] by considering simple models of exclusion
processes. Here, it finds a practically relevant application related to transport in polymeric
systems. Moreover, the way of handling boundary conditions represents a generalization
of the analysis developed in [39].

A preliminary analysis of sorption curves for a constant polymer relaxation time
clearly shows that the larger the Deborah number De, the slower the sorption curve charac-
terized by an anomalous θ3/2 short–intermediate time-scale behaviour. The classical θ1/2

scaling of the standard parabolic scheme represents the envelope of sorption curves only for
small–intermediate values of De ≤ 10−2 while, for higher values of De, the sorption curve
exhibits a smooth transition from the θ3/2 scaling to the asymptotic saturation behaviour.

A more complex and unexpected behaviour of the sorption curves has been observed
when the case of an exponentially decreasing relaxation time is analyzed. Indeed, sorption
curves for De > 0 are, as expected, slower than the corresponding sorption curve for De = 0
at short time-scales. However, in longer time-scales, there is an inversion and the sorption
process becomes faster for De > 0 than for De = 0. This phenomenon is intrinsically due a
nonlinear convective term, arising from the introduction of a characteristic velocity and a
transition rate that are continuous functions of the overall density. This convective term,
quantified in Equation (50), facilitates solvent penetration and speeds up the outward
movement of the Gel–Solvent interface.

An equally unexpected behaviour has been observed for the drug release curves,
when the influence of polymer relaxation time on release kinetics is investigated. Indeed,
when drug diffusivity is one order or two orders of magnitude smaller than the solvent
diffusivity, the role of polymer relaxation time (De > 0) is to speed up the drug release
kinetics at a small–intermediate time scale, with the process being controlled by a smaller
length of the diffusive path for the drug to be released in the external environment.

All these observations are extremely important in the analysis of experimental data
of sorption and drug release curves and can reasonably explain many of the “anomalous”
behaviours that cannot be described by employing the more classical parabolic transport
schemes. The model does not introduce new fitting parameters with respect to those
introduced in other hyperbolic models and can be applied in a wide range of Deborah
numbers De ∈ [10−4 − 103] without any stability issues for the numerical solution of
the partial waves transport equations. Obviously, being a mechanistic model described
by partial differential equations, its application to the analysis of experimental transient
sorption data requires the numerical integration of the transport equations and the use of
basic optimization tools for the best fit of transport parameters. A similar procedure can
be found in [40], where the rate-type viscoelastic model of Camera-Roda and Sarti [21] is
applied to reproduce the anomalous sorption of fluoropolymer-solvent systems.

What is relevant in tracing the connection between hyperbolic transport theory and
stochastic processes is that the model equations used in this article are suitable for a
direct stochastic description, meaning that all the results obtained in this article can in
principle be obtained from the stochastic Lagrangian kinematics of solute particles. Within
the scientific community interested in transport properties in polymeric systems, the
stochastic interpretation of the constitutive equations with memory associated with the
glassy–rubbery transition and with the influence of viscoelasticity to mass transport is
missing. This article provides a rational way to fill this gap.
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The PK approach can be naturally extended to two/three dimensional problems
as well as to include more than one distinct structural relaxation process with different
relaxation times.
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