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Abstract: We successfully synthesized new macroporous hydrogel particles consisting of hyper-
branched poly(amidoamine)s (HPAMAM) using the Oil-in-Water-in-Oil (O/W/O) suspension poly-
merization method at both the 50 mL flask scale and the 5 L reactor scale. The pore sizes and particle
sizes were easily tuned by controlling the agitation speeds during the polymerization reaction. Since
O/W/O suspension polymerization gives porous architecture to the microparticles, synthesized
hydrogel particles having abundant amine groups inside polymers exhibited a high CO2 absorption
capacity (104 mg/g) and a fast absorption rate in a packed-column test.

Keywords: carbon dioxide capture; poly(amidoamine)s; hyperbranched polymers; macroporous
polymers; suspension polymerization

1. Introduction

A major anthropogenic greenhouse gas in the atmosphere, CO2 gas has been emitted
in large quantities, mainly due to the burning of fossil fuels and other chemical pro-
cesses [1,2]. Despite the global economic slowdown caused by the COVID-19 pandemic,
the atmospheric concentration of CO2 increased to 421 ppm in May 2022, from 405 ppm
in 2017 and 340 ppm in the 1980s [3,4], and the estimated amount of annual CO2 capture
necessary to maintain the current level of atmospheric CO2 concentrations has reached
3.7 gigatonnes/year [5]. However, fossil fuels are the major source of energy for human ac-
tivities [6,7], and this trend is expected to continue over the coming decades [8]. Therefore,
capture and storage of CO2 gas from power plants is an urgent and important issue with
respect to reducing CO2 emissions.

The current CO2 capture technology from flue gases involves the passage of streams of
CO2-containing flue gases through an aqueous amine solution, for example, monoethanolamine
(MEA), in the absorber column. The amine solution is then regenerated by heating it in a
stripping tower to liberate the CO2. This ‘wet-scrubbing’ method with an alkanolamine
solution has been employed industrially since the 1980s and is suitable for large-scale
removal of CO2 [8]. However, the regeneration of the total solution requires considerable
energy consumption, and the amine concentration of the solution is limited due to viscosity
and foaming [9]. Furthermore, careful control of the alkanolamine solution is necessary to
avoid corrosion and oxidative degradation [2,10].

In efforts to overcome these problems, recently many materials have been developed
as dry type solid CO2 adsorbents. In the early stage of research, porous inorganic mate-
rials drew interest as solid type adsorbents for their high surface area [11–13]. However,
industrial flue gases contain a considerable amount of water vapor [14], and these types of
adsorbents are vulnerable to moisture, resulting in diminution of their sorption capacity
and durability [15,16]. To address these drawbacks, amine-containing CO2 adsorbents
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that tolerate moisture have been developed, including amine-modified mesoporous sil-
ica [17–25], Metal-Organic Frameworks (MOFs) [26–31], and amine-containing polymeric
adsorbents [32–36]. However, implementing amines in solid supports disrupts the pore
structure and reduces the surface area [25,37,38]. Furthermore, nonuniform dispersion
of the amine and the complicated synthetic process of amine-implemented solid CO2
adsorbents are hurdles toward practical applications.

To exploit the strengths of wet-scrubbing and a dry type adsorbent, we designed a
hydrogel absorbent that works in an aqueous phase. A hydrogel is introduced because
hydrogels are widely used as adsorbents for various substances such as heavy metal ions,
dyes, and carbon dioxide due to their high adsorption performance and ease of use in
an aqueous solution [39–46]. Because amines are verified carbon dioxide absorbers in
wet-scrubbing processes by forming carbamate and ammonium bicarbonate with CO2,
we adopted poly(amidoamine) (PAMAM) as our key functional material. PAMAM has a
high content of N-heteroatom groups. Abundant secondary and hindered amine groups
of PAMAM are expected to provide high CO2 sorption capacity [10,47]. Previously, we
reported a facile one-step synthesis and application of micro-sized hyperbranched PAMAM
(HPAMAM) particles [48]. Compared with PAMAM dendrimers, HPAMAM particles offer
advantages of simplicity in the synthetic process and ease of use as packed columns without
an ultrafiltration step for separation. In this work, we synthesize porous HPAMAM particles
and investigate the CO2 sorption ability of the porous HPAMAM hydrogel microbeads
in packed columns (Scheme 1). The amine groups of HPAMAM particles in the packed
column resemble the environment of amines in conventional wet scrubbing. Emulsion
templating including double emulsions is generally used to produce porous materials. We
adopted the Oil-in-Water-in-Oil (O/W/O) suspension polymerization method to provide
a porous feature to HPAMAM particles that resembles the structural pores of solid type
adsorbents [49–52]. The macropores inside of the hydrogel particles facilitate mass transfer
and diffusion and thereby accelerate the sorption rate.
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2. Results and Discussion

The preparation of porous HPAMAM particles was carried out via the O/W/O
suspension polymerization method. We prepared three solutions: (1) an inner phase
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organic solution (O1, solution 1) used to create interior pores; (2) an aqueous solution (W,
solution 2) in which a polymerization reaction actually takes place; and (3) an outer phase
organic solution (O2, solution 3) for developing spherical particles.

A2 (N,N’-methylenebisacrylamide, MBA) and B4 (ethylenediamine, EDA) monomers
and surfactant (poly(vinylalcohol), PVA) were mixed together in aqueous solution W until
complete dissolution of the solids to induce aza-michael addition between amine and
acrylamide. The O1 solution, containing a cosurfactant (Span 60®) and toluene, was added
to aqueous solution W with vigorous agitation to make an O/W suspension. The O/W
mixture was then suspended to the O2 solution. Since the polymerization of hydrophilic
monomers occurs in the aqueous phase, the gelated polymer forms a spherical shape with
the inner dispersion of organic solutions. After the polymerization, during the workup,
the inner organic phase was removed from the particles, leaving macropores. Samples
of porous HPAMAM particles are designated as P-MxAyTz, where x, y and z denote the
molar feed ratio of MBA to EDA, the agitation speed (rpm) of the O/W suspension, and
the volume ratio of solution 1 to solution 2, respectively (Scheme 1).

Three kinds of porous HPAMAM particles, P-M1.5A1400T0.6, P-M1.5A3000T0.6, and
P-M1.5A6000T0.6, were synthesized via O/W/O suspension polymerization with different
agitation speeds to verify that the pore size can be controlled by the agitation speed of the
O/W phase. To verify the chemical structures of the product, we carried out ATR-FTIR
analysis for a representative sample of P-M1.5A1400T0.6 (Figure 1). ATR-FTIR spectra of
MBA, EDA, and PAMAM polymers showed the peaks of N-H stretching (3000~3350 cm−1),
C=O stretching (1650 cm−1), and CONH stretching (1520 cm−1) in the PAMAM product,
suggesting the successful synthesis of poly(amidoamine). The C=CH2 stretching peak
(3020 cm−1) of MBA disappeared in the PAMAM product. The 3080 cm−1 peak is an
overtone of 1540 cm−1 (N-H bending), which commonly appears in amide compounds.
Energy Dispersive X-ray Spectroscopy (EDS) was performed to obtain additional infor-
mation on the monomer ratio (Figure S1). The morphology of the synthesized porous
HPAMAM particles was investigated with an optical microscope (OM) and a scanning
electron microscope (SEM), as shown in Figure 2. Particle sizes obtained with a slower
agitation speed (1000 rpm) were smaller than the particle sizes obtained at a faster agitation
speed (1400 rpm) (Figure S2). Since the size of the pores was in the range of the micrometer
scale, we analyzed the pore sizes through SEM images rather than with porosimetry such
as BET, which is suitable for micro or mesopores. The average pore size changed from
2.9 µm to 2.3 µm to 1.3 µm with each agitation speed of 1400 rpm, 3000 rpm, and 6000 rpm,
respectively (Figure 2c and Figure S3). As expected, the pore size decreased with the
increase of the O/W phase agitation speed. However, the size of the particles did not
change regardless of the O/W phase agitation speed (50–300 µm). The proposed synthetic
route for porous HPAMAM hydrogel particles via O/W/O suspension polymerization is
an eco-friendly process. It does not produce any byproducts and does not require catalysts
or pore-generating reagents (porogens). Scale-up synthesis of the porous HPAMAM hy-
drogel particles was attempted with O/W/O suspension polymerization. The 2 L scale
O/W/O suspension polymerization reaction of MBA and EDA monomers proceeded
successfully and a product (P-M1.5A1400T0.6-2L) with 50–300 µm particle diameters was
obtained (Figure 3). The porous HPAMAM hydrogel particles exhibited no differences
compared to the particles obtained with the smaller scale reaction. The synthesized porous
PAMAM hydrogel particles contain a large amount of amine functional groups that are
known to interact with carbon dioxide to form carbamates (Figure S4). On the basis of
the feasibility of large-scale production through an eco-friendly process and the high re-
activity of the amines in synthesized polymers to carbon dioxide [10,47,53,54], the porous
HPAMAM hydrogel particles are suitable CO2 absorbing materials for flue gas.
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To measure the CO2 absorption capacity of the hydrogel particles, water-soaked
porous HPAMAM particles (P-M1.5A1400T0.6-2L) packed in a 60 cm column were used with
a continuous flow of CO2. A schematic illustration of the column and a photograph of the
experimental setup are shown in Figure 4. We used a column with a pocket where water can
be circulated to control the temperature of the column at 50 ◦C. For the measurement, 45 g
of porous PAMAM particles (P-M1.5A1400T0.6-2L) was used at various CO2 concentrations
(6, 9, 12, and 15 wt%) with a gas flow rate of 150 mL/min (Figure 5). The concentration
of outlet CO2 gas was measured by gas chromatography at 25 ◦C. The porous HPAMAM
hydrogel particles exhibited 2.374 mol/kg of CO2 sorption (104 mg/g) within 60 min for
saturation at 15 wt% CO2 concentration while the sorption value was 2.150 mol/kg and
100 min for saturation at 9 wt% CO2. These values are comparable to the reported values
of amine-modified mesoporous silica (1.36–2.59 mol/kg) [35,55,56].
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3. Conclusions

We synthesized a new type of CO2 absorbing porous hydrogel particle consisting of
hyperbranched poly(amidoamine)s by Oil-in-Water-in-Oil (O/W/O) suspension polymer-
ization of N,N’-methylenebisacrylamide (MBA) and ethylenediamine (EDA) monomers.
By introducing the double emulsion method to the conventional inverse suspension poly-
merization, synthesis of macroporous hydrogel particles was achieved successfully. The
particle sizes and the size of macropores were controlled by simply changing the agitation
speed of Oil-in-Water-in-Oil (O/W/O) suspension polymerization, demonstrating the high
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applicability of the synthetic method in a large scale. The synthesized porous PAMAM
hydrogel particles contain many amine functional groups that are known to interact with
carbon dioxide. A CO2 sorption test revealed the CO2 absorption capacity of the porous
hydrogel particles was 104.4 mg/g, which is comparable to the values of high performance
dry-state adsorbents. Easy scale-up of the O/W/O suspension polymerization of MBA and
EDA without any byproducts supports the practical usability of porous hydrogel particles
for CO2 capture from flue gas.

4. Materials and Methods
4.1. General Information

Ethylenediamine (EDA), N,N’-methylenebisacrylamide (MBA), poly(vinylalcohol)
(PVA) (Mw = 89,000–98,000 g/mol), and Span 60® were purchased from Sigma-Aldrich
(Boston, MA, USA). Methanol (MeOH), toluene, and cyclohexane were purchased from
Junsei (Chuo-ku, Tokyo, Japan). All reagents were used as received without further pu-
rification. A 5L Chemglass ChemRxnHub (Vineland, NJ, USA) Process system was used
in the scale up process. Images of the particles were obtained by Nikon ECLIPSE ME600
(Tokyo, Japan) optical microscopy (OM), FEI Nova230 (Hillsboro, OR, USA), and JEOL JSM
IT800 (Akishima, Tokyo, Japan) scanning electron microscopy (SEM). EDS analysis was con-
ducted by a Bruker Quantax ESPRIT (Billerica, MA, USA) attachment. CO2 was measured
by DS6200 gas chromatography (DS Science Inc.; Gwangju-si, Gyeonggi-do, Korea).

4.2. Various Agitation Speeds of Aqueous Phase

Three solutions, solution 1 (Span60 (0.128 g, 5 wt%) in toluene (3 mL)), solution 2
(MBA (2.024 g), EDA (0.526 g), PVA (0.026 g, 1 wt%) in water (5.1 mL)), and solution 3
(Span60 (0.013 g, 0.5 wt%) in toluene (20.4 mL)) were prepared. Solution 3 was stirred
vigorously at 60 ◦C. MBA, EDA, PVA, and water in solution 2 were mixed together until
complete dissolution of the solids at 45 ◦C. After solution 1 was added to solution 2, it was
agitated at 1400 rpm (stirring bar), 3000 rpm (homogenizer), and 6000 rpm (homogenizer)
for one minute. After that, solution 2 was added to solution 3, and agitated at 1400 rpm at
60 ◦C. After 6 hr of polymerization, particles were filtered and washed with methanol and
acetone, and dried under vacuum at 70 ◦C for 24 hr.

4.3. Scale up Process

Three solutions, solution 1 (Span60 (25 g, 0.5 wt%) in toluene (600 mL)), solution 2
(MBA (398.6 g), EDA (103.2 g), PVA (5 g, 1 wt%) in water (1 L)), and solution 3 (Span60
(1.5 g, 0.5 wt%) in toluene (2 L)) were prepared. Solution 3 was stirred vigorously at
60 ◦C. MBA, EDA, PVA, and water in solution 2 were mixed together until dissolution of
the solids at 45 ◦C. After solution 1 was added to solution 2, it was agitated at 5000 rpm
(homogenizer), for one minute. Solution 2 was then added to solution 3, and it was agitated
at 1400 rpm at 60 ◦C. After 6 hr of polymerization, particles were filtered and washed with
methanol and acetone, and dried under vacuum at 70 ◦C for 24 h.

4.4. CO2 Absorption Test

Water was poured to 45 g of each type of PAMAM particle (P1.5, P1.8, P2.0, and
P1.5 porosity) in a beaker. After 90 min, wet PAMAM particles were placed in an acryl
column (diameter: 7 cm, height 60 cm). Removing the moisture in column, N2 gas was
flowed for 20 min. CO2 absorption was then carried out using 15 wt%, 12 wt%, 9 wt%
and 6 wt% of CO2 (The rest of the gas was N2) at a flow rate of 150 mL/min at 50 ◦C. The
concentration of CO2 in the outlet gas was measured by gas chromatography.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/gels8080500/s1, Figure S1: SEM and EDS analysis of P-M1.5A1400T0.6;
Figure S2: SEM images of P-M1.5A3000, W/O agitation speed of 1400 rpm (a,b) and P-M1.5A3000,
W/O agitation speed of 1000 rpm (c,d); Figure S3: Pore size distribution of various O1/W agitation
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speeds, 1400 rpm (a), 3000 rpm (b), 6000 rpm (c), and merged graph (d), based on SEM images of
Figure 2; Figure S4: Reactions of amine and carbon dioxide [1–4].
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supervision, S.Y.K. All authors have read and agreed to the published version of the manuscript.
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