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Abstract: Phototherapeutic agent-based phototherapies activated by light have proven to be safe
modalities for the treatment of various malignant tumor indications. The two main modalities of
phototherapies include photothermal therapy, which causes localized thermal damage to target
lesions, and photodynamic therapy, which causes localized chemical damage by generated reactive
oxygen species (ROS). Conventional phototherapies suffer a major shortcoming in their clinical
application due to their phototoxicity, which primarily arises from the uncontrolled distribution of
phototherapeutic agents in vivo. For successful antitumor phototherapy, it is essential to ensure the
generation of heat or ROS specifically occurs at the tumor site. To minimize the reverse side effects
of phototherapy while improving its therapeutic performance, extensive research has focused on
developing hydrogel-based phototherapy for tumor treatment. The utilization of hydrogels as drug
carriers allows for the sustained delivery of phototherapeutic agents to tumor sites, thereby limiting
their adverse effects. Herein, we summarize the recent advancements in the design of hydrogels for
antitumor phototherapy, offer a comprehensive overview of the latest advances in hydrogel-based
phototherapy and its combination with other therapeutic modalities for tumor treatment, and discuss
the current clinical status of hydrogel-based antitumor phototherapy.

Keywords: hydrogel; photodynamic therapy; photothermal therapy; antitumor

1. Introduction

Malignant tumors have emerged as the foremost contributor to mortality rates world-
wide, serving as a significant impediment to the progressive trend of increasing life ex-
pectancy [1]. They are projected to continue as the primary etiology of premature death,
defined as death before the age of 70, on a global scale. Malignant tumor tissue exhibits dis-
tinctive features such as vascular malformation, low pH, hypoxia, and others. Concurrently,
malignant tumor cells possess unique properties including unrestrained proliferation, facile
metastasis, and drug resistance [2]. At present, the foremost approaches for malignant
tumor therapy comprise surgery, chemotherapy, and radiotherapy. Although surgical
procedures can be useful in the management of tumors, complete removal of all malignant
tumor cells may not be feasible [3–5]. Chemotherapy and radiotherapy, while effective in
eliminating tumor cells, can also result in collateral damage to normal tissue [3–5].

The use of phototherapy in tumor treatment has garnered significant attention due to
its minimal invasiveness, high effectiveness, and low probability of drug resistance [6]. Pho-
totherapy has been employed for tumor management for a considerable duration of time,
dating back to the early 1960s, shortly after its initial investigation in the treatment of retinal
detachment [7]. The achievement of effective tumor ablation in phototherapy necessitates
the utilization of high-powered lasers, ranging in magnitude up to hundreds of watts. This
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poses challenges related to its safety and logistical feasibility. Thus, to circumvent these
limitations, phototherapies that utilize externally administered phototherapeutic agents to
augment the efficacy of light-based treatments have been devised. Based on the distinct
properties of different techniques and phototherapeutic agents involved, phototherapy
can be broadly categorized into two main types, namely photothermal therapy (PTT) and
photodynamic therapy (PDT) [8].

PTT is a treatment modality that utilizes photothermal agents, encompassing both
endogenous chromophores within human tissues and exogenous agents [7]. The exogenous
photothermal agents can be classified into various types, including inorganic materials
(e.g., gold nanoparticles and graphene oxide) and organic materials (e.g., indocyanine
green (ICG) and polydopamine) [9,10]. These agents can facilitate photothermal conversion
when exposed to light radiation of specific wavelengths, leading to the release of heat that
elevates the temperature of the affected region, consequently inducing cell death [11].

In contrast to PTT, PDT relies on the production of reactive oxygen species (ROS)
to mediate its cytotoxic effects [12]. The three primary mechanisms of ROS-mediated
tumor tissue destruction are direct tumor cell killing, induction of vascular damage, and
activation of an immune response against the tumor [13–15]. PDT necessitates three key
elements, namely a photosensitizer, molecular oxygen, and light [16–18]. The majority of
photosensitizers employed in clinical settings are derived from porphyrins, chlorines, or
dyes, and are structurally based on the tetrapyrrole framework [19]. The photothermal
agents and photosensitizers can absorb light in the visible range (wavelengths of 400–
700 nm) or near-infrared (NIR) range (700–1350 nm), and commercially available lasers,
such as alexandrite lasers (720–800 nm), dye lasers (390–1000 nm), and diode lasers (630–
1100 nm) can excite these agents to generate heat or ROS [20]. The placement of light can
be further controlled using interventional techniques such as optical fibers and endoscopy,
which can minimize off-target toxicity to surrounding tissues and avoid invasive procedures
such as laparotomy and thoracotomy [20].

Although phototherapy has achieved significant success, its extended clinical application
is limited by the evident phototoxicity of traditional phototherapeutic methods [7,21–24]. The
main cause of phototoxicity is the uncontrolled distribution of phototherapeutic agents,
which can cause off-target effects in normal tissues, including the skin, blood vessels,
and liver, when exposed to natural light, ultimately resulting in the damage of normal
cells. Additionally, the uncontrolled distribution of phototherapeutic agents can lead to
lower accumulation in tumor cells, limiting the efficacy of phototherapy. Secondly, from a
technical standpoint, selectively irradiating tumor cells is a challenge due to the proximity
of normal tissues. As a result, healthy cells near the tumor may also be damaged. To
overcome these limitations, there is a need to develop a method for the controlled and
sustained delivery of phototherapeutic agents directly to tumor sites to facilitate effective
antitumor phototherapy. Therefore, advancements in drug delivery systems, such as
liposomes, micelles, nanoparticles, microspheres, and hydrogels, have provided significant
opportunities for improving antitumor phototherapy. Among these systems, hydrogels
have gained prominence due to their high biocompatibility, and have emerged as the
preferred options [25].

Hydrogels are insoluble biomaterial scaffolds with three-dimensional (3D) networks
that can be formed through physical or chemical cross-linking [26,27]. Their unique fea-
tures such as high biocompatibility, biodegradability, high water content, and flexible
mechanical properties have made them extensively utilized in various biomedical applica-
tions, including tissue engineering, cell culture, drug delivery, biosensors, and antitumor
therapy [28–32]. In recent years, hydrogels have garnered significant interest as drug
carriers in antitumor phototherapy owing to their ability to achieve localized delivery of
phototherapeutic agents while minimizing their distribution in non-target sites [33–37].
As a result, this approach can enhance therapeutic efficacy while reducing phototoxicity
from phototherapy [38–40]. In addition, hydrogels also offer a versatile platform that
shows significant potential to complement other tumor treatments such as immunother-
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apy, chemotherapy, and radiotherapy, and exhibit excellent synergistic antitumor efficacy
(Figure 1) [41–44].
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In this review, we will provide a summary of recent advancements in the design of
hydrogels for antitumor phototherapy and offer a comprehensive overview of the latest
advances in hydrogel-based phototherapy and its combination with other therapeutic
modalities for tumor treatment. To illustrate these advances, representative examples
will be presented. Lastly, the potential applications of hydrogels in clinical antitumor
phototherapy will be discussed.

2. Hydrogels

Hydrogels are 3D networks of polymers that contain a significant amount of wa-
ter or other fluids. Due to their high water content and cross-linked structure, hydro-
gels have potential for the encapsulation and delivery of photosensitizers/photothermal
agents [41–44]. Furthermore, the characteristics of hydrogels, such as surface topography,
porosity, and mechanical strength, depend largely on the properties of the polymers used
and the mechanism of polymeric cross-linking [45,46]. By controlling various features of
hydrogels, it is expected that a wide range of selectivities and diversities can be achieved for
antitumor phototherapy. Hydrogels can be classified based on different parameters, includ-
ing the source of materials (natural or synthetic), polymeric composition (homopolymeric,
copolymeric, or multipolymeric), crosslinking mechanism (physical or chemical), sample
size (nanogels, microgels, macrogels, or bulk hydrogels), and degradability (degradable
or nondegradable) [47–50]. Considering the numerous excellent review articles on the
introduction, classification, preparation, and application of hydrogels that have already
been published [51–58], we will refrain from providing an exhaustive classification of
hydrogels in this work.

For localized antitumor phototherapy, an injectable hydrogel is the preferred option
for local administration. Compared to traditional hydrogels with pre-fabricated shapes,
injectable hydrogels are better applied for filling irregular defects caused by tumor resec-
tion. They can also be injected into deep tissue through minimally invasive administration
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procedures [59–61]. Therefore, it is not surprising that most studies on hydrogel-based
antitumor phototherapy are reported on the usage of injectable hydrogels for local hydrogel
administration. Moreover, the use of conventional hydrogels in antitumor phototherapy is
also limited by slow response rates, uncontrollable drug release, and difficulty in manipu-
lating swelling and shrinking kinetics. To overcome these limitations, emerging hydrogels
such as smart hydrogels and nanogels have garnered significant attention in antitumor
phototherapy.

2.1. Smart Hydrogels

The distinctive characteristics of the tumor microenvironment, such as changes in
overexpression of certain proteins and enzymes, acidic pH, hyperthermia, and redox po-
tential have captured the attention of researchers who seek to utilize stimulus-responsive
hydrogels, commonly known as smart hydrogels, for tumor treatment [62,63]. In contrast
to conventional hydrogels, smart hydrogels have the unique ability to alter their physical
or mechanical properties, such as swelling, shrinking, and undergoing a phase transition,
in response to various stimuli, and thus make them suitable for various biomedical applica-
tions [64]. These stimuli can be external (such as temperature, magnetic fields, and light)
or endogenous (such as enzymes, ionic strength, pH, and redox potential) [64–71]. This
feature allows for on-demand drug release, leading to improved efficacy and reduced side
effects from drug leakage [72–76]. Therefore, the utilization of smart hydrogels has become
increasingly popular in the field of phototherapeutic agent-based phototherapies for tumor
treatment [58]. In recent years, the widely used smart hydrogels for antitumor photother-
apy are thermosensitive hydrogels, pH-sensitive hydrogels, photosensitive hydrogels, and
redox-sensitive hydrogels.

1. Thermosensitive hydrogels. The application of thermosensitive hydrogels for antitu-
mor phototherapy has undergone extensive research, with this type of smart hydrogel
being the primary focus in the field. The unique sol–gel phase transition of thermosen-
sitive hydrogels in response to temperature changes has led to their classification into
two distinct groups: lower critical solution temperature (LCST) hydrogels and upper
critical solution temperature (UCST) hydrogels [77,78]. The most commonly used
thermosensitive hydrogels in recent years are LCST hydrogels, which are in a gel state
above their LCST and a solution state below it. In the presence of temperatures lower
than the LCST, the hydrophilic moieties present in the polymer chains of the hydrogel
form hydrogen bonds with hydrophilic molecules present in their surroundings, caus-
ing the hydrogel to display high solubility. Upon temperature elevation, hydrogen
bonds are weakened while the hydrophobic components of polymer chains experi-
ence increased interaction. This can lead to a substantial drop in polymer solubility,
triggering matrix shrinkage or phase transition [79,80]. Furthermore, hydrogels with
an LCST within the temperature range of room temperature to body temperature are
highly suitable for in situ gelling upon injection. Additionally, the recent development
of LCST hydrogels involves the incorporation of natural, such as chitosan [81], or
synthetic macromolecules, such as poly-(N-isopropyl acrylamide) (PNIPAM) [82–84]
and Pluronic F127 [85–88].

2. pH-sensitive hydrogels. Solid tumors are associated with an acidic tumor microen-
vironment, which is primarily due to the increased production of lactate by tumor
cells resulting from their high rate of aerobic glycolysis [89]. The acidic nature of the
tumor microenvironment has motivated the exploration of pH-sensitive drug delivery
hydrogels to neutralize the microenvironment and impede tumor progression. Thus,
pH-responsive hydrogels have been widely investigated as a localized drug deliv-
ery approach to achieve targeted antitumor phototherapy with reduced systematic
toxicity. pH-responsive hydrogels can be divided into two main categories, namely
anionic–cationic pH-responsive hydrogels and covalent pH-responsive hydrogels.
The matrices of the anionic–cationic pH-responsive hydrogels typically comprise
numerous weakly acidic or basic groups (e.g., carboxyl and amine groups) that can
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donate or accept protons. Alterations in the external pH can cause changes in the
characteristics of these polymers, such as solubility and volume, which can lead to
phase transitions and the release of drugs. In the case of in situ injection, the basic
groups (such as amine groups) of the polymer undergo positive charge due to proton
acceptance from the acidic external pH of the tumor microenvironment. Consequently,
the polymer chains experience expansion and swelling from the electrostatic repul-
sion among charges. The enlarged mesh of the swollen hydrogels then facilitates
the diffusion of drugs throughout the network. On the contrary, under acidic con-
ditions, the presence of acidic groups (such as carboxyl group) in polymers causes
the polymer chains to shrink. This shrinkage leads to the expulsion of water and
drug molecules [90]. As for covalent pH-responsive hydrogels, the pH-sensitivity
is attributed to degradation of acid-cleavable covalent bonds, such as ketals and
hydra-zone bonds [91,92]. In addition, several natural polymers (such as chitosan,
alginate, and cellulose) and synthetic polymers (such as polyamines and pyridine
derivatives) have been extensively investigated for the production of pH-sensitive
hydrogels [93]. Among these, chitosan and its derivatives are the most commonly
employed polymers to develop pH-responsive hydrogels for antitumor phototherapy.

3. Photosensitive hydrogels. Photosensitive hydrogels can undergo property changes
or a phase transition triggered by changes in their chemical structure or conforma-
tion under radiation, ultraviolet, or visible light [94,95]. Incorporating photothermal
agents into hydrogel systems is a widely used method that involves photothermal
conversion when exposed to light radiation, leading to a temperature increase in
the system and a subsequent phase transition in thermosensitive hydrogels. This
approach is also considered part of photothermal therapy. Another common method
used to create light-responsive hydrogels involves polymers with a photoreactive
moiety. This moiety can respond to light by undergoing photochemical reactions,
such as photoisomerization, photocleavage, and crosslinking point photopolymeriza-
tion. These reactions alter the properties of the hydrogel, including its crosslinking
density, hydrophilicity, and charging state, which lead to phase transition and the
release of drugs [93]. One example of a material used to prepare light-responsive
hydrogels is gelatin methacryloyl (GelMA). This compound is created by incorpo-
rating methacryloyl groups into gelatin, which allows for photopolymerization by
crosslinking with a photo-initiator [96]. Moreover, radiation can be used to trigger the
swelling of hydrogels via ionizable functional groups. As a result of radiation-induced
ionization, the osmotic pressure inside the hydrogel matrix increases, causing it to
swell. This mechanism is similar to pH-sensitive hydrogels [95]. In recent years, the
use of photosensitive hydrogels represents a promising approach for drug delivery
in tumor treatment, as it enables noncontact drug delivery with high temporal and
spatial precision. As a result, photosensitive hydrogels also have emerged as an
attractive drug delivery system for antitumor phototherapy.

4. Redox-sensitive hydrogels. The current emphasis on redox-sensitive hydrogels is
primarily centered on addressing tumor drug resistance and facilitating drug delivery.
Redox-sensitive hydrogels can be designed to preferentially release drugs in the
cytoplasm of tumor cells as opposed to the extracellular matrix and normal cells,
primarily due to the higher levels of glutathione (GSH) in the former. Specifically, the
cytoplasm contains a much higher concentration of GSH (2–10 mM) compared to the
extracellular matrix (2–20 µM) [97]. In multidrug-resistant tumors, this difference is
particularly pronounced, with the cytoplasmic GSH concentration being four times
higher than in healthy tissues [98]. The incorporation of GSH-reactive groups (such
as ditelluride, disulfide, and diselenide bonds) is a fundamental principle underlying
such hydrogels, enabling their cleavage through the acceptance of electrons from the
thiol groups in GSH [99,100].
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2.2. Nanogels

Nanogels, which are colloidal particles of hydrogels at the nanoscale, have emerged
as promising approaches for antitumor phototherapy [101]. Nanogels can be synthesized
based on natural or synthetic polymers using a range of cross-linking techniques, including
functional group cross-linking, radiation cross-linking, cross-linking polymerization, crystal-
lization, and ionic cross-linking [102]. Furthermore, various nanogel configurations can be
synthesized, such as yolk–shell architectures, double-walled structures, hollow nanogels, and
core-shell nanoparticles [103–107]. Over the years, the biomedical applications of nanogels
have been the subject of numerous review articles, many of which have examined the advance-
ments made in drug delivery [108–111], regenerative medicine [112,113], imaging [114–117],
diagnostics [118–120], theranostics [121,122], and tumor therapy [111,123–125].

It is worth noting that the ability of nanogels to cross biological barriers and deliver
agents intracellularly through endocytosis makes them an attractive candidate for ad-
vanced drug delivery systems [126,127]. Nanogels also offer a solution to the problem
of fast clearance of phototherapeutic agents in vivo by utilizing enhanced permeability
and retention (EPR) effect to enhance their retention in tumors, thereby improving the
therapeutic outcome of phototherapy for tumor treatment [7,21]. Specifically, the EPR effect
is primarily attributed to the aggressive proliferation of tumor cells, which leads to the
consumption of local nutrients and irregular blood vessel formation. In turn, the abnormal
vessels contain porous openings that increase the ability of circulating nanogels to penetrate
the tumor microenvironment. In contrast, non-malignant tissues are less penetrable due to
the intact vasculature barrier. Furthermore, nanoparticles tend to accumulate selectively
within tumor tissues due to the impaired lymphatic drainage system in those areas. In
general, nanogels must have a size between 10 and 200 nm to achieve the EPR effect [128].
In addition to size, other intrinsic characteristics of nanogels, such as shape, electrical
charge, hydrophilicity, and circulation time in the bloodstream, can impact the efficacy of
the EPR effect [129]. While the effectiveness of EPR-based targeting has been demonstrated
in preclinical tumor models in vivo, this approach has several drawbacks. These include
limited efficacy for certain early-stage tumors due to their smaller size and more regular
vasculature, heterogeneous throughout resulting from malformation of vessel fenestrations,
and a lack of investigation of the EPR effect in human tumors [130,131].

Moreover, the large surface area of nanogels enables increased opportunities for multi-
valent bioconjugation and enhanced drug-loading capacity [132]. As a result of this unique
nanostructure, nanogels demonstrate a rapid response to changes in the environment.
Accordingly, smart nanogels, also called stimuli-responsive nanogels, can be designed to
achieve triggered drug release in response to various stimuli, such as light, ion-exchange,
pH, and temperature [133–136]. The use of smart nanogels as a drug delivery system for
anti-tumor phototherapy holds great promise, as evidenced by recent reports on thermosen-
sitive nanogels [137], pH-sensitive nanogels [138,139], photosensitive nanogels [140], and
redox-sensitive hydrogels [139].

Ongoing research also indicates that smart nanogels could potentially revolution-
ize the field of tumor treatment by functioning not only as drug carriers but also as
diagnostic, imaging, and theranostic agents [141]. Additionally, nanogels can be further
customized to incorporate additional beneficial features, including prolonged circula-
tion, targeted cell recognition, and multifunctionality through the integration of multiple
features [126,142]. As a result, nanogels have emerged as one of the most promising
platforms for phototherapeutic agent-based phototherapy.

3. Hydrogel-Based Phototherapy
3.1. Hydrogel-Based PTT

PTT involves the use of photothermal agents to generate localized heat [7]. Upon
irradiation with light of a specific wavelength, the photothermal agents undergo pho-
tothermal conversion, which leads to an increase in kinetic energy and heating of the
surrounding microenvironment. The extent of tissue damage induced by PTT depends



Gels 2023, 9, 286 7 of 35

on the temperature achieved. A heat-shock response is initiated at 41 ◦C [143], while
irreversible tissue damage occurs at 42 ◦C [143,144]. Heating tissues to 42–46 ◦C for 10 min
leads to cell necrosis, while cell death occurs almost instantaneously at tissue temperatures
above 60 ◦C [145]. Although capable of eliminating established tumors, PTT may result
in unintentional harm to healthy tissue adjacent to the tumor [146]. The incorporation of
hydrogels in PTT can be beneficial in preserving the local temperature and reducing the
risk of burns to healthy tissues. Furthermore, utilizing hydrogels to retain photothermal
agents also enables repeated PTT sessions with a single administration of the hydrogel.

Hydrogels are widely used as carriers for investigating new photothermal agents for
antitumor PTT. Yao et al. [85] achieved excellent antitumor PTT efficiency by incorporat-
ing titanium carbide nanoparticles as photothermal agents into thermosensitive Pluronic
F127 hydrogels. Wang et al. [147] utilized an alginate-calcium hydrogel as a carrier to
demonstrate the potential application of commercial copper sulfide as a photothermal
agent for PTT. In another study, Wang et al. [148] prepared an alginate–calcium–genipin
hydrogel that can achieve brilliant fluorescent and photothermal effects based on the
fluorescent/photothermal features of the crosslinking product of genipin and protein
(Figure 2). This hydrogel system provided a feasible solution for the homogenous disper-
sion of genipin and presented a novel methodological strategy for fluorescence imaging-
guided antitumor phototherapy. However, it should be noted that the long-term biosafety
of these photothermal agents should be carefully evaluated.
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Self-assembled injectable hydrogels have received great attention in antitumor PTT.
Hsiao et al. [149] modified polyaniline side chains into chitosan derivatives, which can
self-assemble to form micelles and rapidly form hydrogels under the stimulation of a
local acidic environment (pH = 6.9–7.0) in tumors. These hydrogels can then be loaded
with hollow gold nanospheres as photothermal agents, which function as a heating source
under NIR light irradiation. The local temperature of the tumor can quickly reach and be
maintained at 50–55 ◦C within 5 min, surpassing the photothermal effect of commonly
used inorganic photothermal agents, such as gold nanospheres. Additionally, the hydrogel
system can prevent the leakage of the micelles and enable multiple effective treatments,
thereby achieving the elimination of tumors and preventing tumor relapse. Moreover, Fan
et al. [150] prepared an iodine-loaded starch-g-PNIPAM polymer that can self-assemble
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into nanogels and then transform into an injectable thermosensitive hydrogel at body tem-
perature. The hydrogel showed an excellent photothermal effect due to the “iodine-starch”
complex’s photothermal effect. Furthermore, the hydrogel can also exhibit bactericidal
effects due to the release of iodine. However, the stability of these self-assembled hydrogels
in the presence of body fluids should be further evaluated. Moreover, the intricate synthesis
procedure involved in creating supramolecular hydrogels can impede their reproducibility
and practical utilization.

Nanogel-based PTT also has emerged as an attractive strategy for tumor treatment.
Zhou et al. [151] reported the facile synthesis of a theranostic nanogel system for photoa-
coustic (PA) imaging-guided PTT of tumors. They used a double emulsion approach to
synthesize γ-polyglutamic acid (γ-PGA) nanogels loaded with polyaniline (PANI). Then,
they applied the carbodiimide coupling method to crosslink them with cystamine dihy-
drochloride (Cys). After loading with aniline monomers, the obtained γ-PGA/Cys nanogels
underwent in situ polymerization to produce the final nanogel system. Additionally, this
nanoplatform can be extended for diverse theranostic applications by functionalizing the
surface carboxyl groups of the nanogels or by loading other theranostic elements. Further-
more, Zhang et al. [152] developed a polyethylenimine (PEI) nanogel system integrated
with Gd and copper sulfide (CuS) for tumor-targeted PTT. The final cross-linked PEI
nanogels were prepared using an inverse emulsion method. Under NIR light irradia-
tion, the nanogel platform can realize magnetic resonance (MR) and PA imaging-guided
antitumor PTT (Figure 3).
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Hydrogels for tumor therapy are expected to degrade after achieving the therapeutic
purpose. Therefore, hydrogels with an adjustable degradation rate have emerged as highly
appealing options for antitumor therapy. Wang et al. [153] achieved efficient PTT on tumors
by using alginate–calcium hydrogel as the carrier of the prepared photothermal agent,
dendrimer-encapsulated platinum nanoparticles. Under NIR light irradiation, the hydrogel
system can quickly heat up to 47 ◦C and maintain this temperature through multiple
photothermal treatments, demonstrating a strong immobilizing effect of the hydrogel.
After achieving the desired curative effect, the alginate–calcium hydrogel can be degraded
by injecting chelates (DTPA), and the nanoparticles can be quickly cleared from the body
through renal secretion. The adjustable degradation of the hydrogel system can greatly
reduce the risk of toxicity from the long-term retention of the hydrogel in the body.

Following the completion of PTT, some localized hydrogel can also be employed
to facilitate the tissue repair process. Liao et al. [154] incorporated gold nanorods and
nanohydroxyapatite into a hydrogel composed of methacrylated gelatin/methacrylated
chondroitin sulfate, resulting in a hydrogel system with remarkable PTT effects and bone-
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regenerative properties. Chen et al. [86] utilized a thermosensitive Pluronic F127 hydrogel
as a carrier for carrageenan-capped gold–silver nanoparticles as a photothermal agent,
aiming for the prevention of tumor recurrence and promotion of wound healing. However,
the long-term safety of gold nanoparticle-encapsulated hydrogels in living animals is
questionable due to the unknown cytotoxicity associated with gold nanoparticles.

3.2. Hydrogel-Based PDT

PDT primarily induces tumor damage through the following mechanisms: (1) the
direct killing effect of ROS on tumor cells, leading to apoptosis, necrosis, or autophagy;
(2) photosensitizers target the tumor’s vascular system to form thrombi, resulting in hy-
poxic infarction of tumor tissues; and (3) the inflammatory response triggered by the
release of inflammatory factors from apoptotic or necrotic tumor cells can promote an
antitumor immune response [155–158]. The application of PDT necessitates the presence
of three fundamental components: a photosensitizer, molecular oxygen, and light. Upon
exposure to light, the photosensitizer absorbs photons, resulting in an excited electronic
state. After excitation, the photosensitizer can transition to an excited singlet state and
then undergo intersystem crossing to produce a long-lasting excited triplet state. The
relaxation of the molecule can result in the emission of energy via fluorescence, heat, or
other photophysical processes. Upon reaching the excited triplet state, the photosensitizer
can induce the formation of ROS through two separate pathways. In the first pathway,
the photosensitizer engages in electron transfer reactions to produce radicals and radical
ions. In the second pathway, the photosensitizer transfers energy to triplet ground-state
molecular oxygen (3O2), resulting in the production of highly reactive singlet oxygen
(1O2) [159–161]. However, traditional PDT is limited by lack of targeting, aggregation in
aqueous solutions, easy degradation, and instability of the photosensitizer, indicating the
need for improvement to effectively kill tumor cells [162]. The incorporation of photosensi-
tizers into hydrogels greatly enhances their localized concentration and biocompatibility,
prolongs their residence time within the body, and ultimately augments the efficacy of
PDT [163]. The incorporation of photosensitizers into hydrogels is a viable approach for
enhancing the efficiency of photosensitizers [44,48].

The application of hydrogels as carriers has been extensively investigated for the
evaluation of novel photosensitizers in the realm of antitumor PDT. Zhang et al. [164]
incorporated TiO2 nanorods as a photosensitizer into PEGDA hydrogel. Under NIR light
irradiation, TiO2 nanorods induced PEGDA molecules surrounding the tumor cells to wrap
around the cell surface, while also generating a large amount of ROS to cause necrosis
of the tumor cells. The presence of the hydrogel system also prevented TiO2 nanorods
from flowing to normal tissues, reducing the possibility of side effects. In another study,
Zhang et al. [81] synthesized a novel photosensitizer, NaYF4:Yb3+, Tm3+/Zn2GeO4:Mn2+/g-
C3N4@hyaluronic acid (UZC@HA), and incorporated it into a thermosensitive chitosan
hybrid hydrogel. UZC@HA exhibited tumor-targeting capability and could generate ROS
upon irradiation with a 980 nm laser, leading to the destruction of tumor cells in the
hydrogel. In a subcutaneous model of mouse breast cancer, intratumoral injection of the
thermosensitive hydrogel demonstrated high antitumor efficacy with no side effects on
normal tissues. However, the long-term toxicity of these novel photosensitizers should be
thoroughly evaluated.

Nanogels are also applied in PTT for efficient antitumor PDT. In the study conducted
by Palantoken and colleagues [165], a nanoplatform for antitumor PDT was developed
utilizing Ce6-bearing pullulan nanogels. The resultant nanogel system demonstrated
enhanced water solubility and stability of Ce6. Notably, the nanogel exhibited significantly
greater anti-tumor effects compared to the commonly used photosensitizer photofrin,
with a 780-fold increase in efficacy observed. He et al. [166] developed a smart self-
quenched nanogel for targeted PDT (Figure 4), which is crosslinked using poly[(2-(pyridin-
2-yldisulfanyl) ethyl acrylate)-co-[poly(ethylene glycol)]] (PDA-PEG) polymers conjugated
with photosensitizers pheophorbide A (PhA) via a disulfide bond. The nanogel inhibited
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the generation of 1O2 through self-aggregation-induced fluorescence quenching of PhA. It
is also decorated with an anti-fluorescence resonance energy transfer affibody to improve
its tumor-homing ability. The nanogel was quenched in the bloodstream, where the GSH
concentration was low, reducing phototoxicity to normal tissues. Upon accumulation in
tumor tissues, the nanogel can be activated by an elevated GSH concentration and realize
efficient antitumor PDT. However, the long-term degradability and toxicity of nanogels
should be further evaluated.
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Although PDT shows potential in antitumor treatment, it faces limitations in treating
multidrug-resistant tumor, such as protective autophagy following sub-lethal PDT [167,168]
and the short lifetime and limited diffusion distance of 1O2 [44,169,170], which is the
primary form of ROS generated by PDT. Zhang et al. [138] designed a supramolecular
nanogel system for the delivery of the photosensitizer tetraphenylporphinesulfonate (TPPS)
to overcome multidrug resistance in tumor cells. The nanogel was prepared through
the self-assembly of TPPS, organosilica nanodots, and methoxy-poly(ethylene glycol)113-
block-poly(l-glutamic acid sodium salt)200. By exploiting the endo/lysosomal entrapment
mechanism, the photosensitizer-loaded nanogels can evade drug efflux pumps and be
internalized by drug-resistant tumor cells. The pH-sensitive nature of the nanogels allowed
them to aggregate in the acidic endosomes/lysosomes, leading to their retention in cells.
Furthermore, the nanogel-mediated damage to lysosomes after PDT inhibited protective
autophagy, resulting in improved therapeutic performance. However, it should be noted
that the long-term biosafety of the nanogel needs to be further investigated.

Moreover, current PDT approaches are suboptimal for treating large and deep-seated
solid tumors due to poor light penetration depth [171]. To overcome this challenge, several
chemical solutions for designing new-generation photosensitizers [172–174] and physical
solutions for choosing alternative light sources [175–180] have been proposed and investi-
gated to achieve more efficient PDT. Recently, Yang et al. [171] proposed a novel bacterial
solution to address the poor light penetration depth of PDT. They used modified biolumi-
nescent bacteria as an internal light source to activate the photosensitizer chlorin e6 (Ce6),
enabling even illumination of whole tumors, and embedded it inside an alginate–calcium
hydrogel. This hydrogel-based approach demonstrated superior therapeutic efficacy over
conventional PDT.
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Furthermore, another inherent problem of PDT is that its therapeutic effects depend
on oxygen availability. Hypoxia is a typical feature of most tumor microenvironments
caused by the rapid proliferation of tumor cells and abnormal growth of tumor blood
vessels [181–186]. Currently, most photosensitizers consume a large amount of oxygen
during PDT, which undoubtedly exacerbates tumor hypoxia and, in turn, significantly
weakens the therapy’s effectiveness. The anti-hypoxia hydrogel system developed by
Zhang et al. [187] presented innovative approaches to addressing the challenge of hypoxia
in antitumor PDT. They used an injectable hydrogel made of red blood cell (RBC) mem-
brane and sodium alginate to carry the photosensitizer Rose Bengal (RB), cyanobacteria
Synechococcus elongatus PCC 7942 (S. 7942), and upconversion nanoparticles (UCNPs).
In this anti-hypoxia hydrogel system, S. 7942 acted as a source of oxygen for PDT, while
UCNPs facilitated the conversion of 980 nm light to visible light, triggering RB activation
to release ROS for antitumor treatment (Figure 5). However, it is imperative to thoroughly
assess the long-term biosafety of bacterial hydrogels. Moreover, the intricate process in-
volved in synthesizing bacterial hydrogels could potentially hinder their reproducibility
and widespread practical application.
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3.3. Hydrogel-Based PDT Combined with PTT

The combination of PDT and PTT has been investigated as an efficient approach for
enhancing the efficacy of antitumor phototherapy. By inducing heat, PTT can facilitate
the intracellular transportation of photosensitizers and elevate the oxygen concentration
in tumor tissue, which can result in enhanced efficacy of PDT [188–191]. Moreover, PDT-
generated ROS can hamper the protective effects of heat shock protein (HSP) in tumor cells
during PTT [192].

Hydrogels are widely used as a platform for synergistic PTT/PDT of tumors. Yue
et al. [193] prepared an injectable and self-healing hydrogel by combining Eu-doped red
fluorescent carbon dots (CDs) with oxidized hyaluronic acid. The CDs were used not
only as a cross-linking agent to form a hydrogel network through the Schiff base reaction
but also as a photosensitizer/photothermal agent to realize efficient PTT/PDT synergistic
treatment. This injectable hydrogel also showed good biocompatibility and provided a
promising method for effective injectable hydrogel-based phototherapy for tumor treat-
ment. Similarly, Qi et al. [194] synthesized an injectable and self-healing hydrogel through
the formation of Schiff base bonds between hydroxypropyl chitosan and oxidized sodium
alginate. After loading bovine serum albumin-modified molybdenum disulfide nanoflakes
into the hydrogel system, it could realize excellent synergistic PTT/PDT of the tumor. In
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another study, Wang et al. [195] incorporated Mn2+ and hydrazided hyaluronan (HHA) to
develop an injectable and self-healing hydrogel system. The hydrogel can be formed in a
physiological pH condition through a mineralization-triggered Mn-hydrazide crosslinking.
Incorporating photosensitizer chlorin e6 and manganese dioxide (MnO2) nanoparticles into
the hydrogel enabled the accomplishment of oxygen-enhanced antitumor PTT/PDT syner-
gistic treatment (Figure 6). However, the long-term toxic concerns of MnO2 nanoparticles
should be thoroughly evaluated.
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Additionally, Hou et al. [196] investigated the development of a novel thermosen-
sitive agarose-based hydrogel, which was introduced with sodium humate, MnO2, and
Ce6 to achieve effective PDT and PTT of tumors. The inherent characteristics of the ther-
mosensitive hydrogels enabled their intra-tumoral injection, deep tissue penetration, and
exceptional retention at the tumor site. Under NIR light irradiation, the photothermal agent
sodium humate generated heat to kill tumor cells. The efficacy of PDT was enhanced by the
produced heat, which facilitated the release of photosensitizer Ce6 and strengthened the
catalytic effects of manganese dioxide on H2O2 to alleviate hypoxia. Furthermore, in vivo
experiments have provided additional evidence regarding the ultralow systemic toxicity
induced by the hybrid hydrogel.

4. Hydrogel-Based Phototherapy Combined with Other Therapeutic Modalities

The combination of phototherapy with conventional tumor therapies such as im-
munotherapy [197], chemotherapy [198], and radiotherapy [199] has shown significant
potential for improving treatment outcomes, demonstrating strong synergistic antitumor
effects. The natural imaging abilities of most organic photosensitizers and photothermal
agents can provide phototherapy with diverse imaging functions, including PA imag-
ing [200,201], MR imaging [202], and NIR fluorescent imaging [198]. The combination of
diagnostic and therapeutic approaches is a promising way to improve the precision and
efficacy of tumor therapy. Hydrogels possess a distinctive network structure and high
water content, which enable them to carry both hydrophilic and hydrophobic molecules to
achieve synergistic antitumor effects. Thus, hydrogel-based phototherapies can be used in
conjunction with other antitumor therapies to improve their efficacy in treating tumors.
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4.1. Hydrogel-Based Phototherapy Combined with Immunotherapy

The effectiveness of combining phototherapy and immunotherapy in tumor treat-
ment has been extensively studied in recent years and also has been proven to be a highly
synergistic approach [41]. Phototherapy can directly eradicate the tumor mass through
photodynamic or photothermal effects and augment the effectiveness of immunotherapy.
Evidence suggests that PDT can efficiently induce the release of danger-associated molecu-
lar patterns and tumor-associated antigens (TAAs) from tumor cells, which play a critical
role in eliciting strong immune responses [203–208]. Additionally, PTT has been shown to
promote immune responses and enhance the effectiveness of immunotherapy by triggering
immunogenic cell death [209].

Hydrogels have recently emerged as a promising drug delivery system for the lo-
cal administration of various immunotherapeutic agents in tumor immunotherapy [210].
They enable the targeted delivery of drugs to tumors, resulting in enhanced antitumor
immunity at lower doses. Therefore, the codelivery of immunotherapeutic agents and
phototherapeutic agents via hydrogels is anticipated to improve therapeutic efficacy by
producing a combinational phototherapy-immunotherapy effect. For example, Dong
et al. [211] developed a self-assembled injectable hydrogel system for combined antitumor
photothermal/immunotherapy. The hydrogel was formed through the self-assembly of a
copolymer of PEG and α-cyclodextrin, which was conjugated with New Indocyanine Green
(IR820). Cytosine–phosphate–guanine (CpG) nanoparticles were fabricated separately and
then added to the hydrogel system. Under NIR light irradiation, IR820 generated heat,
which destroyed the tumor and induced antigens releasement from tumor cells. Addi-
tionally, CpG nanoparticles can regulate the immune function of various cells, including
CD8+ T cells, dendritic cells, regulatory T cells, and myeloid-derived suppressor cells,
resulting in a significant improvement in the effectiveness of the combined photother-
mal/immunotherapy treatment compared to single-modality therapy. Additionally, Fei
et al. [212] developed an injectable hydrogel composed of RBCs for combined antitumor
photothermal/immunotherapy. The hydrogel can be activated by physiological signals
such as platelets and thrombin, and it has a deep-red color that enables it to act as a photo-
sensitizer when heated by NIR light. Intratumoral injection of the hydrogel can achieve
photoablation of tumors, producing debris of tumor cells and TAAs that have the potential
to stimulate adaptive immune responses against tumor. The administration of the immune
adjuvant imiquimod within the RBCs can elicit long-lasting and potent immune responses,
which can prevent the spread and recurrence of tumor. Furthermore, recent studies also in-
vestigated the use of hydrogels, such as alginate–calcium hydrogel [213], alginate–collagen
hydrogel [214], and gellan gum hydrogel [215], as carriers for phototherapeutic agents and
immune stimulators in the context of combined antitumor photothermal/immunotherapy.

4.2. Hydrogel-Based Phototherapy Combined with Chemotherapy

Despite its widespread usage, chemotherapy, the most common tumor treatment,
is faced with multiple challenges, including severe systemic side effects, inability to tar-
get tumor heterogeneity, low bioavailability, off-target effects, and drug resistance. PTT
can generate heat that enhances the permeability of extracellular matrix, cell membranes,
and blood vessels [216–219]. As a result, this physiological alteration increases the efficacy
of chemotherapy by increasing the concentration of antitumor drugs within the tumor tis-
sue [220]. Chemotherapy can also aid in improving the sensitivity of tumor cells to PTT in
return [221,222]. In addition, the utilization of hydrogels as a drug delivery platform can
enable efficient phototherapy as well as address the limitations of chemotherapy by enhancing
the efficacy and reducing the toxicity of chemotherapy drug molecules [77,79,141].

The configuration of the hydrogel scaffold used for phototherapy can be designed
using the 3D printing technique. Wei et al. [223] presented a simple and effective technique
for producing core-shell hydrogel fibers/scaffolds that had potential application in PTT-
chemotherapy for residual breast cancer treatment. The core-shell hydrogel fibers/scaffolds
were created through a coaxial 3D printing technique, where concentrated alginate inks
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mixed with polydopamine as a photothermal agent were used for the shell layer, while the
core consisted of temperature-sensitive gelatin hydrogels loaded with therapeutic drug
doxorubicin (DOX). The NIR irradiation could cause a temperature increase, leading to a
gel-sol transition of the core hydrogels and resulting in on-demand drug release. Moreover,
using DOX, polydopamine nanoparticles, gellan gum, and sodium alginate, Xu et al. [224]
created a 3D-printable hydrogel scaffold designed to achieve antitumor photothermal
chemotherapy and promote wound healing following surgical intervention.

An injectable hydrogel is an ideal form of hydrogel for local hydrogel administration
for phototherapy. The study conducted by Yang et al. [225] revealed that incorporat-
ing selenium as an anticancer agent and ICG as a photothermal agent into an injectable
catecholamine-modified hyaluronic acid hydrogel can result in efficient PTT-chemotherapy
for breast cancers. Additionally, Wu et al. [226] designed an injectable hydrogel composed
of a lonidamine-conjugated peptide (LND-K) and photosensitizer TPPS4. The peptide
self-assembled to form the hydrogel and enabled the targeted delivery of lonidamine
to mitochondria for efficient photodynamic/chemotherapy combined therapy (Figure 7).
In addition, Hou et al. [227] developed a nanogel system by combining an engineered
polypeptide PC10A–arginine–glycine–aspartic acid (PC10ARGD) with Ag2S quantum dot
as a photosensitizer. The nanogel system was subsequently loaded with DOX, a chemother-
apy drug, and Bestatin, an immune-adjuvant drug, to transform into an injectable hydrogel.
This strategy provides an effective combination of PTT and immunotherapy for the treat-
ment of tumors. However, it should be noted that the long-term biosafety of Ag2S quantum
dots needs to be further investigated.

Thermosensitive hydrogels are the most popular smart hydrogels for synergistic PTT-
chemotherapy. For hydrogels with good fluidity or thermosensitivity, PTT can regulate and
control the release of chemotherapy drugs. For example, Huang et al. [87] developed a ther-
mosensitive Pluronic F127 hydrogel platform incorporating self-assembled nanoparticles
containing thermosensitive liposomes, gold–manganese oxide (Au–MnO) nanoparticles,
and DOX. Under NIR light irradiation, the Au–MnO triggered the nanoparticles to release
DOX into the hydrogel, while the sol–gel transition of the hydrogel at 37 ◦C avoided
drug leakage and maintained sustained DOX release at the tumor site. Furthermore, Qi
et al. [82] developed a thermosensitive hydrogel through the self-assembly of thermosensi-
tive polymers PNIPAM, PEGDA, and 2,2-azobis [2-(2-imidazolin-2-yl) propane, which can
undergo a sol–gel transition triggered by heat. After being loaded with ICG-methotrexate
(MTX) nanomedicines, the hydrogel system exhibited additional desirable PTT efficiency
and controlled release of MTX. Furthermore, Chang et al. [228] developed a thermosen-
sitive hydrogel by combining thermosensitive polymers P(NIPAM-co-AH) and oxidized
carboxymethyl cellulose. With the addition of a photothermal agent gold nanorods and
DOX, the hydrogel system can realize the NIR-triggered photothermal effect and localized
drug release of DOX. In another study, Zhang et al. [88] developed an injectable hydrogel
system that incorporated chitosan polymeric micelles loaded with PTX and PEGylated
gold nanorods in a thermosensitive Pluronic F127 hydrogel. This innovative approach
enabled precise and selective thermal ablation of tumors while reducing the systemic
toxicity of PTX. In addition, He et al. [229] synthesized a thermosensitive DNA hydrogel
using acrydite-modified DNA and acrylamide monomers through conventional radical
polymerization, which was integrated with DOX and a photothermal agent Ti3C2TX-based
MXene nanosheets to establish the efficient antitumor PTT-chemotherapy (Figure 8). The
gel-to-solution transition of the DOX-loaded MXene-DNA hydrogel can be triggered by a
temperature rise resulting from the photothermal effect of MXene nanosheets upon NIR
light irradiation. This process also involved the unwinding of DNA duplex crosslinking
structures, enabling the on-demand release of DOX. Note that the long-term toxicity of
Ti3C2TX-based MXene nanosheets should be thoroughly evaluated.
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Figure 7. Schematic illustrations of self-assembled injectable hydrogels for combinational antitumor
PDT-chemotherapy. (A) Injectable formulation of LND-K and TPPS4 for PDT. (B) Synergistic cancer
therapy achieved by utilizing the self-assembled injectable hydrogel. Reprinted with permission
from [226].

In addition to the aforementioned thermosensitive hydrogels, other types of stimulus-
responsive hydrogels have also been investigated for combinational antitumor phototherapy-
chemotherapy. Ghavaminejad et al. [83] incorporated DOX and photothermal agent
dopamine nanoparticles, which were loaded with chemotherapy drugs bortezomib, into a
thermosensitive pNIPAAm-co-pAAm hydrogel. Under the acidic tumor microenvironment,
the boronic acid functionality of bortezomib would dissociate from the catechol groups of
dopamine nanoparticles, thus leading to the release of this chemotherapy drug. As a result,
the hydrogel can deliver drugs under an acidic environment as well as under NIR light
irradiation. Zhang et al. [230] developed a silk sericin–chitosan hydrogel incorporating the
chemotherapy drug tegafur (TF) and protoporphyrin IX (PpIX) heterodimers (TTP). The
TTP formulation includes ROS-sensitive thioether bonds linking TF and the photosensi-
tizer PpIX, allowing for gradual drug release upon the destruction of thioether bonds by
high concentrations of ROS. The proposed approach achieved a synergistic effect between
chemotherapy and PDT, while the on-demand drug release mechanism maximized the
therapeutic effects of TF while minimizing its potential toxicity. Xu et al. [231] developed
an injectable hyaluronic acid hydrogel that can be degraded in response to ROS and loaded
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it with PpIX as a photosensitizer and DOX as a chemotherapy drug. To achieve stable
and efficient PDT, PpIX was covalently bonded to the hydrogel. Under NIR light irradi-
ation, ROS generated by the photosensitizer can decompose the hydrogel, leading to an
on-demand release of DOX (Figure 9).
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Nanogels as drug carriers also have been applied for combinational antitumor PDT-
chemotherapy. The study by González-Ayón et al. [232] investigated the use of galacto-
functionalized poly(N-vinylcaprolactam) (PNVCL)-based nanogels for encapsulating cis-
platin or DOX and gold nanorods. The results demonstrated that the nanogels achieved
an encapsulation efficiency of approximately 64% and 52% for cisplatin and DOX, re-
spectively. This study highlighted the potential of PNVCL nanogels loaded with gold
nanorods and cisplatin/DOX for enhancing PTT-chemotherapy. Jin et al. [233] developed
an injectable multifunctional hydrogel as a theranostic platform for sustained antitumor
PTT-chemotherapy. To achieve this, they prepared a nanogel system using an engineered
polypeptide PC10A, which was loaded with oil-soluble PTX as a chemotherapy drug and
Ag2S quantum dots (QDs) as photothermal agents. The PC10A hydrogel was then used
to dissolve the nanogel system. The final hydrogel was found to be effective in inhibiting
tumor cell growth, while NIR fluorescence and PA imaging enabled real-time monitoring
of hydrogel degradation in vivo (Figure 10). However, the long-term biosafety of Ag2S
QDs should be carefully evaluated.
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Smart nanogels as promising carriers for combinational antitumor PTT-chemotherapy
also have been widely investigated. Arjamaet et al. [139] synthesized hydrogel nanocubes
composed of carboxymethyl-chitosan and PEG that were loaded with DOX-ICG, exhibiting
pH and redox-responsive drug release behavior. The hydrogel nanocubes also integrated
endosomal/lysosomal escape and rapid degradation in response to intracellular GSH into
their design. Theune et al. [84] designed a nanogel system using thermosensitive poly-
mers PNIPAM/PNIPMAM that incorporated the photothermal agent polymer polypyrrole
(PPY) for combinational antitumor PTT-chemotherapy. The system was tested with MTX
as a model antitumor drug and was found to be an efficient drug delivery system for
chemotherapy. Zhou et al. [137] synthesized a DNA nanogel system by combining DOX
as a chemotherapy drug, polyethyleneimine-black phosphorus quantum dots as photo-
sensitizers/photothermal agents, and X-shaped DNA molecules through hydrogen and
electrostatic bonding. This innovative approach allowed for the efficient on-demand de-
livery of DOX and combined PDT/PTT upon NIR light irradiation. Howaili et al. [140]
synthesized a plasmonic nanogel with dual thermo-pH-responsiveness as a drug carrier
system by grafting PNIPAM to chitosan using a chemical crosslinker. The incorporation
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of gold nanoparticles loaded with curcumin into the nanogel yielded a stimuli-responsive
nanocarrier system with the potential for effective PTT-chemotherapy in tumor treatment.
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4.3. Hydrogel-Based Phototherapy Combined with Radiotherapy

Radiotherapy is a widely utilized and effective tumor treatment technique that in-
volves the use of ionizing radiation (e.g., γ-rays and X-rays) to destroy tumors by generating
cytotoxic ROS [234]. The limited tissue penetration of light in phototherapy hampers its
effectiveness in treating deep-seated tumors. In contrast, radiotherapy using high-energy
X-rays can effectively penetrate the tissue and eliminate tumor cells located deep within the
tumor tissue. However, the regulation of ionizing radiation dosage for eliminating tumors
is challenging due to tumor cell radiation-resistance, which is related to the tumor hypoxic
microenvironment, and the need to shield healthy tissues from the harmful effects of radia-
tion exposure [235–237]. Fortunately, phototherapy can enhance the therapeutic outcomes
of radiotherapy, overcoming some of its limitations [199,238,239]. The therapeutic efficacy
of PDT and radiotherapy can be heightened when they are used in combination, and thus
PDT can facilitate a reduction in radiation dose or exposure duration [240]. Additionally,
PTT raises the temperature of the tumor tissue, which can enhance tumor oxygenation and
heighten the sensitivity of the tumor to X-ray radiation [241].

Hydrogels are widely used as a platform for synergistic antitumor phototherapy/
radiotherapy. For example, Mirrahimi et al. [242] incorporated cisplatin as a radiosensi-
tizer and gold nanoparticles as photosensitizers and photothermal agents into an alginate
hydrogel, resulting in successful and efficient antitumor thermo-chemo-radiotherapy. In an-
other study, Wang et al. [243] investigated the use of agarose hydrogel containing Prussian
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blue nanoparticles for combined radiotherapy and PTT. The Prussian blue nanoparticles
exhibited a high-efficiency photothermal effect under NIR light irradiation and could react
with endogenous H2O2 to generate oxygen, thereby counteracting the hypoxic tumor
environment and enhancing the sensitivity of tumor cells to radiotherapy. Furthermore,
Zhou et al. [244] synthesized Cys-crosslinked γ-PGA nanogels and then incorporated pho-
tothermal agent PPY via oxidation polymerization under the influence of Fe(III) ions. They
found that performing X-ray radiation after laser irradiation significantly increased the
sensitization of the tumor to PTT.

Brachytherapy is an important and useful type of radiotherapy that involves the
implantation of small radioactive sources directly into or near the target tissue to destroy tu-
mor cells [245]. Mukerji et al. [246] studied the use of photosensitizer Ce6 and radionuclide
125I in a hydrogel made from elastin-like polypeptides containing cysteine residues that can
undergo ROS-mediated disulfide crosslinking. The hydrogel enabled stable fixation of 125I
and improved safety in brachytherapy, while also showing a synergistic effect for PDT and
brachytherapy. Moreover, Wu et al. [247] developed a PEGDA-alginate double-network
nanocomposite hydrogel to provide a combinational PTT-brachytherapy therapy for pre-
venting local recurrence and wound infection in postoperative breast cancer. They used
125I-labeled Arg–Gly–Asp–Tyr (RGDY)-modified gold nanorods as phototherapeutic agents
to realize combinational PTT-brachytherapy effects. The double-network hydrogel was
produced through a process that involved the initiation of PEGDA polymerization by heat
and the formation of a second crosslink between alginate and Ca2+-alginate established in
the tumor microenvironment (Figure 11). However, the development of nanocomposite
hydrogels is a complex and multi-step process, and the long-term degradability and toxicity
of the component should be thoroughly evaluated.
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4.4. Hydrogel-Based Phototherapy Combined with Starvation Therapy

Starvation therapy is a therapeutic approach aimed at blocking the energy supply
to tumor cells. It is a treatment approach that commonly utilizes glucose oxidase (GOx)
or its mimicking enzymes to catalyze glucose into gluconic acid and H2O2, ultimately
leading to glucose depletion and reduced ATP levels [248–251]. By decreasing ATP levels
in tumor tissues, starvation therapy can downregulate HSP expression in tumor cells,
which can enhance the efficacy of PTT [252–254]. Moreover, the H2O2 produced, which
serves as a source of oxygen, can further improve the efficacy of PDT [255]. Despite its
potential, GOx-mediated starvation therapy faces significant challenges such as safety
concerns, immunogenicity, low stability, and fragile enzymatic activity, which limit its
clinical applicability [256,257]. Thus, hydrogels have recently gained significant attention
as a platform for combining phototherapy and starvation therapy.

Recently, smart hydrogels have received much more preference. He et al. [258] de-
veloped a multifunctional hydrogel platform by incorporating GOx, a hydrogen peroxide
catalytic active agent, and a photothermal agent prodrug into a thermosensitive PDLLA1500-
PEG1500-PDLLA1500 hydrogel. This platform employed starvation therapy to block the
energy supply of tumor tissue, thereby inhibiting the expression of HSP in tumor cells.
By utilizing a relatively lower therapeutic temperature, the synergistic application of PTT
and starvation therapy can achieve high tumor therapeutic efficacy while reducing the
risk of burns to surrounding tissues and the local inflammatory response. Moreover, Sun
et al. [259] fabricated a NIR light-responsive hydrogel by combining ICG as a photothera-
peutic agent for PDT/PTT and 5′-guanosine monophosphate (5′GMP). Subsequently, they
delivered a NIR light-responsive hydrogel system (HMI@GEL) after loading metformin
(Met) to block the energy supply of the tumor and catalase-mimicking Hemin@mil88 to
effectively alleviate tumor hypoxia. The hydrogel system achieved light-controlled local
delivery of Met to the tumor site, which greatly reduced systemic side effects from Met
leakage. In vivo antitumor experiments indicated that this hydrogel system could achieve
excellent anti-tumor PDT/PTT efficacy (Figure 12).

Nanogel-based platforms can also provide efficient combinational phototherapy-
starvation therapy for tumor treatment. Luo et al. [260] and Fan et al. [261] created
enzyme-immobilized nanogels with tumor tissue-targeting ability and self-supplying
oxygen capability to counteract the rapid proliferation of cancer cells. The nanogel in-
corporating GOX and catalase (CAT) was fabricated via polymerization, utilizing PpIX and
cancer-cell-specific Arg-Gly-Asp (RGD) as comonomers (Figure 13). Inside the nanogel,
the cascade reaction efficiently utilized intracellular glucose catalyzed by GOX, while CAT
safely decomposed the generated H2O2 to generate oxygen. The production of oxygen
could further enhance glucose consumption by GOX and facilitate the generation of 1O2.
Combining starvation therapy and PDT, the nanogel system exhibited a potent synergistic
effect against cancer cells. However, the stability and degradability of the nanogel should
be further evaluated.
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4.5. Hydrogel-Based Phototherapy Combined with Chemodynamic Therapy

Chemodynamic therapy is a promising tumor treatment modality that generates
cytotoxic hydroxyl radicals via the catalysis of metal ions on H2O2 through a Fenton or
Fenton-like reaction, and unlike oxygen-dependent PDT, it does not rely on the availability
of oxygen [262–265]. For example, Chen et al. [266] incorporated Hu Kaiwen ink as a
photothermal agent and dihydroartemisinin-Fe2+ as an inducer of ROS into an agarose
hydrogel to achieve synergistic antitumor PTT-chemodynamic therapy. Moreover, Qin
et al. [267] prepared an enzyme complex-loaded hybrid nanogel that could function in
diverse biomedical applications related to ROS regulation and could serve as a safe and
effective PDT-chemodynamic therapy for tumors.

However, chemodynamic therapy alone is often insufficient to achieve a satisfactory
antitumor effect due to the limited H2O2 in the tumor microenvironment [268–272]. There-
fore, it is often combined with GOx-mediated starvation therapy, which can produce H2O2,
to achieve the desired therapeutic outcome. For example, Zhou et al. [273] wisely designed
a novel sodium-alginate hydrogel system for combined cancer photothermal, starvation,
and chemodynamic therapy. This hydrogel encapsulates molybdenum dioxide (MoS2)
nanosheets as a photothermal agent, GOx that mediates starvation therapy, and Fe3+ as a
cross-linking agent. In this hydrogel system, MoS2 nanosheets had a strong photothermal
ability and can convert Fe3+ to Fe2+. GOx can catalyze glucose to produce gluconic acid
and H2O2, and the Fe2+ can undergo a Fenton reaction with excess H2O2 to produce hy-
droxyl radicals, achieving an enhanced therapeutic effect (Figure 14). In another study, Xu
et al. [274] utilized a gelatin-hydroxyphenyl hydrogel as a carrier for the enzyme CoMnFe-
layered double oxides (CoMnFe-LDO) and the GOx. Due to the cascaded catalytic reaction
performed by CoMnFe-LDO and GOx, the composite hydrogel can realize satisfactory
synergetic multifunctional tumor therapies, including chemodynamic therapy, starvation
therapy, and PTT. Furthermore, Lee et al. [275] developed a hyaluronic acid-based hydrogel
for the treatment of breast cancer through multiple approaches including ferroptosis, PTT,
chemodynamic therapy, and starvation therapy.
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4.6. Hydrogel-Based Phototherapy Combined with Other Antitumor Modalities

In addition to the above-mentioned combinational strategies for tumor treatment,
researchers have also explored antitumor modalities that combine phototherapy with other
antitumor treatments, such as gene therapy, nitric oxide (NO) gas therapy, thermodynamic
therapy, anti-angiogenic therapy, and epigenetic therapy.

Conde et al. [276] simultaneously loaded small interfering RNA, gold nanorods, and
Avastin into a dendrimer/dextran hydrogel for a synergistic gene/drug/phototherapy.
Their study demonstrated that modified gold nanorods as phototherapeutic agents, which
were used as small interfering RNA carriers, could significantly knock down cancer-
promoting genes. Additionally, modified gold nanorods were also used to load antitumor
drugs Avastin and enhance targeting drug delivery. This three-mode synergistic treatment
strategy of phototherapy-chemotherapy-gene therapy has the potential to eliminate tumors
and prevent a recurrence, making it a promising candidate for clinical applications.

Sun et al. [277] developed an injectable and thermosensitive hydrogel system that
enabled combined PDT-NO gas therapy. The hydrogel system was based on a poly(ε-
caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCL–PEG–PCL) hydrogel, which
served as a carrier for poly(lactic-glycolic acid) (PLGA) nanoparticles encapsulating both
the photosensitizer ICG and NO donor l-arginine. The system induced ROS production
and promoted NO production, leading to cancer cell apoptosis and inhibition of cancer cell
proliferation. However, the long-term biosafety of PCL–PEG–PCL copolymer should be
thoroughly evaluated, and the large-scale production of this hydrogel system seemed to be
challenging.

To combine PTT-thermodynamic therapy for hypoxic tumor treatment, Sun et al. [278]
developed an innovative injectable hydrogel formed by copolymerizing hydrophilic gly-
cidyl methacrylate-modified hyaluronic acid with hydrophobic N-isopropyl acrylamide.
The addition of 2,2′-Azobis [2-(2-imidazalin-2-yl)propane] dihydrochloride (AIPH) as an
alkyl-free radical source and gold nanorods as photothermal agents enabled the hydrogel
to generate free radicals from AIPH and heat through the photothermal effects, providing
an efficient strategy for treating hypoxic tumors.

To realize combined PTT and targeted anti-angiogenic therapy for tumor treatment,
Wu et al. [279] designed an injectable gellan gum hydrogel that integrated ultra-small
bismuth sulfide (Bi2S3) nanodots as photothermal agents and sorafenib as a targeted
therapy drug. However, the long-term safety of Bi2S3 nanodots-encapsulated hydrogels is
questionable due to the unknown cytotoxicity associated with Bi2S3 nanodots.

To achieve synergistic PDT/epigenetic therapy for prostate cancer, Liu et al. [280]
devised a smart therapeutic nanoplatform that used a nanogel as a photosensitizer and
drug carrier. By suppressing HIF-1α and VEGF pathways that contribute to PDT resis-
tance, the inclusion of histone deacetylase inhibitors into PDT enhanced the synergistic
PDT/epigenetic therapy for prostate cancer. The study highlighted the well-designed
architecture of the nanoplatform, which functioned as a photodynamic agent without re-
leasing Ce6 photosensitizer molecules in a responsive environment. It also allowed for the
incorporation of diverse functional components for smart drug release and imaging-guided
combination therapy.

5. Conclusions and Prospect

In recent years, significant progress has been made in the development of hydrogels
for antitumor phototherapy, which shows great potential for clinical applications in tumor
treatment. The use of hydrogels in antitumor phototherapy offers unique advantages,
including (1) the ability to encapsulate phototherapeutic agents to enhance their therapeutic
efficacy and reduce their side effects; (2) easy access to the target site via needle injection
with injectable hydrogels; (3) the ability of smart hydrogels to release phototherapeutic
agents on-demand; (4) the selective accumulation of nanogels in tumors through EPR
effect; (5) the capability of nanogels to deliver phototherapeutic agents intracellularly, with
potential tumor-targeting and multifunctionality features; and (6) the capacity of hydrogels
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as a carrier to synergistically combine with other therapeutic modalities to achieve a more
effective therapeutic effect.

However, hydrogel-based phototherapies face some limitations in clinical tumor
treatment. First, the in vivo stability and degradability of phototherapeutic hydrogel
systems remain uncertain and concerning. The impact of prolonged exposure of hydrogels
on tumor sites and the mechanism of its phototherapeutic effect are not yet to be fully
understood. Additionally, there is a lack of clarity regarding the long-term toxic and
side effects of phototherapeutic agents and hydrogels on organisms in current studies.
Second, the therapeutic efficacy of most hydrogels-based phototherapies lacks rigorous
assessment or verification in tumor models. Moreover, the commonly used mouse tumor
models in preclinical experiments are not adequate to reflect the physiological conditions
of clinical patients. To advance the clinical translation of hydrogels-based phototherapies,
it is necessary to assess their therapeutic efficacy in larger animals, such as dogs, pigs, and
monkeys.

Furthermore, the design, preparation, and application of phototherapeutic hydrogel
systems are still in the experimental stage due to the current lack of clinical investigations.
To date, no hydrogel-based antitumor phototherapy has been registered on the Clinical
Trials Gov database (http://www.clinicaltrials.gov (accessed on 26 March 2023)). Further-
more, compared with bulk hydrogels, the clinical application of nanogels is a relatively
new area of research, with only one nanogel-related therapeutic modality entered clinical
trials (ClinicalTrials.gov Identifier: NCT05268718). Many therapeutic factors (such as ques-
tionable biosafety and efficacy) and non-therapeutic factors (such as lack of clear regulatory
guidelines and standardized assays) hinder the clinical transition of nanogels [126]. There-
fore, compared with nanogels, bulk hydrogels-based phototherapies are more promising to
enter the clinical stage first.

In conclusion, hydrogels are promising carriers for antitumor phototherapies, but
further in-depth research is required to establish the safety and effectiveness of hydrogel-
based phototherapy for tumor clinical treatment. Although the current understanding
is limited, there is a growing expectation that hydrogel-based phototherapy will soon
experience a significant surge in clinical applications. Hence, it is crucial to continuously
explore the possibilities offered by hydrogel-based phototherapy to optimize its future
clinical applications in tumor treatment.
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