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Abstract: Proteins and peptides are potential therapeutic agents, but their physiochemical properties
make their use as drug substances challenging. Hydrogels are hydrophilic polymeric networks that
can swell and retain high amounts of water or biological fluids without being dissolved. Due to their
biocompatibility, their porous structure, which enables the transport of various peptides and proteins,
and their protective effect against degradation, hydrogels have gained prominence as ideal carriers
for these molecules’ delivery. Particularly, stimuli-responsive hydrogels exhibit physicochemical
transitions in response to subtle modifications in the surrounding environment, leading to the
controlled release of entrapped proteins or peptides. This review is focused on the application of
these hydrogels in protein and peptide delivery, including a brief overview of therapeutic proteins
and types of stimuli-responsive polymers.
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1. Introduction

Peptides and proteins perform vital functions in the human body during almost all
biochemical processes, having received growing attention as drug candidates in recent
years [1,2]. However, their physicochemical properties render them difficult to use as drug
substances. Particularly, peptides and proteins are not ideal for oral administration, mostly
because they lack stability in the gastrointestinal tract (GIT), and their hydrophilicity and
size result in poor oral bioavailability [3–5]. There are also some disadvantages associated
with other routes of administration, including intravenous injection, which may not be
enough to achieve optimal therapeutic effects since various peptides and proteins have a
short half-life [3,6,7]. Accordingly, significant effort has been devoted to developing drug
delivery systems that allow peptides and proteins to reach their target sites more effectively.

Hydrogels have enduring popularity in protein delivery due to their suitable features,
such as biocompatibility, porous structure, which enables the transport of various peptides
and proteins, and protective effect against degradation [8,9]. Many studies have recently
focused on stimuli-responsive hydrogels, which can modify their physicochemical charac-
teristics in response to external stimuli (temperature, pH, enzymes, among others) [10].

In this review, a summary overview of therapeutic proteins and their delivery orga-
nized by route of administration is provided. Also, different types of stimuli-responsive
hydrogels, and their application as peptide and protein delivery systems are presented.

2. Therapeutic Proteins
2.1. Characteristics

Peptides and proteins are essential biological macromolecules that have a central role
inside cells during enzyme catalysis, transportation, signal transduction, gene regulation,
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and immunity-related functions [11]. These compounds are also involved in several patho-
logical conditions, including cancer, diabetes, and hypertension. Therefore, considering
their diversity of functions and participation in the control of various diseases, proteins
and peptides are promising therapeutic agents [12,13].

Since the approval of the first protein used as an active substance—human recombinant
insulin, Humulin®—in 1982 by the U.S. Food and Drug Administration (FDA), several
therapeutic proteins have been approved for clinical usage, and others are in the process of
development [1,2].

In 2019, the FDA approved 48 novel drugs, of which approximately 21% are pro-
teins [14,15]. One year later, proteins accounted for about 25% of the 53 FDA-approved
drugs [16]. The authorization of proteins in 2022 increased slightly compared to 2021 (five
vs. four, respectively) [17]. Common therapeutic proteins include the fastest growing
class of monoclonal antibodies, enzymes, hormones, growth factors, anticoagulants, and
fragment crystallizable (Fc) fusion proteins, among others [18,19].

Therapeutic proteins can be used as drugs to (i) substitute a protein that is abnormal
or deficient, (ii) increase an existing pathway, (iii) provide a new function or activity, and
(iv) interfere with a molecule or organism [20].

Peptides and proteins consist of amino acid units joined together by peptide bonds.
Whereas peptides contain two to fifty amino acids, macromolecules with more than fifty
amino acids are known as proteins. The sequence of amino acids in their structure is
designated as the primary structure [21]. Following the interaction and folding of amino
acid chains, higher levels of organization arise, namely secondary, tertiary, and quaternary
structures [22]. The functional characteristics of proteins rely on their three-dimensional
(3D) conformation. As the 3D structure depends on the primary structure, any difference
in the latter may produce a protein that is unable to perform its function [11].

Therapeutic proteins include molecules ranging in size from 1 to 50 kDa to much
larger proteins like monoclonal antibodies (mAbs) with around 150 kDa; thus, even the
smallest of these molecules exceed in size the so-called conventional drugs, such as aspirin
(Figure 1) [23–25].
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The higher molecular weight of peptides and proteins impedes them from crossing
the intestine mucosa [26] and other membranes. In addition, most proteins and peptides
are hydrophilic and may have groups with charges that further reduce their translocation
ability through the cell membrane and are absorbed by the systemic circulation. The
lipophilic nature of these membranes thus hampers the passive diffusion of relatively high
hydrophilic molecules [27].
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In different body regions, such as the small intestine and stomach, peptide bonds are
very prone to enzymatic hydrolysis. Consequently, as therapeutic peptides and proteins
may have a short circulation half-life, it is likely that biological activity is not preserved
until the therapeutic effect is achieved [13].

Generally, the lower the molecular weight of a peptide or protein, the higher the
metabolism and, in turn, the shorter the half-life. Likewise, proteins or peptides with
higher molecular weight are related to minor metabolism and longer half-lives [5]. Proteins
and peptides are sensitive to environmental changes, such as pH. By disrupting structural,
noncovalent interactions, these changes can alter the native 3D structure of proteins and
peptides, with loss or change in the biological activity being the outcome [13]. Ultimately,
extreme pH values cause protein denaturation (unfold), rendering them inactive [4].

Due to the physicochemical properties described above, while therapeutic proteins
have poor bioavailability via the oral route (less than 1–2%), parenteral administration of
liquid formulations is considered the most suitable for protein delivery [3,7,28,29]. Still,
the high frequency of injections reduces patient compliance on account of pain and skin
wounds [6]. Therefore, together with the parenteral administration of proteins, other delivery
routes, such as oral, ocular, pulmonary, nasal, and transdermal, have been explored [3,6,7].
The benefits and drawbacks of each route are described in the following sections.

2.2. Delivery of Therapeutic Proteins
2.2.1. Parenteral Route

Therapeutic peptides and proteins are mostly administered by intravenous (IV), sub-
cutaneous (SC), and intramuscular (IM) routes [30,31]. Although medicines can be given
intravenously as a bolus, proteins are frequently administered as an infusion [32]. With the
IV route, it is possible to achieve an immediate physiological response due to the complete
delivery of the administrated proteins to the systemic circulation, avoiding the first-pass
metabolism [33]. Notwithstanding its high bioavailability, IV administration is invasive and
often painful. Moreover, treatment with high doses, as in the case of antibodies, requires
infusion and, thus, visits to the hospital, which increases the overall cost of intravenously
given drugs [32]. Furthermore, sterility is a critical parameter of the IV injection that also
raises manufacturing costs, and some steps in the sterilization process can even affect
protein stability [34].

For some polypeptides and proteins, SC administration poses an alternative to the IV
route while also bypassing the first-pass metabolism. Furthermore, as the SC approach
could allow patients to self-administer proteins [32], patient preference and adherence are
improved, resulting in overall cost savings. Regardless of the benefits of SC-administrated
proteins, it still represents an invasive route and demands patients know how to take their
medication safely. Additionally, SC injection is restricted to the maximum volume of 2.0 mL
because higher volumes would cause rapid changes in the hydrostatic pressure that are
perceived as painful [35]. Although such a volume is usually adequate for administering
peptides due to their potency, high concentrations are often necessary if proteins are
the case. For instance, some antibody solutions at higher concentrations exhibit high
viscosity, which might increase injection time and discomfort at the site of injection, with a
negative impact on patient compliance [36]. Compared to IV administration, drugs injected
subcutaneously have lower bioavailability, presumably due to catabolism at the injection
site [32,37]. Also, these proteins, particularly the larger ones (>16 kDa), can show higher
immunogenicity, as they preferentially drain into the lymphatic system before entering the
systemic circulation [38,39].

Table 1 shows a few examples of protein-based parenteral dosage forms recently
approved by the FDA [40–46].
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Table 1. Some examples of protein-based parenteral dosage forms approved by the FDA.

Year Active Ingredient
Trade Name Description Pharmaceutical

Dosage Form Indication

2017 Etelcalcetide
Parsabiv®

Calcium-sensing
receptor agonist Injectable solution (IV) Hyperparathyroidism

2017 Semaglutide
Ozempic®

Glucagon-like peptide 1
(GLP-1) receptor agonist Injectable solution (SC) Diabetes

2018 Tildrakizumab
Ilumya® Interleukin-23 antagonist Injectable solution (SC) Moderate-to-severe

plaque psoriasis

2018 Cemiplimab
Libtayo®

Programmed death
receptor-1 (PD-1)

blocking antibody
Injectable solution (IV) Cutaneous squamous-cell

carcinoma

2018 Calaspargase pegol
Asparlas®

Asparagine-specific
enzyme Injectable solution (IV) Acute lymphoblastic

leukemia

2019 Crizanlizumab-tmca
Adakveo® Selectin-blocking antibody Injectable solution (IV) Pain caused by sickle

cell disease

2020 Setmelanotide
ImcivreeTM

Melanocortin 4 (MC4)
receptor agonist Injectable solution (SC) Chronic weight management

2020 Somapacitan-beco
Sogroya®

Human growth
hormone analog Injectable solution (SC) Growth hormone deficiency

2020 Ansuvimab-zykl
EbangaTM

Zaire ebolavirus
glycoprotein (EBOV
GP)-directed human
monoclonal antibody

Injectable solution (IV) Infection caused by
Zaire ebolavirus

2021 Dasiglucagon
Zegalogue® Anti-hypoglycemic agent Injectable solution (SC) Severe hypoglycemia

2021 Dostarlimab-gxly
Jemperli®

Programmed death
receptor-1 (PD-1)

blocking antibody
Injectable solution (IV) Endometrial cancer

2022 Olipudase alfa
XenpozymeTM

Sphingomyelin-specific
enzyme Injectable solution (IV) Acid sphingomyelinase

deficiency

2023
Pegunigalsidase

alfa-iwxj
Elfabrio®

Glycosphingolipid-specific
enzyme Injectable solution (IV) Fabry disease

2023 Somatrogon-ghla
NgenlaTM

Human growth
hormone analog Injectable solution (SC) Growth hormone deficiency

2023 Pozelimab-bbfg
VeopozTM

Recombinant IgG4
monoclonal antibody

Injectable solution (IV
or SC) CHAPLE disease

CHAPLE: CD55 deficiency with hyperactivation of complement, angiopathic thrombosis, and protein-losing
enteropathy; IV: intravenous; SC: subcutaneous.

2.2.2. Oral Route

The preference for the oral route for drug delivery can be attributed to its ease of
administration and noninvasive nature [47]. Nevertheless, delivering peptides and proteins
by the oral route is very challenging.

As mentioned earlier, the low oral bioavailability of therapeutic proteins comes mainly
from presystemic enzymatic degradation and limited penetration through the gastrointesti-
nal epithelium, hence the restricted access to the systemic circulation.

The GIT contains large quantities of several enzymes, such as pepsin, trypsin, and
chymotrypsin, and bile salts, which may elicit premature leakage and degradation of
therapeutic proteins [48]. Moreover, the pH values in the GIT vary considerably from
highly acidic (pH 2.0–4.0) in the stomach to pH ~5.5 in the duodenum, ~6.0 in the jejunum,
7.2–8.0 in the ileum, and ~6.5 in the colon, also adding difficulty for oral delivery [49].

Besides lubricating and protecting the cell layer, the thick mucus layer covering
the intestinal epithelium acts as a physical barrier to the absorption of drugs, hindering
contact with epithelial cells and, thus, drug transport [50]. Molecules can be electrostatically
trapped in mucus by virtue of its mucin proteins and proteolytic enzymes in abundance [51].
In addition to the mucus layer, the intestinal epithelium represents a second physical barrier,
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consisting of a continuous monolayer of epithelial cells, such as enterocytes, goblet cells,
Paneth cells, and microfold cells [48,51]. This cellular barrier regulates the transport of
nutrients and proteins across the gut lumen and the bloodstream or lymphatic system [51].
The permeation of proteins and peptides between adjacent intestinal cells, designated
paracellular transport, is prevented by tight junctions, having an estimated average pore
radius of 8–13 Å [51,52]. For that reason, molecules larger than 0.5 kDa are not small enough
to freely pass through these pores [53]. Transcellular transport, meaning the transport
through epithelial cells, is normally restricted to very lipophilic molecules that readily
cross the cellular barrier by passive diffusion [51]. In the case of large and often charged
molecules, enterocytes or microfold cells can mediate active transport via transcytosis [54].
Still, even if the protein or peptide succeeded in penetrating the gastrointestinal mucosa, it
would enter the liver by the hepatic portal vein, where first-pass metabolism takes place
and further reduces the amount reaching the systemic circulation [51].

There are only a few commercially available therapeutic proteins for administration via
oral route. One of the first peptide drugs approved by FDA for oral delivery is linaclotide
(Linzess®), approved in 2012, which is both acid- and pepsin-resistant and used to treat
patients with irritable bowel syndrome and chronic constipation. In 2017, semaglutide
(Rybelsus®) was the first oral glucagon-like peptide-1 (GLP-1) approved for type 2 diabetes
treatment [50].

2.2.3. Nasal Route

In general, the nasal route is best suited for drug delivery as it is noninvasive and the
nasal mucosa is easily accessible, considering that the epithelial barrier is thin, porous, and
highly vascularized [1]. Since the nasal venous system provides direct access to the systemic
circulation, the loss of drug by the hepatic first-pass metabolism can be prevented [55].

Like the intestinal epithelium, the nasal epithelium is the main physical obstacle to
the passage of proteins and peptides due to their low membrane permeability [56]. It is
noteworthy that nasal mucociliary clearance is a primary defense mechanism of the lungs,
in which mucus and its foreign, potentially harmful substances are removed from the
respiratory tract. Knowing that the mucus layer is renewed every 15–30 min, the contact
time between the protein or peptide and the nasal epithelium is thus limited [57]. Even
though the mucus layer can cause protein degradation by enzymatic activity in the nasal
mucosa, it is relatively low when compared to that of the GIT [55]. It follows that the nasal
bioavailability of peptides and proteins is usually between 1 and 3% [55,56].

2.2.4. Pulmonary Route

In addition to noninvasiveness and hepatic first-pass metabolism avoidance, other
advantages of the pulmonary route for drug delivery that merit attention and intensive
research include (i) the large surface area of lungs, (ii) a very thin alveolar epithelium, and
(iii) a rich vascular supply, allowing for rapid systemic absorption [1,56].

However, some factors affect the delivery efficacy of inhaled proteins and peptides,
with the primary barrier for inhaled particle deposition being the highly branching struc-
ture of the lung [23]. The rate and extent of this process depend significantly on the
physicochemical properties of aerosol particles, especially the diameter of a particle in
airflow, referred to as aerodynamic diameter [56,58]. Whereas particles with aerodynamic
diameters ranging from 1 to 5 µm are deposited in the lower respiratory tract, those with
diameters greater than 10 µm are deposited in the oropharyngeal region [23]. Particles
exhaled during tidal breathing are under 1 µm [59].

After their deposition in the lungs, therapeutic proteins can be removed by either
mucociliary clearance or alveolar macrophage uptake via pinocytosis [23,60]. The latter
is size-dependent and becomes more relevant to large proteins (≥40 kDa) owing to their
slower transport and absorption across the alveolo-capillary barrier. Alveolar macrophage
uptake may not have such an impact on small proteins and peptides (≤25 kDa) as they are
readily absorbed from airspaces [60]. Therapeutic proteins also encounter enzymes in the
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lungs but undergo less degradation compared to the GIT [61]. It is established that proteins
and peptides with molecular weights around 6–50 kDa have good bioavailability following
inhalation [1,23,62].

2.2.5. Ocular Route

It is the route of choice to deliver drugs directly to the ocular tissue [32]. Bearing in
mind how accessible the front of the eye is, it comes as no surprise that topical instillation
of eyedrops is often selected to treat diseases affecting the anterior segment of the eye,
including the cornea, conjunctiva, aqueous humor, iris, ciliary body, and lens [63]. Nev-
ertheless, less than 5% of a topically applied drug reaches deeper ocular tissues because
reflex blinking and increased tear turnover collectively lead to poor drug retention and
permeation [64,65]. The nasolacrimal duct drains the excess volume into the systemic circu-
lation [64]. The rest of the protein or peptide faces the corneal epithelial barrier, formed
by five to seven cell layers, also limiting its penetration [66]. Therefore, topical admin-
istration fails to deliver therapeutic concentrations of the drug to the posterior segment
of the eye, consisting of the retina, vitreous, and choroid. An alternative to topical eye
drops application is intravitreal injection [63,67], but vitreous humor turnover rapidly
clears the drug. Moreover, while repeated injections are needed to ensure good therapeutic
efficacy, frequent eye punctures with intravitreal injections are responsible for several
side effects, including endophthalmitis, retinal detachment, hemorrhage, and poor patient
tolerance [32,63,67].

2.2.6. Transdermal Route

Skin delivery of proteins and peptides may be efficient since it bypasses the liver,
allows for sustained-release effect, and has less proteolytic activity than other mucosal
routes [68]. Sustained release may overcome the need for frequent injections if the pro-
tein or peptide has a short in vivo half-life [69]. Seeing that the primary function of the
skin is to protect the body against exogenous substances, achieving the permeation of
protein molecules through the skin is undoubtedly a challenge [56]. Acting as the first
and principal barrier to the transdermal route, the topmost layer of the skin, designated
stratum corneum, consists of keratinocytes embedded in a lipid matrix, highly organized in
a “brick-and-mortar” formation [1,68]. Again, lipid content is a constraint on permeability
to hydrophilic molecules, so the passive permeation of proteins and peptides through
the stratum corneum is unattainable, not to mention their inherent low diffusivity due
to high molecular weight [70]. Also, corneocyte replenishment is constant, providing an
active mechanism for removing unabsorbed drugs from the body. Both chemical and
physical enhancers can be used to make the skin more permeable. Notwithstanding that
chemical enhancement techniques (e.g., solvents like ethanol and surfactants) are effective
for small, lipophilic molecules, they cannot usually increase skin permeability to peptides
and proteins. Alternatively, physical approaches (e.g., iontophoresis, sonophoresis, and
microporation) have shown great promise, allowing peptides to cross the skin through a
transient rearrangement or disruption of the stratum corneum structure [69,71,72]. Once
therapeutic proteins pass through the stratum corneum, they must move through the viable
epidermis, devoid of blood vessels, to finally reach the dermis, where systemic absorption
occurs [56].

A summary of commercially available proteins and peptides is given in Table 2.
Given the limitations of each route of administration, significant strategies have been

studied for developing drug delivery systems that allow proteins and peptides to reach
their target sites more efficiently [8]. Recent attention has been directed towards delivery
approaches based on stimuli-responsive smart materials, particularly hydrogels [9,77].
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Table 2. Commercially available therapeutic proteins and peptides organized by route of administration.

Route Protein or
Peptide Trade Name Company Indication Ref.

Oral Cyclosporin A Neoral®
Novartis

(Switzerland)
Systemic immunosuppressive

therapy [50,53]

Pancrelipase Creon® AbbVie (USA) Exocrine pancreatic insufficiency

Linaclotide Linzess® Actavis (USA) Irritable bowel syndrome and chronic
idiopathic constipation

Tilactase Lacteeze® Lacteeze (USA) Lactose intolerance

Vancomycin Vancocin® ANI Pharmaceuticals
(USA) Infection

Octreotide Mycapssa® Chiasma (USA) Long-term maintenance treatment in
acromegaly patients

Semaglutide Rybelsus® Novo Nordisk
(Denmark) Type 2 diabetes mellitus

Nasal Desmopressin DDAVP®
Ferring

Pharmaceuticals
(Switzerland)

Antidiuretic replacement therapy in
the management of central

diabetes insipidus
[1,56]

Calcitonin
Miacalcin® Novartis

(Switzerland) Postmenopausal osteoporosis

Fortical® Upsher-Smith (USA) Hypercalcemia, osteoporosis

Oxytocin Syntocinon® Novartis
(Switzerland) Induction of labor

Nafarelin Synarel® Pfizer (USA) Central precocious puberty
Buserelin Suprecur® Sanofi-Aventis (FR) Prostate cancer, endometriosis

Pulmonary Dornase alfa Pulmozyme® Genentech (USA) Cystic fibrosis [56,73]
Insulin Afrezza® MannKind (USA) Diabetes mellitus

Ocular Ranibizumab Lucentis® Genentech (USA) Neovascular age-related macular
degeneration; diabetic retinopathy [74,75]

Pegaptanib
sodium Macugen®

Eyetech
Pharmaceuticals and

Pfizer (USA)

Neovascular age-related
macular degeneration

Aflibercept Eylea®
Regeneron

Pharmaceuticals
(USA)

Neovascular age-related macular
degeneration; diabetic retinopathy

Cenegermin Oxervate™ Dompé (IT) Neurotrophic keratitis treatment
Transdermal Insulin Solo™ Medingo (USA) Diabetes mellitus [76]

3. Hydrogels
3.1. Definition

Hydrogels are 3D, hydrophilic polymeric networks that can swell and retain significant
amounts of water or biological fluids without being dissolved [10].

Over the last few decades, hydrogels have been widely used as tissue engineering
scaffolds, wound dressings, medical adhesives, and contact lenses. Additionally, hydrogels
are becoming increasingly attractive as vehicles for protein delivery due to their desirable
properties. Hydrogels are similar in structure to the natural extracellular matrix and
enable the physical incorporation of peptides and proteins [8,78]. The crosslinked nature of
hydrogels is beneficial for transporting peptides and proteins, as it prevents large foreign
molecules from interacting with the encapsulated proteins, thus promoting their retention
in circulation without immune rejection. Besides, the high water content of hydrogels
helps preserve the active form of proteins and decreases their vulnerability to chemical
degradation [8,79]. Although it is assumed that protein release from the hydrogel network
is controlled by diffusion, swelling, and/or erosion/degradation, other mechanisms of
protein adsorption/desorption to the hydrogel structure can also be involved [78,80].
Protein encapsulation into micro/nanoparticles before dispersion in the hydrogel matrix
may also affect their release.
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The development of hydrogels based on stimuli-responsive polymers has gained
momentum in recent years.

3.2. Stimuli-Responsive Polymers

Stimuli-responsive hydrogels exhibit rapid physicochemical transitions in response to
subtle variations in the surrounding environment, leading to the release of the entrapped
molecules in a controlled manner [81]. Also termed “smart” polymers, stimuli-responsive
polymers respond to external stimuli with reversible changes as they return to their origi-
nal state after the stimulus is removed [82]. As illustrated in Figure 2, their macroscopic
response can be a change in solubility, swelling/shrinking, or switching between hy-
drophilic/lipophilic, depending on whether the “smart” polymer chains are dissolved in
an aqueous solvent (sol state), crosslinked forming a hydrogel, or grafted onto/bound to a
surface [83].
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According to their nature, stimuli might be physical (temperature, light), chemical
(ionic strength, pH), or biochemical (enzyme, substrates) [84]. Stimuli can also be divided
into endogenous or exogenous, depending on whether they occur naturally in the body or
are artificially applied from outside the body [85].

3.2.1. Temperature-Responsive Polymers

By shifting from ambient to body temperature, some temperature-responsive (or
thermoresponsive) polymers undergo a sol–gel phase transition [86]. The ideal thermore-
sponsive polymer-based system is a free-flowing liquid at room temperature and only
transforms into a gel once administered to the body [87].
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Thermoresponsive polymers that form a gel with the elevation of the temperature
have a lower critical solution temperature (LCST). At temperatures below the LCST, these
polymers are miscible with water [88]. An upper critical solution temperature (UCST)-
type behavior is identified when thermoresponsive polymers yield a gel below the critical
temperature and return to the sol state above it [89]. Systems with LCST behavior in
water are usually preferred for drug delivery technologies since the need for high tempera-
tures in the UCST systems is not convenient for heat-labile biomolecules and drugs [90].
Among thermoresponsive polymers, poly(N,N-diethylacrylamide) (PDEAAm), poly(N-
isopropylacrylamide) (PNIPAAm), and poloxamers (Pluronics®) are the most commonly
used [91].

3.2.2. pH-Responsive Polymers

The use of pH-responsive polymers in drug delivery systems takes into consideration
that pH differences exist in the human body under normal or pathological conditions. For
instance, as previously mentioned, the pH of the GIT varies greatly, with the stomach being
strongly acidic and the intestine alkaline. Therefore, some pH-responsive polymers can be
used to prevent gastric degradation and premature release in the stomach upon reaching
the intestine [92]. pH-responsive polymers have also found applications in cancer-targeting
strategies that capitalize on the acidic environment of the tumor (pH 5–6), as opposed to a
normal physiological pH of 7.4 [93].

pH-responsive polymers have acidic (carboxyl) or basic (amine, imine) ionizable
groups attached to the hydrophobic backbone, thus being considered polyacids (anionic) or
polybases (cationic). These pendant groups can either donate or accept protons, depending
on their pKa and the environmental pH value [94]. Cationic hydrogels swell at a low pH
(pH < pKa), and anionic hydrogels, on the other hand, swell at a higher pH (pH > pKa) due
to the protonation of amino/imine groups and ionization of the acidic groups, respectively.
As a result, electrostatic repulsion between charges leads to polymer chain expansion and
impels the hydrogel to imbibe larger quantities of water [95,96]. Amino alkyl methacrylate
copolymer (Eudragit E) (cationic), poly(methacrylic acid-co-methyl methacrylate) (Eudragit
L/S) (anionic), and hydroxypropyl-methylcellulose phthalate (HPMC-P) (anionic) are in
the forefront of pH-sensitive polymers used in drug delivery [97].

3.2.3. Ionic Strength-Responsive Polymers

Gelation can occur as a response to alterations in the ionic content of the surrounding
medium if ionic strength-responsive polymers are involved [98]. It is suggested that high
salt concentrations reduce the repulsive electrostatic strength of the polymer, followed
by an increase in hydrophobic interactions and, in turn, network precipitation [99]. Also,
hydrogels made from these polymers swell differently in water and in an electrolytic
solution [100]. Besides inducing hydrogelation, ionic strength is an effective way to improve
mechanical and transport properties [101].

The presence of ions in physiological fluids and the mucus layer covering mucosal
membranes represents a potential stimulus with particular interest for mucoadhesive and
topical formulations. Moreover, a variety of medical conditions are associated with changes
in ionic concentration, such as increased serum calcium levels in vascular and bone diseases
or iron deficiency in anemia [102].

Compared to temperature- and pH-responsive polymers, examples of ionic-responsive
polymers as smart drug delivery hydrogels are somewhat scarce. Still, it is worth mention-
ing that alginates can form gels in the presence of polyvalent cations, such as Ca2+, Mg2+,
or Fe2+ [103,104]. Gellan gum also gels after being exposed to different metal ions and even
hydrogen ions, although this is less noticeable [102].
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3.2.4. Biomolecule-Responsive Polymers

Biomolecule-responsive hydrogels can undergo structural transition in response to
specific target biomolecules, such as glucose, proteins, nucleic acids, and polypeptides [105].

Glucose-responsive hydrogels can be suitable materials for diabetes management
based on the glucose levels in the bloodstream. To achieve a self-regulated delivery of
insulin, glucose-responsive moieties, such as glucose oxidase, lectin (concanavalin A, Con
A), and phenylboronic acid (PBA), are incorporated into the hydrogel system [106].

The first approach is possible upon immobilizing glucose oxidase in a pH-responsive
hydrogel enclosing a saturated insulin solution. At high glucose concentrations, glucose
diffuses into the hydrogel and is oxidized to gluconic acid, prompting mesh expansion
and release of previously entrapped insulin to the medium. As a result, sugar levels drop,
causing a rise in pH that prevents further insulin release [107,108]. A different strategy
takes advantage of the competitive binding of Con A to glucose and glycosylated insulin.
Since Con A has a greater affinity for glucose, increased levels of glucose trigger the dis-
placement and release of glycosylated insulin by diffusion across the hydrogel matrix [90].
Alternatively, PBA-based platforms can also tune insulin activity for personalized diabetes
therapy. There is a dynamic equilibrium between the charged and uncharged forms of
PBA in aqueous media. When the ionized form of PBA in insulin-loaded hydrogels binds
to glucose, the combined effect of polymer chain repulsion and increased hydrophilicity
drives insulin release along with the rapid expansion of the hydrogel [109,110].

In the case of antigen-responsive hydrogels, the ability to undergo volume or structural
changes relies on antigen–antibody interactions. This group of bio-responsive hydrogels
can be prepared by the (i) immobilization of antigens or antibodies within the hydro-
gel structure, (ii) chemical conjugation of the polymer to antigens or antibodies, and
(iii) copolymerization with the antigen-binding fragment of the antibody [111]. To illustrate,
grafting the polymer network with an antigen and its corresponding antibody enables
a hydrogel to form upon an antigen–antibody binding. As such, free antigens found in
the environment elicit a competitive binding that reduces the crosslinking density of the
hydrogel and allows swelling [112,113].

Finally, hybridization between complementary DNA and RNA strands can be con-
sidered for developing DNA- and RNA-responsive hydrogels, which respond to the pres-
ence of DNA and RNA targets with volume changes and sol–gel phase transitions [105].
Another promising strategy employs single-stranded DNA or RNA molecules called
aptamers, which have similar features to antibodies and great potential for molecular
recognition [114].

3.2.5. Enzyme-Responsive Polymers

Enzymes are increasingly used as stimuli to trigger structural transformations in
hydrogels. To understand this, one should acknowledge that many medical conditions are
associated with altered expression of proteins, more precisely overexpressed enzymes in
diseased tissues [115].

In general, the design of enzyme-responsive hydrogels has three basic requirements.
First, the hydrogel system must have substrate mimics or other elements that only enzymes
can recognize [116]. For proteolytic enzymes, common recognition elements could be
peptide chains/linkers or polymer–peptide conjugates with specific amino acid sequences
that determine enzyme–substrate specificity [117]. A second prerequisite is the accessibility
of the incorporated substrates to enzymes, otherwise the kinetics of enzyme-catalyzed
reactions can be greatly affected. Lastly, enzyme–substrate reactions must be translated into
changes in the hydrogel, such as morphological transformation or degradation [117,118].

Table 3 provides some examples of stimuli-responsive polymers.
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Table 3. List of stimuli-responsive polymers organized by the stimulus.

Stimuli Polymers Origin/Synthesis Ref.

Temperature Poloxamers Sequential polymerization of propylene oxide and
ethylene oxide in the presence of alkaline catalysts [119]

Methyl cellulose Reaction of alkali cellulose with methylene chloride [120]
Hydroxypropylcellulose Reaction of alkali cellulose with propylene oxide [121]

Xyloglucan Extraction from the seed of the tamarind tree
(Tamarindus indica) [122]

Hydroxypropylmethylcellulose Reaction of alkali cellulose with methylene chloride
and propylene oxide [123]

Poly(N-isopropylacrylamide) Free-radical polymerization of N-isopropylacrylamide [124]

pH Carbomers Crosslinking of polyacrylic acids with the allyl ethers
of pentaerythritol or sucrose [125]

Chitosan Partial N-deacetylation of chitin [126]

Cellulose acetate phthalate
Reaction of a partially substituted cellulose acetate

with phthalic anhydride in the presence of an organic
solvent and a basic catalyst

[127]

Sodium carboxymethyl
cellulose

Reaction of alkali cellulose with sodium
monochloroacetate [120]

Poly(L-lysine) Biosynthesis by the bacterium strain
Streptomyces albulus [128]

Polyvinyl sulfonic acid Free-radical polymerization of vinyl sulfonic acid [129]
Polymethacrylic acid Free-radical polymerization of methacrylic acid [130]

Ionic strength Gellan gum Biosynthesis by Sphingomonas elodea [131]

Alginates Extraction from brown marine algae and
Pseudomonas and Azotobacter bacteria [104]

Xanthan gum Biosynthesis by Xanthomonas campestris [132]
Carrageenan Extraction from red seaweeds (Rhodophyta) [133]

Pectin Extraction from citrus and apple fruits [134]

Hyaluronic acid Biosynthesis by Streptococcus zooepidemicus and
recombinant systems [135]

Enzyme Dextran Biosynthesis by Leuconostoc mesenteroides
NRRL B-512F [136]

Hyaluronic acid Biosynthesis by Streptococcus zooepidemicus and
recombinant systems [135]

Polyethylene glycol Ring-opening polymerization of ethylene oxide [137]
Poly(allylamine) Polymerization of allylamine [138]

3.2.6. Dual and Multiple Stimuli-Responsive Polymers

On some occasions, polymer materials with a single responsiveness may not fully serve
the therapeutic purpose in a complex physiological or pathological microenvironment [139].
Therefore, polymer materials that respond to various physical or chemical stimuli are in
high demand for biomedical applications.

Dual stimuli-responsive polymers respond to two stimuli combined (pH/temperature,
ionic strength/pH, ionic strength/temperature, temperature/enzyme, etc.). As regards multiple
stimuli-responsive polymers, more than two stimuli, such as temperature/pH/redox, tempera-
ture/pH/biomolecule, or temperature/redox/biomolecule, will trigger a response [140,141].

Applying polymers with pH and temperature responsiveness is a growing trend
for anticancer agents’ delivery since many tumors display elevated temperature and low
pH compared to healthy tissues. The most investigated thermoresponsive polymer is
pNIPAAm with an LCST of 32 ◦C in water; the polymer network collapses above the LCST,
and the corresponding hydrogel shrinks at body temperature (37 ◦C). In the aforementioned
context of cancer treatment, combinations of pNIPAAm and pH-responsive polymers, such
as polyacrylamide and polyacrylic acid, also provide valuable options to generate dual
responsiveness [142].
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4. Stimuli-Responsive Hydrogels for Protein Delivery

Some prominent examples of stimuli-responsive hydrogels for delivering therapeutic
proteins are presented below.

In a strategy to deal with the problems of protein delivery in the stomach, Lima
et al. [143] chose alginate as the hydrogel matrix and bovine serum albumin (BSA) as a
model protein. The resulting hydrogel showed biocompatibility and pH-dependent BSA
release and swelling profile, reaching the highest value of swelling at pH 7.4. The overall
results suggested that the performance of this alginate-based hydrogel as an oral drug
delivery system would be excellent.

Phan et al. [144] developed an injectable hydrogel based on temperature- and pH-
responsive poly(ethylene glycol)–poly(sulfamethazine carbonate urethane) copolymers for
lysozyme delivery. Although lysozyme was used therein as a model protein, increasing
evidence underlines its potential for clinical applications due to its antibacterial, anti-
inflammatory, anticancer, and analgesic properties [145]. The obtained hydrogel showed
very low cytotoxicity even at higher polymer concentrations, and further in vivo studies
demonstrated a sustained release of lysozyme for seven days after SC administration in
Sprague Dawley rats.

Knowing that keratinocyte growth factor (KGF) repairs potently epithelial tissue, Xu
et al. [146] proposed a thermoresponsive heparin-modified poloxamer hydrogel containing
KGF to prevent intrauterine adhesion, the main cause of infertility and recurrent pregnancy
loss in women with reproductive capacity. In vitro studies showed a sustained release of
KGF from the hydrogel. On the seventh day after injection into the intrauterine cavity, the
authors observed endometrial epithelial cell growth and angiogenesis in the injured uterus
of a rat model.

After evaluating a series of thermoresponsive hydrogels, Dutta et al. [147] selected a
poly(lactide-co-glycolide)-b-poly(ethylene glycol)-b-poly(lactide-co-glycolide) hydrogel
for encapsulating glucagon-like peptide (peptide A) and modified insulin analogs. When
treating diabetic mice with a single SC administration of peptide A-loaded hydrogel, their
blood glucose level decreased and was below 50–65% of the initial values over two to three
days. For self-regulation of insulin delivery by SC injection, alginate was grafted with a
temperature/glucose dual-responsive copolymer consisting of N-isopropylacrylamide and
3-acrylamidophenylboronic acid monomers, maintaining good biocompatibility [148]. It
was found that insulin can be dispersed uniformly in a cold copolymer solution (10 ◦C),
which turns into a gel in situ by raising the temperature to 37 ◦C. Diabetic nephropathy is a
complication of type 1 and type 2 diabetes related to the progressive reduction of kidney
function [149]. In a work aimed at hindering the progression of this disease, Tong et al. [150]
fabricated a glucose-responsive hydrogel based on PBA-grafted γ-polyglutamic acid and
konjac glucomannan to deliver insulin and liraglutide (an antidiabetic medication). In
streptozotocin-induced diabetic rats receiving an SC injection of the hydrogel every three
days for six weeks, morphological and functional recovery of the kidney was observed and
attributed to oxidative stress reduction and autophagy activation (Figure 3).

Many apoptotic proteins, such as granzyme B (GrB), have been investigated for
cancer therapy. This serine protease stored in secretory granules of activated cytotoxic
T lymphocytes and natural killer cells was reported to be a highly potent mediator in
the apoptotic death of cancer cells [151,152]. Therefore, Pang et al. [153] constructed a
thermoresponsive hydrogel consisting of poly (ethylene glycol)-poly(γ-ethyl-L-glutamate)
diblock copolymer to deliver GrB- and docetaxel-loaded mini micelles. The hydrogel
was formed in situ at body temperature and gradually degraded by proteinase to release
mini micelles. The ability of mini micelles to escape from lysosomes and penetrate deeply
into the tumor was validated in vitro and in vivo. Further, data from studies on both SC
tumor and postoperative recurrence models supported high tumor inhibition with the
combination of GrB and docetaxel via peritumoral injection of the hydrogel.
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Figure 3. The morphological and functional recovery of the kidney of diabetic rats in the 6th week
after treatment was confirmed by (A) 2D ultrasound imaging, (B) color Doppler imaging, (C) the
calculated kidney volume based on 2D ultrasound imaging, (D) the calculated kidney weight/body
weight ratio, and (E) the calculated resistance index in the 4th and 6th weeks based on color Doppler
flow image (* p < 0.05; ** p < 0.01, compared to the control group; # p < 0.05, compared to the group
treated with hydrogel incorporating insulin and liraglutide). Reprinted from [150], copyright (2021),
with permission from Elsevier.

Antimicrobial peptides (AMPs) are essential components of the innate immune defense
in multicellular organisms and are currently under development as novel anti-infective
drugs [154]. While most AMPs kill microbial pathogens directly, others act indirectly
by regulating the host’s defensive system [155]. Since an ideal skin wound dressing
should have antibacterial activity against antibiotic-resistant bacteria, Rezaei et al. [156] pre-
pared thermoresponsive chitosan hydrogels loaded with different concentrations of AMPs
(4, 8 and 16 µg/mL). All hydrogels showed good compatibility with human fibroblasts.
Although they had strong antibacterial activity against standard strains of Acinetobacter
baumannii, only the addition of AMPs at a concentration of 16 µg/mL provided the hydro-
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gel with effective antibacterial activity against resistant strains with no sign of cytotoxicity
for human cells (Figure 4).
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Figure 4. Antibacterial activity of thermoresponsive chitosan hydrogels (TCTS-40%β-GP) loaded
with different concentrations of antimicrobial peptide (AMP) (0, 4, 8 and 16 µg/mL) against ATCC
and resistant A. baumannii: (a) disk diffusion assay and (b) scanning electron microscope (SEM)
micrographs of resistant A. baumannii bacteria grown on these hydrogels. Reprinted from [156],
copyright (2020), with permission from Elsevier.

Other examples of stimuli-responsive hydrogels for protein delivery are described
in Table 4.

Table 4. Stimuli-responsive hydrogels for proteins administration.

Proteins Stimuli Responsiveness
Composition Route Highlights Ref.

Vascular endothelial
growth factor and

monocyte chemotactic
protein-1

Temperature-responsive
PLGA-mPEG Intrafemoral

• Good cytocompatibility
• The mean vessel diameter and

density increased over weeks
after implantation of the HG in
the necrosis site of the rabbit
femoral head

[157]
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Table 4. Cont.

Proteins Stimuli Responsiveness
Composition Route Highlights Ref.

Insulin pH- and amylase-responsive
CMS-g-AA/PMAA Oral

• Insulin protection in artificial
gastric fluid

• Insulin release was accelerated
in artificial intestinal fluid
containing α-amylase

• Diabetic rats received
twice-daily oral treatments for
two weeks, alleviating diabetic
symptoms and suppressing
body weight loss

[158]

BSA and insulin pH-responsive
4a-PEG-PLG Oral or SC

• pH-dependent release of BSA
or insulin from the HG

• Compared to native BSA and
insulin, the bioactivities of BSA
and insulin released from the
HG were preserved

• Good cytocompatibility
• In vivo studies showed

complete degradation of the
HG after eight days

[159]

Insulin
Glucose- and pH-responsive

PBA, glucose oxidase and
catalase

SC

• When pH < pKa, the HG
disassembled, along with
insulin release

• In vivo studies showed
biocompatibility and
effectiveness in regulating
blood glucose levels for a long
time

[160]

FITC-BSA Enzyme-responsive
HPP-GC SC

• When lysozyme was present,
degradation controlled the
release of protein

• In vitro release studies showed
minimal diffusion-controlled
release and retention of the
encapsulated protein within
the HG

[161]

4a-PEG-PLG: 4-arm poly (ethylene glycol)-b-poly (L-glutamic acid); BSA: bovine serum albumin; CMS-g-AA:
acrylate-grafted-carboxymethyl starch; FITC-BSA: fluorescein isothiocyanate-conjugated bovine serum albumin;
HG: hydrogel; HPP-GC: 3-(4-hydroxyphenyl)- propionic acid-modified glycol chitosan; MAA: methacrylic acid;
PBA: phenylboronic acid; PLGA-mPEG: poly (D, L-lactic-co-glycolic acid)-b-methoxy poly (ethylene glycol);
SC: subcutaneous.

5. Conclusions and Future Perspectives

In recent years, a variety of stimuli-responsive hydrogels have been developed for the
delivery of peptides and proteins. Compared to conventional hydrogels, stimuli-responsive
hydrogels provide more precise control of the location and/or duration of protein release.
Considering the stimulus to which the hydrogel responds, more benefits can be added.
For instance, thermoresponsive polymers allow for developing in situ gelling systems,
which combine the ease of injecting low viscosity dispersions with the rapid formation
of implants in situ after gelation at body temperature. An in situ-forming implant not
only adapts its shape to the geometry of the injection site but also acts as a reservoir
system, prolonging protein release over longer periods than preformed hydrogels. Also,
the incorporation of pH-responsive polymers or enzyme-cleavable moieties can improve or
confer biodegradability to the hydrogel network and enable self-regulated release that is
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convenient for certain diseases. However, despite their promising outcomes in vitro and
in vivo, some obstacles to the clinical translation of these therapeutic systems remain.

When designing a hydrogel for drug delivery, polymer selection warrants special
attention. Once the polymer system has released its payload, it should be removed from the
body, which usually occurs by renal filtration. However, given its molecular weight cut-off
of 40 kDa [162], polymers should be small enough to be filtered in the kidney, otherwise
therapeutic applicability will depend on their long-term toxicity and immunogenicity.
Besides, as with other material surfaces, nonspecific interaction with biological molecules
takes place as soon as the hydrogel encounters complex fluids. Antifouling coating with
polymer brushes could be a strategy to prevent nonspecific adhesion onto the hydrogel
network [163].

In the case of stimuli-responsive hydrogels, researchers face even more hurdles to
access materials that produce a sensitive and complete response in vivo. In contrast to ex-
ogenous stimuli, which offer precise regulation of the hydrogel’s performance at the target
site, endogenous stimuli may be inconsistent in their responsive behavior. To illustrate this,
the developed hydrogels might respond to the disease-associated hallmarks, but rarely are
these internal cues exclusive to a single diseased site, thus leading to suboptimal selectivity
in the overly complex in vivo environment. Even if they do, this shortcoming persists as
biological parameters vary between individuals and over time.

To improve site-specificity and achieve fine control of peptide and protein release,
future works will certainly follow the trend of fabricating hydrogels with multiple stimuli-
responsiveness, which brings other challenges, such as complex polymer engineering and
difficult scaling-up of production, into the equation. The road ahead seems long but full of
promise as long as more experts in biology, chemistry, and medicine step in and establish
effective interdisciplinary collaborations.
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