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Abstract: The gelation time tg necessary for a solution of functional (associating) molecules to reach its
gel point after a temperature jump, or a sudden concentration change, is theoretically calculated on the
basis of the kinetic equation for the stepwise cross-linking reaction as a function of the concentration,
temperature, functionality f of the molecules, and multiplicity k of the cross-link junctions. It is
shown that quite generally tg can be decomposed into the product of the relaxation time tR and a
thermodynamic factor Q. They are functions of a single scaled concentration x ≡ λ(T)φ, where
λ(T) is the association constant and φ is the concentration. Therefore, the superposition principle
holds with λ(T) as a shift factor of the concentration. Additionally, they all depend on the rate
constants of the cross-link reaction, and hence it is possible to estimate these microscopic parameters
from macroscopic measurements of tg. The thermodynamic factor Q is shown to depend on the
quench depth. It generates a singularity of logarithmic divergence as the temperature (concentration)
approaches the equilibrium gel point, while the relaxation time tR changes continuously across it.
Gelation time tg obeys a power law t−1

g ∼ xn in the high concentration region, whose power index
n is related to the multiplicity of the cross-links. The retardation effect on the gelation time due to
the reversibility of the cross-linking is explicitly calculated for some specific models of cross-linking
to find the rate-controlling steps in order for the minimization of the gelation time to be easier in
the gel processing. For a micellar cross-linking covering a wide range of the multiplicity, as seen
in hydrophobically-modified water-soluble polymers, tR is shown to obey a formula similar to the
Aniansson–Wall law.

Keywords: thermoreversible gelation; gelation time; relaxation time; multiple cross-links; stepwise
association

1. Introduction

Thermoreversible gelation in solutions of polymers, as well as of low molecular
weight molecules, has been attracting researchers’ interest [1–7]. Many examples of the
phase diagrams with sol–gel transition lines have been reported in the literature. Some
original studies, reviews and conceptual works have appeared with relation to respon-
sive gels [8–11], hydrogels for biomedical applications [6,7,12], and hydrogen-bonding
supramolecular gelators [13–15]. However, the kinetic process of cross-linking reaction
to reach the gel point, in particular the gelation time, has not been clarified yet. Here,
the gelation time tg is defined by the time necessary for the network-forming solutions of
functional molecules to reach their gel points after a cross-linking reaction is started. It is
related to the relaxation time tR for the solution to go back to their thermal equilibrium
state, but must be strictly distinguished from each other because the former goes to infinity
on the equilibrium sol–gel transition line while the latter remains continuous across it.

Fundamental investigation of polymer cross-linking reactions as a function of time is
very important to obtain better understanding of the gelation mechanism for controlling the
production process and final performance of gels. In particular, acceleration of the gelation
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time in the most efficient way under restricted conditions is critical for the application of
gels to biomedical technology, the food industry, the adhesion industry, etc.

Gelation time is also very important from a scientific viewpoint. It includes micro-
scopic information on the kinetics of cross-linking reaction. By the macroscopic mea-
surements of the gel point by rheology, we can speculate on the microscopic structure
and formation process of the network junctions, in particular the rate-controlling steps in
cross-linking.

The gelation time critically depends on the thermodynamic conditions under which
the cross-linking reaction proceeds, such as temperature, concentration of the functional
molecules, their mixing ratio if there are more than one component, amount of the cross-
linkers if any, pH, etc. The purpose of the present study is to clarify the difference between
tg and tR, and find them as functions of the functionality of the molecules, multiplicity
of the junctions, and the system parameters such as concentration and temperature by
focusing on their relations to the rate constants of reaction in the kinetic equation.

Experimental data of the gelation time tg in the literature obtained by the rheological
measurements, scattering, calorimetry, etc. are usually plotted against the temperature
and/or polymer concentration to find the activation energy in the rate constant and the
power index of the concentration. For instance, Ohkura et al. [16,17] reported the data on
the gelation time of poly(vinyl alcohol) (PVA) in a mixed solvent of water and dimethyl-
sulphoxide. They measured the time by a ball-drop method in the temperature quenching
experiments for various polymer concentrations. The results were summarized in the form

t−1
g = A(T)(∆φ)n (1)

where ∆φ is the concentration of PVA measured from the overlap concentration. The critical
concentration at which tg becomes infinite was found to be independent of the temperature.
(The log–log plot of this equation is referred to as Oakenfull plot in p.80 of the reference [2].)
The exponent n was found to be n = 2 under the assumption that the gel point is given by
the overlap concentration. Because the cross-link junctions are formed by micro-crystallites,
the temperature factor was found to agree with the nucleation rate

A(T) ' e−B/T(∆T)2
(2)

where B is a temperature-independent constant.
Investigation was done by Mal et al. [18] on the solutions of crystalline polymer

poly(vinylidene fluoride) (PVF2) in two different solvents. The results were plotted in
the form of (1). The critical concentration depends on the temperature, from which they
constructed the sol–gel transition line for three samples. The gel point depends on the
nature of the solvent; gelation is easier in a poor solvent. The exponent of concentration
was found to be n ' 0.45–0.60, much smaller than the value for PVA.

Hong et al. [19] studied the same polymer PVF2 in tetra(ethylene glycol) dimethyl
ether. They confirmed that the temperature factor takes a crystalline nucleation form, but
found a crossover in the power law from n = 2.17 to n = 1.18 as the critical gel point is
approached. Based on these data, a new model of gel formation in crystalline polymers
was proposed.

A similar study was done by Tobitani et al. [20,21] for heat-setting gels of protein,
bovine serum albumin (BSA) and beta-lactoglobulin (β-Lg), in order to construct the
equilibrium sol–gel transition curves by the measurement of dynamic-mechanical moduli.
Data were again summarized in the form of (1). Because the gelation is accompanied
by protein denaturation, the temperature factor A(T) took an activation type. They also
found the exponent of the concentration to be much higher than two. To incorporate these
results, they proposed a new model of the gelation time by considering multiple reaction of
functional groups in the cross-link junctions [22–24]. We will refer to their idea again in the
section treating multiple cross-links. The activation type temperature dependence of the
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gelation time has been reported for some other gel-forming polymers, such as polyurethane
dispersion [25], silica alkoxides [26,27], etc.

Investigation on the gelation time was reported in the literature for the binary cross-
linking in the mixture of functional molecules [28–32]. The main problem of binary gels is
to find the optimal mixing ratio for minimizing the gelation time, so that plot of tg against
the mixing ratio for different quenching temperatures is fundamental.

From the theoretical side, there have been accumulating studies based on the ki-
netic equations for the cross-linking reaction of functional groups in the classical Flory–
Stockmayer pictures of gelation. For instance, Stockmayer [33,34] derived the rate equation
of irreversible gelation for the reactivity (conversion) α as a function of time, and found its
value at the gel point.

Later, Ziff et al. [35–38] extended Stockmayer’s model on the basis of a more general
kinetic equation of cluster formation to include the time development of reactivity in the
post-gel region. They treated not only unary cross-linking (self-reaction), but also binary
cross-linking (copolymerization) in their series of papers [36]. The scaling and universality
of gel formation was also discussed [38]. Dongen et al. [39] considered reversibility of
the cross-linking reactions, and studied retardation effects due to the existence of reverse
reaction. However, unfortunately, the effects of temperature and concentration were not
explicitly considered in these studies.

In spite of this diversity in experimental and theoretical studies, there has been no
attempt to construct a unified picture of the gelation time of polymer solutions by starting
from the fundamental kinetics of the cross-linking reaction. In this paper, we focus on
the reversibility and variable cross-link multiplicity of a stepwise rate equation for the
cross-linking reaction. Solving the rate equation for the probability pk(t) of cross-linking
with multiplicity k, we derive the gelation time tg as a function of the polymer concentration
and temperature. In contrast to (1), it includes a temperature–concentration cross-term.
The results are expressed in the common form tg = tRQ in terms of the relaxation time
tR and a thermodynamic factor Q. The latter shows a singularity near the equilibrium
sol–gel transition line. We investigate the retardation effect due to the reverse reaction
(dissociation) and the effect of variable multiplicity of the junction. The gelation time for
the reversible binary cross-linking will be reported in our forthcoming paper.

2. Theoretical Method

The model solution we consider is a polymer solution in which the number N of
reactive (associative) molecules (denoted as R{A f }) with degree of polymerization n are
dissolved in the number N0 of solvent molecules (S). Molecules can be any type, such as
high molecular weight linear polymers, star polymers, low molecular weight polyfunctional
molecules, etc. Each molecule carries the number f of functional groups A (functionality
f ), which can form interchain cross-links made up of variable number k of A-groups
(multiplicity k) [4,22,23].

We are based on the lattice-theoretical picture of polymer solutions [40], and divide
the system volume V into cells of size a of the solvent molecule, each of which is assumed
to accommodate a statistical repeat unit of the reactive molecules. The volume of a reactive
molecule is then given by n, and that of a solvent molecule is n0 ≡ 1 in the unit of the cell
volume. We assume incompressibility of the solution, so that we have Ω = nN + N0 for
the total volume. The volume fraction of each component is then given by φ = nN/Ω for
the reactive molecule, φ0 = N0/Ω for the solvent. In terms of the functional groups, the
number concentration of A-groups on the reactive molecules is ψ = f φ/n.

The fundamental picture of our research problem is summarized in Figure 1. We study
the time development of the solution after its temperature is changed suddenly from the
initial one Ti to the final one T ≡ Tf (temperature jump), or after the molecules are quickly
dissolved to the solvent in the preparation of the solution with concentration φ at a constant
temperature T (concentration jump) (see Figure 1a). The temperature quench depth is
defined by ∆T ≡ Tgel − T, while the concentration quench depth is ∆φ ≡ φ− φg, where
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Tgel and φg are their values on the sol–gel transition line. For simplicity, we consider in
this paper only cold-setting gels. For heat-setting gels, other factors, such as dehydration,
polymer conformation change, temperature activation of the functional groups, etc., must
be considered in addition to simple cross-linking. Hence, they lie beyond the scope of the
present paper.
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Figure 1. Fundamental picture of the problem studied in this paper. (a) Schematic diagram for
a temperature (or concentration) jump experiment. A polymer solution is kept in equilibrium at
sufficiently high temperature Ti in the sol state P. At time t = 0, it is quenched to a low temperature
Tf(≡ T) in the gel region Q, and then time development of cross-linking reaction is observed. The
quench depth is defined by ∆T ≡ Tgel − T. For a concentration jump experiment, polymers are
quickly mixed with solvent at a constant temperature T to reach the state Q. The concentration
depth is defined by ∆φ ≡ φ − φg. (b) Reactivity of functional groups for pairwise cross-linking
schematically shown as a function of the time after the reaction is started: p(t) exact solution, p(IR)(t)
its irreversible limit, and p̃(t) linear approximation. The gelation time tg is found by the gel-point
condition for the reactivity p(tg) = 1/( f − 1). Due to the backward reaction, there is a retardation

time tg − t(IR)g for reversible cross-linking. The dotted lines show the reactivity of the sol part after
the gel point is passed. They are considered in this paper on the basis of Flory’s picture.

After a temperature (or concentration) jump, cross-link reactions leading to network
formation proceed. Let nk(t) be the number of the cross-link junctions of multiplicity k
at time t. Because each junction includes the number k of the functional groups A, the
probability pk(t) for an arbitrarily chosen functional group to belong to the junction of
multiplicity k is related to the number of junctions by the equation

ψpk(t)/k = nk(t) (3)

After a long time, the solution reaches its equilibrium state with equilibrium reactivity
p̄k ≡ pk(t→ ∞). Figure 1b schematically shows the time development of p(t) ≡ p2(t), its
linearized approximation p̃(t), irreversible counterpart p(IR)(t), reactivity of the sol part
ps(t) in the post-gel region. Because of the reverse reaction (dissociation of cross-links),
there is a retardation in the gelation time from the irreversible limit.

In our previous work [24], we studied in detail thermoreversible gelation and phase
separation in solutions capable of unary (self) cross-linking. We started from the equilibrium
condition

ψ p̄k/k
(ψ p̄1)k = Kk(T) (4)
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where Kk(T) is the equilibrium constant, p1(t) is the probability for a functional group
to remain free from reaction, and p̄1 is its equilibrium value. This equilibrium condition
leads to

ψ p̄k = kKk z̄k (5)

for the reactivity in terms of the number of free groups z̄ ≡ ψ p̄1. From the normalization
condition of p̄k, we find the conservation law

ψ = z̄u(z̄) (6)

where
u(z̄) = ∑

k≥1
kKk z̄k−1 (7)

2.1. Pairwise Cross-Linking

Let us first consider the simplest case of pairwise cross-linking reaction

2A1 � A2 (8)

for which k takes only two values: k = 1 (free), and k = 2 (bound). Cross-linking by a
covalent bond is included as the irreversible limit of such a reaction. For such a simple
second order reaction, we can find the exact solution of the rate equation. Therefore, the
model provides a good starting point for the study of more complex cross-linking.

Let us write as p2 ≡ p, p1 = 1− p. Probability p is the conventional reactivity of
the cross-linking reaction. The time development kinetic equation for the number nk of
cross-link junctions can be written as

dn2(t)
dt

= αn1(t)2 − βn2(t) (9)

and hence we have
dp(t)

dt
= 2ψα(1− p)2 − βp(t) (10)

where α and β are the rate constant of the forward reaction and backward reaction.
(Throughout this paper, we avoid conventional symbols kf and kb to prevent confusion
with multiplicity k.) By using the scaled time τ ≡ 2ψαt, we have a simple second order
equation

dp
dτ

= g(p) (11)

where
g(p) ≡ (1− p)2 − p

2K2ψ
(12)

Here, a new constant
K2 = α/β (13)

is the equilibrium constant written in terms of the rate constants.
The solution of this equation with the initial condition p(0) = 0 is given by

p(τ) =
η(+)η(−)(1− e−γτ)

η(+) − η(−)e−γτ
(14)

where
η(±) =

1
4K2ψ

{
1 + 4K2ψ±

√
1 + 8K2ψ

}
(15)

and
γ ≡ η(+) − η(−) =

1
2K2ψ

√
1 + 8K2ψ (16)
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The equilibrium reactivity is given by p̄ = η(−). Therefore, γ has the meaning of
relaxation time of the reversible reaction, i.e., the time necessary for the system to reach its
chemical equilibrium. A detailed derivation of (14) is given in Appendix A.

The result is drawn in Figure 2a for the functionality f = 3, 4, 5. In Figure 2b, the
weight- and number-average molecular weight of the three-dimensional cross-linked poly-
mers (M̄w and M̄n in the unit of the molecular weight of the primary molecules) are plotted
against time. They are explicitly given by [33]

M̄w(τ) =
1 + p(τ)

1− f ′p(τ)
, M̄n(τ) =

1
1− f p(τ)/2

(17)

In the post-gel region where the gel point is passed, the reactivity of the sol part and
that of the gel part become different. We have calculated the former on the basis of Flory’s
picture. However, there are other possibilities [35–38]. In this paper, we focus on the process
of approaching the gel point, and prevent discussion on the post-gel regime.
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Figure 2. (a) Reactivity p(τ) for the functionality f = 3, 4, 5 plotted against the dimensionless scaled
time τ ≡ 2ψαt for various scaled concentration x ≡ K2(T)ψ = 2, 4, 6 (solid lines). The relaxation time
is independent of f as a function of τ, so that p(τ) depends only on x. Broken lines are the reactivity
of the sol part ps(τ) in the post-gel region. (b) The weight-average molecular weight (broken lines)
and the number-average molecular weight (solid lines) plotted against the scaled time τ for the
concentration x = 2.0. The number-averages are finite at the gel point.

In Figure 2b, the weight-average molecular weight (broken lines) and the number-
average molecular weight (solid lines) are plotted against the scaled time τ for the combined
variable (scaled concentration) x ≡ K2ψ = 2.0. The number-average remains finite at the
gel point.

Because the relaxation time tR is defined by the speed to reach the equilibrium state, it
is given by 1/γ. In terms of the bare time, we have

1
tR

= 2ψαγ =
α

K2

√
1 + 8K2ψ = β

√
1 + 8K2ψ (18)
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In the limit of irreversible reaction where β→ 0 with finite α, γτ is small, and η(±) → 1,
so that we go back to the Stockmayer’s result [33,34] (see p(IR)(t) in Figure 1b)

p(t) = p(IR) =
2ψαt

1 + 2ψαt
(19)

So far, the reaction has been assumed to occur independently with equal probability
for any functional group (assumption of equal reactivity). Now, we employ an additional
assumption such that all cross-linked three-dimensional molecules take tree forms. Cycle
formation is not considered. Then, the conventional tree statistics [33,34,40–43] give the gel
point

pg = 1/( f − 1) (20)

for the reactivity. Substituting this value for p(τ) in (14), we find for the gelation time

tg(x) = tR(x)Q(x) (21)

where

Q(x) ≡ ln

{
η(−)(x)[ f ′η(+)(x)− 1]
η(+)(x)[ f ′η(−)(x)− 1]

}
(22)

is a function of a combined variable x ≡ K2(T)ψ of the temperature and concentration.
Since this factor Q(x) drastically depends upon the quench depth ∆T, or ∆φ, in the experi-
ments near the sol–gel transition point, we refer to it as thermodynamic factor. In particular,
the gel-point condition (20) is equivalent to f ′η(−)(x)− 1 = 0, so that Q(x) goes logarith-
mically to infinity as x approaches the critical value xg = f ′/2 f ′′2 at the gel point. (In what
follows, we use abbreviated notations f ′ ≡ f − 1, f ′′ ≡ f − 2, · · · for simplicity.) Near the
gel point, we have x ≡ xg(1 + ε) (ε << 1). A lengthy calculation leads to the form

Q(x) ' ln


(

f f ′′

f ′2

)2
1
ε

 ' − ln ε + finite const. (23)

Therefore, in the limit of shallow quenching, we have to wait for a logarithmically long
time for the solution to turn into a gel.

As for the relaxation time, we have to notice that tR can be expressed in terms of the
equilibrium reactivity. The solution of the conservation law (6) for a pairwise cross-linking
is given by

z̄ =
1

4K2

{
−1 +

√
1 + 8K2ψ

}
(24)

We therefore have p̄2/ p̄1 = 2K2z̄, and hence

1
tR

= β

(
1 + 2

p̄2

p̄1

)
(25)

We will have some extensions of this formula in the following sections for the study of
multiple cross-links.

We next consider retardation of the gelation time due to the reversible reaction. We
start from the gelation time (21) in the form

ψαtg =
x√

1 + 8x
Q(x) (26)

and take β → 0 limit while α is kept finite. Because x takes a large value, we expand
the right hand side of this equation in powers of 1/x. After a quite a lengthy calculation,
we find

tg =
1

2α f ′′ψ

(
1 +

R f ,2

x
+ O(

1
x2 )

)
(27)
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where the front factor
t(IR)g ≡ 1

2α f ′′ψ
(28)

is the gelation time of an irreversible reaction (covalent bonding). It can directly be obtained
from Stockmayer’s form (19) by fixing p(t) = 1/ f ′. The first correction due to reversible
reaction is O(1/x). Its coefficient is found to be

R f ,2 =
3 f − 4
6 f ′′2

(29)

Let us refer to it as retardation coefficient. In the next section, we shall derive the retardation
coefficient R f ,k for the cross-linking with arbitrary multiplicity k.

To compare with experimental data, we plot in Figure 3 the reciprocal of the gelation time

1
βtg

=

√
1 + 8x
Q(x)

≡ Γ(x) (30)

as a function of the combined variable x for varied functionality f .

x = K
2
(T)ψ 

1
/β

t R
, 
1
/β

t g
, 
Q

f = 3

f = 5

f = 6

f = 4

1/βt
R

1/βt
g

Q

Figure 3. The reciprocal gelation time 1/βtg (solid lines), reciprocal relaxation time 1/βtR (broken
lines), and thermodynamic factor Q (broken dotted lines) plotted against a combined variable
x ≡ K2(T)ψ for various functionality f . 1/βtg goes logarithmically to zero near the equilibrium
sol–gel transition point xg = f ′/2 f ′′2, while it is proportional to x at high concentration regions. tR is
independent of f , and remains finite at the gel point, while Q goes to infinity.

Near the sol–gel transition point x = xg, it goes logarithmically to zero as

Γ(x) '
√

1 + 8xg

ln (1/∆x)
(31)

For larger values of the functionality f , all plots remain qualitatively the same although
quantitatively very different. They approach much closer to the vertical axis.

Experimental data [16,17] on PVA in a mixed solvent of water and DMSO suggest
that the gelation time near the transition point obeys a power low of concentration with
the power index 2. The paper attributed this observation to the binary collision of the
polymers at the overlap concentration, which is necessary for the formation of microcrys-
talline junctions for PVA solutions. In the present models of cross-linking reaction among
functional groups, the gel point is located at a much lower concentration than the overlap
concentration.
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For sufficiently high x, it approaches the irreversible limit

Γ(x) ' 2 f ′′x (32)

In this limit, the gelation time is separable into a product of the temperature factor λ(T)
and the concentration factor ψ = f φ/n. The linear behavior in the high concentration
region has not been experimentally reported.

So far, the gelation time has been derived from the exact solution of the rate equation.
The only assumption is that the gel point is assumed to be given by the conventional tree
approximation. We now examine the validity of the linearized equation of (11) before
moving to more complex cross-links with variable multiplicity. As time goes on, the
polymer solution approaches its equilibrium state. Assuming that it is sufficiently close to
equilibrium, let the reactivity be

p(t) = p̄(1 + ξ(t)) (33)

and consider only linear terms of the deviation ξ(t) in (11). We have

dξ

dτ
= g′( p̄)ξ (34)

where

g′( p̄) = −
{

2(1− p̄) +
1

2K2ψ

}
(35)

is the derivative of g( p̄). Substituting the equilibrium value of p leads to

g′( p̄) = − 1
2K2ψ

(
1 + 2

p̄2

p̄1

)
(36)

Hence, the relaxation time in the linear approximation agrees with the exact one. If we
assume p(0) = 0, the reactivity in the linear approximation takes the form (see Figure 1b)

p̃(t) = p̄(1− e−t/tR) (37)

The gel-point condition p(tg) = 1/ f ′ then leads to (21), but with Q(x) of slightly
different form

Q(x) = ln

{
f ′η(+)(x)

f ′η(−)(x)− 1

}
' − ln ε + finite const. (38)

for the thermodynamic factor leading to the same logarithmic divergence. Unfortunately,
the linear approximation does not give a correct irreversible limit, so that retardation effect
is impossible to study.

2.2. Fixed-Multiplicity Model

Because most of physical gels have multiple cross-link junctions, let us next consider
the effect of cross-link multiplicity. We first study an extreme case where simultaneous
formation of k junctions takes place

kA1 � Ak (39)

before we move onto a more complex case of stepwise association. A functional group
is either free (k = 1) or reacted (k ≥ 2). Let us refer to it as a fixed-multiplicity model (see
Figure 4).
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We have a rate equation for the fixed-multiplicity reversible reaction

dnk(t)
dt

= αn1(t)k − βnk(t) (40)

Or, equivalently
dpk(t)

dt
= αkψk′ p1(t)k − βpk(t) (41)

(k′ ≡ k− 1). Hence, we have
dp
dτ

= g(p) (42)

where p ≡ pk, p1 = 1− p. Time is scaled as

τ ≡ αkψk′ t (43)

and
g(p) ≡ (1− p)k − β′p (44)

The coefficient β of the reverse reaction is changed to

β′ ≡ β

αkψk′ =
1

kKkψk′ (45)

where
Kk =

α

β
(46)

is the equilibrium constant.

α

β

Δε
1 Δε

k

ε

p
1

p
k

x = λ(T)ψ 

1
/β
t R

, 
1

/β
t g

, 
Q

1/βt
R

k = 2

k = 3

k = 4

Q

f = 4

(a) (b)

1/βt
g

Figure 4. (a) Schematic picture of the fixed-multiplicity cross-linking model with multiplicity k.
(b) The reciprocal gelation time 1/βtg, the reciprocal relaxation time 1/βtR, and the thermodynamic
factor Q(x) plotted against a combined variable x ≡ λ(T)ψ for various multiplicity k for the tetra-
functional molecules ( f = 4). 1/βtg goes logarithmically to zero near the equilibrium sol–gel
transition point given by xg = f ′k′/k1/k′ ( f ′k′ − 1)k/k′ , while it approaches the irreversible limit ∼ xk′

at a high concentration region. Note that the gel point concentration changes non-monotonically as a
function of the multiplicity.
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In the study of heat-setting β-Lactoglobulin, Tobitani and Ross-Murphy [20,21] solved
this equation in the irreversible limit of β→ 0. The rate equation can easily be integrated
into this limit. We find

τ =
1
k′

{
1

(1− p)k′ −
1

(1− p(0))k′

}
(47)

The relaxation is not exponential, but obeys a power law. Let us assume that all functional
groups are free in the initial state (p(0) = 0).

In our previous study of gelation with cross-links of variable multiplicity [23,24], we
showed that the gel point is in general given by the condition

1− f ′(〈k〉w − 1) = 0 (48)

where
〈k〉w ≡ ∑

k≥1
kpk (49)

is the average multiplicity of the junctions. The average ∑k(k − 1)pk = 〈k〉w − 1 was
referred to as a branching number [23,24]. In the case of the fixed-multiplicity model, the gel
point is found by the condition

pk(tg) =
1

f ′k′
≡ pg (50)

Substituting this value into (47), we find

1

t(IR)g

= αkψk′ k′(1− pg)k′

1− (1− pg)k′ ≡ A(T)φk′ (51)

Therefore, it turns out that temperature and concentration are separable for irreversible
gelation. The temperature factor is

A(T) = α(T)
(

f
n

)k′ kk′

[ f ′k′/( f ′k′ − 1)]k′ − 1
(52)

It goes back to (28) for the irreversible pairwise cross-linking of k = 2.
Let us study reversible rate equation. Because rigorous integration of (42) is difficult,

let us employ the linear approximation. The linearized kinetic equation leads to the solution

p̃(τ) = p̄(1− e−γτ) (53)

where
γ ≡ −g′( p̄) = k(1− p̄)k′ + β′ (54)

and hence the relaxation time is

1
tR

= αkψk′γ = β
(

1 + k2Kk z̄k′
)
= β

(
1 + k

p̄k(z̄)
p̄1(z̄)

)
(55)

by using equilibrium values of the reactivities. They can be written as functions of the
solution z̄ of the conservation Equation (6) with

u(z̄) ≡ 1 + kKk z̄k′ (56)
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The relaxation time similar form to (55) was first proposed by Kresheck et al. [44]
(referred to as KHDS), and later by Muller [45] for the self-assembled micelle formation in
solutions of surfactant molecules studied by temperature-jump experiments. The KHDS
form was derived under the assumption that, in the stepwise association of the surfactant
molecules, the last step is slowest compared to the intermediate steps, and hence it is the
rate-controlled step.

Substituting the gel-point condition (48) into the linear solution (53), we find the
gelation time takes the same form as (21), but with the different thermodynamic factor

Q(z̄) = ln
(

f ′k′ p̄k(z̄)
f ′k′ p̄k(z̄)− 1

)
(57)

The equilibrium gel point is given by the condition 1− f ′k′ p̄k(z̄) = 0 and hence

(Kk(T)ψk′)g =
( f ′k′)k′

k( f ′k′ − 1)k (58)

We find again a logarithmic divergence of the thermodynamic factor near the sol–gel
transition line.

To find specific results, let us assume that the equilibrium constant takes a form [23]

Kk(T) = λ(T)k′ (59)

where λ(T) is a binding constant per one functional group. The conservation law becomes

x ≡ λψ = z̄(1 + kz̄k′) (60)

where z̄ ≡ x(1− p̄k) is the scaled concentration of the free groups. Solving this equation
for z̄, and substituting the solution to

τg ≡ αkψk′ tg =
kxk′Q(z̄)

1 + kp̄k(z̄)/ p̄1(z̄)
(61)

we find the gelation time as functions of x. Let us plot it in our standard form

Γ(x) ≡ 1
βtg

= (1 + k2z̄k′) ln

(
f ′k′kz̄k

f ′k′kz̄k
x − 1

)
(62)

where z̄ = z̄(x) is the solution of the conservation law (60).
Figure 4b plots 1/βtg, 1/βtR, and Q as functions of x for varied multiplicity k for

tetra-functional molecules f = 4 as a typical example. Multiplicity k = 2 goes back to the
pairwise association studied in the previous section. All curves diverge logarithmically as x
approaches the critical value xg = f ′k′/k1/k′( f ′k′ − 1)k/k′ from above. For f = 4, we know
that the gel point is not a monotonically decreasing function of k, but takes a minimum at
k = 3 (see Figure 7.5 (a) in the reference [4]).

The retardation coefficient R f ,k for f -functional primary molecules with cross-link
multiplicity k can be found in a similar method of expanding tg in powers of the reverse
rate constant β. We find

tg = t(IR)g

{
1 +

R f ,k

xk′ + O
(

1
x2k′

)}
(63)

with

R f ,k =
(1− pg)2k−1 + (2k− 1)pg − 1

2k(2k− 1)[1− (1− pg)k′ ](1− pg)k (64)
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where t(IR)g is the irreversible gelation time (51) by Tobitani–Ross–Murphy [20]. Detailed
calculation is given in Appendix B.

2.3. Stepwise Association

In most physical gels, we expect that cross-linking proceeds via step-by-step associa-
tion of the free functional groups:

A1 + Ak−1 � Ak (k = 2, 3, · · · s) (65)

In some physical gels, a particular value of the multiplicity k is most stable, while in
others cross-links are monotonically destabilized with increasing k. The gelation time and
physical properties of the networks thus depend on the stepwise association constants. Let
us therefore study thermoreversible gelation by such step-by-step cross-linking for a given
set of stepwise constants as a model reversible gelation (see Figure 5).

A
1

A
2

A
3

A
k-1

A
k

A
k+1

. . . . . . . . . .

J
2

J
3

J
k

J
k+1

p
1

p
2

p
3

p
k-1

p
k

p
k+1

Figure 5. Schematic picture to construct the rate equation for a stepwise association during cross-
linking. The reactivity pk is the probability for an arbitrarily chosen functional group to belong to
a cross-link junction of the multiplicity k. The flux Jk is the number concentration of the junctions
growing from k− 1 to k in a unit time.

The rate equation is described by

dnk(t)
dt

= Jk − Jk+1 (66a)

= −{βk + αkn1(t)}nk(t) + βk+1nk+1(t) + αk−1n1(t)nk−1(t) (66b)

for k ≥ 2, and

dn1(t)
dt

= −2J2 −
s

∑
k=3

Jk (67a)

= −2α1n1(t)2 + 2β2n2(t) +
s

∑
k=3
{βknk(t)− αk−1n1(t)nk−1(t)} (67b)

for k = 1. Here,
Jk(t) ≡ αk−1n1(t)nk−1(t)− βknk(t) (68)

for k ≥ 2 is the flux between k− 1 and k state (J1 ≡ 0), i.e., the number of k− 1 junctions
changing to k junctions per unit time as a result of forward and backward reaction with the
rate constant αk and βk (see Figure 5).

Similar rate equations were proposed by Aniansson and Wall [46–48] for the study
of micelle formation in surfactant solutions. In our gelation problem, associating groups
are attached to the polymer main chains (indicated by arrows), while in the micellization
problem they move freely. However, within the assumption of equal reactivity, the basic
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kinetics governing the association process can be regarded as fundamentally the same in
both cases.

Let us first transform these equations by using reactivity pk(t) in order to find the
equilibrium solution easily. Using Equation (3), we find

dpk(t)
dt

= −{βk + αkψp1(t)}pk(t) +
k

k + 1
βk+1 pk+1(t) +

k
k− 1

αk−1ψp1(t)pk−1(t) (69)

for k ≥ 2, and

dp1(t)
dt

= −2α1ψp1(t)2 + β2 p2(t) +
s

∑
k=3

{
βk
k

pk(t)−
αk−1
k− 1

ψp1(t)pk−1(t)
}

(70)

for k = 1.
Let us next confirm that the equilibrium distribution (5) satisfies these kinetic equations.

On substitution of (5) into (69), we find that the relation

(βkKk − αk−1Kk−1)− (αkKk − βk+1Kk+1)z̄ = 0 (71)

must be fulfilled. We therefore propose the detailed balance condition such that the equlibrium
constants satisfy the relation

Kk =
αk−1

βk
Kk−1 (72)

By repeated use of this relation, we have a well-known relation

Kk =
αk−1αk−2
βkβk−1

Kk−2 = · · · = λkλk−1 · · · λ2 (73)

between the equilibrium constants Kk and the stepwise association constants

λk ≡
αk−1

βk
(74)

for k− 1 and k state. The kinetic Equations (69) and (70), together with the detailed balance
conditions (73), provide a complete set to find the solution for the gelation time. The
gel-point condition is given by (48).

3. Results
3.1. Three-State Model

First, we study the three-state model of cross-linking. In this model, we have free
(k = 1), double (k = 2), and triple (k = 3) cross-link junctions. Some biopolymers form
cross-links of either double helix or triple helix [2,49,50]. Depending on the environmental
condition, there is a competition between them. We can study such competition in forming
cross-links by using a three-state rate equation.

The kinetic equations are

dp1

dt
= −2α1 p1

2 + (β2 −
1
2

α2ψp1)p2 +
β3

3
p3 (75a)

dp2

dt
= 2α1ψp1

2 − (β2 + α2ψp1)p2 +
2β3

3
p3 (75b)

dp3

dt
=

3α2

2
ψp1 p2 − β3 p3 (75c)

The conservation law of the total number of functional groups is described by the
normalization condition p1 + p2 + p3 = 1. The equilibrium solutions are given by ψ p̄1 =
z̄, ψ p̄2 = 2K2z̄2, ψ p̄3 = 3K3z̄3. Detailed balance conditions lead to the relation K2 =
α1/β2 ≡ λ2, and K3 = α1α2/β2β3 ≡ λ2λ3.
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Let us first eliminate triple association p3 by using the normalization condition. Then,
we transform the kinetic equation in terms of the deviation ξ1, ξ2 from the equilibrium state
defined by pk(t) ≡ p̄k(1 + ξk(t)). After a lengthy calculation, we find

d
dt

[
ξ1
ξ2

]
= −

[
a1,1 a1,2
a2,1 a2,2

][
ξ1
ξ2

]
+

[
f1(ξ1, ξ2)
f2(ξ1, ξ2)

]
(76)

where

a1,1 ≡ β3

3
+ 4α1z̄ + α2K2z̄2 (77a)

a1,2 ≡ K2z̄
(

2β3

3
− 2β2 + α2z̄

)
(77b)

a2,1 ≡ 1
K2z̄

(
β3

3
− 2α1z̄ + α2K2z̄2

)
(77c)

a2,2 ≡ β2 + β3

(
2
3
+ λ3z̄

)
(77d)

for the linear terms, and

f1(ξ1, ξ2) ≡ −(2α1ξ1 + α2K2z̄ξ2)z̄ξ1 (78a)

f2(ξ1, ξ2) ≡ (α1ξ1 − α2K2z̄ξ2)ξ1/K2 (78b)

for the nonlinear (quadratic) terms.
We can numerically solve these equations for a given set of rate constants. However,

here we confine to the linear approximation in order to obtain physical picture on the
factors controlling the gelation time. Nonlinear terms are used only for the stability analysis
of the linear solution.

Let us find the eigen-values γ of the matrix Â ≡ (ai,j). The equation to find them is

γ2 − A(z̄)γ + B(z̄) = 0 (79)

where

A(z̄) ≡ Tr(Â) = β2 + β3 + (4α1 + α2)z̄ + α2K2z̄2 (80a)

B(z̄) ≡ Det(Â) = β2β3 + 4α1β3z̄ + 9α1α2z̄2 (80b)

Note that B(z̄) can be written as

B(z̄) = β2β3(z̄u(z̄))′ = β2β3

(
1 + 2

p̄2

p̄1
+ 3

p̄3

p̄1

)
(81)

so that it is regarded as an extension of the KHDS decay rate (55) to the three-state model.
(Prime ′ indicates differentiation.) The linear relaxation has two modes

γ(±)(z̄) ≡ A(z̄)
2

{
1±

√
1− 4B(z̄)

A(z̄)2

}
(82)

The gel point is given by the condition

1− f ′{p2(t) + 2p3(t)} = 0 (83)

Using the deviation ξk(t), this condition is transformed to

ξ1(t) + K2z̄ξ2(t) = K2 + 3K3z̄− 1/2 f ′ z̄ (84)
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3.1.1. Rate-Determining Step

We first look into the cases where the two rate constants of the backward reaction are
largely different. If β2 << β3, the cross-linking is controlled by the first step association
(pair formation), and vice versa. In both cases, we have the situation B/A2 << 1, so that
the relaxation time is approximately given by

1
tR
' β2β3(z̄u(z̄))′

β2b2(z̄) + β3b3(z̄)
= β̄(z̄)

(
1 + 2

p̄2

p̄1
+ 3

p̄3

p̄1

)
(85)

where β̄ is the average of β defined by

1
β̄(z̄)

≡ b2(z̄)
β2

+
b3(z̄)

β3
(86)

The relaxation time apparently takes an extended KHDS form. Here, we have elimi-
nated αk in favor of βk and λk from A(z̄), and write

A(z̄) = β2b2(z̄) + β3b3(z̄) (87)

by using

b2(z̄) ≡ 1 + 4λ2z̄ (88a)

b3(z̄) ≡ 1 + λ3z̄ + λ2λ3z̄ (88b)

If the first association (pairing) is the rate-determining step, the relaxation time is approxi-
mately

1
tR
' β2

b3(z̄)
(z̄u(z̄))′ (89)

and goes back to the pairwise association in the limit of λ3 → 0. If the second associaition
(triple junction) is the rate-determining step, the relaxation time is approximately given by

1
tR
' β3

b2(z̄)
(z̄u(z̄))′ (90)

From these results, we may expect the extended KHDS form for the multiplicity more
than three

1
tR
' β

(
1 +

1
p̄1

∑
k≥2

kp̄k

)
= β
〈k〉w

p̄1
(91)

with some average β, because the average multiplicity is related to the average branching
number of the cross-link junctions.

3.1.2. Quasi-Stationary State Approximation

Let us next consider the special case where the first step reaction is so fast that a
stationary state is easily established for the binary cross-linking. Since we have dξ2/dt ' 0,
the kinetic equation reduces to

dξ1

dt
' −B(z̄)

a2,2
ξ1 (92)

The rexation time is then given by

γ(z̄) =
β2β3

a2,2
(z̄u(z̄))′ (93)
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The front factor can be regarded as an average backward rate constant β̄ defined by

1
β̄(z̄)

≡ 1
β3

+
2/3 + λ3z̄

β2
(94)

Hence, we find again the same form

1
tR

= β̄(z̄)
(

1 + 2
p̄2

p̄1
+ 3

p̄3

p̄1

)
(95)

for the relaxation time, with slightly different average of β.

3.1.3. Slow-Mode Approximation

The general solution for the linear equation is given by[
ξ1
ξ2

]
= C1e1e−γ(−)t + C2e2e−γ(+)t (96)

where e1 is the normalized eigen-vector for the eigen-value γ(−) (slow mode) and e2 for the
fast mode. The constants C1, C2 can be fixed by the initial conditions p1(0) = 1, p2(0) = 0.
In the slow mode approximation, we take only the slow mode into consideration, and
neglect the contribution from the fast mode. Then, the relaxation time is given by 1/tR =
γ(−), and the gelation time is tg = tRQ(z̄) with a thermodynamic factor

Q(z̄) = ln
{

2 f ′ z̄D1(z̄)
f ′(〈k〉w − 1)− 1

}
(97)

from (84), where D1(z̄) ≡ C1(e1
1 + K2z̄e1

2) is a function of z̄, which is non-singular across
the gel point. Therefore, we have again logarithmic divergence of the gel time.

3.1.4. Some Numerical Results of the Relaxation Time

In order to find specific results, let us assume that the association constant of the
second step is µ times larger than the first one:

λ2 ≡ λ, λ3 = µλ (98)

Then, the forward rate constants are given by

α1 = β2λ, α2 = µλβ3 (99)

The conservation law takes the form

x ≡ λψ = z̄(1 + z̄ + µz̄2) (100)

where λz̄ is written as z̄ for simplicity. Now we have

A(z̄) = β2(1 + 4z̄) + β3(1 + µz̄ + µz̄2) (101a)

B(z̄) = β2β3(1 + 4z̄ + 9µz̄2) (101b)

In particular, for a special case of β2 = β3 ≡ β the relaxation time is given by

1
βtR

=
1
2

A(z̄)

{
1−

√
1− 4B(z̄)

A(z̄)2

}
(102)
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with

A(z̄) = 2 + (µ + 4)z̄ + µz̄2 (103a)

B(z̄) = 1 + 4z̄ + 9µz̄2 (103b)

Figure 6a shows a schematic free energy surface of association drawn against the
reaction coordinates for the three-state model. With a decrease in the ratio µ, the surface
curve of the triple junction changes from A to D. For the limit of µ = 0 (curve D), the
model reduces to the pairwise one. Figure 6b plots the reciprocal gelation time 1/βtg, the
reciprocal relaxation time 1/βtR, and the thermodynamic factor Q(x) plotted against a
scaled concentration x ≡ λ(T)ψ for three ratios µ = 0, 1, 2 of the stepwise constants for the
tetra-functional molecules ( f = 4). Due to the existence of k = 2 state, relaxation is slower
than the fixed-multiplicity model of k = 3.

A
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1
/β
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x = λ(T)ψ 

μ = 0

μ = 1

μ = 2
Q

1/βt
R

1/βt
g

f = 4

(a) (b)

Figure 6. (a) Schematic picture of the three-state cross-linking model with multiplicity k = 1, 2, 3.
(b) The reciprocal gelation time 1/βtg (solid lines), the reciprocal relaxation time 1/βtR (broken lines),
and the thermodynamic factor Q(x) (broken dotted lines) plotted against a scaled concentration
variable x ≡ λ(T)ψ for various ratio µ = 0, 1, 2 of the stepwise constants for the tetra-functional
molecules ( f = 4). The reciprocal gelation time 1/βtg goes logarithmically to zero near the equi-
librium sol–gel transition point, while it is eventually proportional to x2/3 at a high concentration
region. With a decrease of µ, the stability of the triple cross-link junction is weakened as shown from
A to D in Figure (a). For µ = 0, the model reduces to the pairwise cross-linking.

3.2. Micellar Cross-Linking

Let us next consider cross-link junctions whose multiplicity is stabilized around a large
number k0 due to the physical reason of associative force, such as geometrical packing,
saturation of the interaction force, etc. Typical examples of thermoreversible gels cross-linked
by such micellar junctions are hydrophobically-modified water-soluble polymers (associating
polymers) [4], for instance, aqueous solutions of polymers with short hydrophobic chains
attached at both chain ends (telechelic polymers), such as hydrophobic ethoxylated urethane
(called HEUR) [51–53], and hydrophobic poly(N-isopropylacrylamide) [54–57]. Hydrophobes
form spherical micelles and serve as the network junctions. Triblock coploymers of the type
ABA, ABC, etc., for instance, poly(propylene oxide)-poly(ethylene oxide)-poly(propylene
oxide) triblock copolymers [58–60], are another important example whose cross-links are
micelles of various shapes; spherical, cylindrical, planar, etc.; consisting of the block segments.

The size distribution of the cross-links changes as the reaction proceeds step by step,
from the unimer (free functional group) dominant one to the final micelle (large junction)
dominant one. Such time-development is similar to that observed for the micelle formation
in surfactant solutions [44–47]. The functional groups treated here are, however, attached
to the polymer main chains. Therefore, their association takes place under the constraint
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of chain movement. However, here we assume the equal reactivity, and start from the
stepwise kinetic Equations (69) and (70). Their linearized forms are

dξk
dt

= −(βk + αk z̄) + βkξk−1 + αk z̄ξk+1 + (βk − αk z̄)ξ1 (k ≥ 2) (104a)

dξ1

dt
= −2α1z̄(2ξ1 − ξ2)− ∑

k≥3
βkKk z̄k(ξk−1 − ξk + ξ1) (104b)

The gel-point condition (48) turns into

f ′ ∑
k≥2

(k− 1) p̄kξk(tg) = 1− f ′ ∑
k≥2

(k− 1) p̄k (105)

Following the idea by Aniansson and Wall [46] (referred to as AW), we take an
analogy between micelle formation and a heat transfer from one metal to another through
a connected thin metal wire. Let us judiciously choose a multiplicity k1, below which the
population distribution is dominant in the initial stage, and k2 (< k0), above which the
population is dominant in the final stage. A stationary state is approximately retained
between them for k1 + 1 ≤ k ≤ k2 in the most time during the approach to equilibrium
(assumption of quasi-stationary flow). We then have

Jk '


0 (1 ≤ k ≤ k1)

independent of k ≡ J (k1 + 1 ≤ k ≤ k2)

0 (k2 + 1 ≤ k)

(106)

In Appendix C, we show that the flux J is proportional to the probability of free
groups as

RJ ' m0 + M1

M0
ξ1 (107)

where mj and Mj are the j-th moments for small aggregates and large micelles defined by

mj ≡
k1

∑
k=1

kj p̄k (108a)

Mj ≡
∞

∑
k=k2+1

kj p̄k (108b)

for j = 0, 1, 2 · · · . Here, the resistance R in the heat flow analogy is given by

R ≡
k2

∑
k=k1+1

1
βkKk z̄k =

1
ψ

k2

∑
k=k1+1

k
βk p̄k

(109)

We also find that the probability of large micelles for k ≥ k2 + 1 is approximately given by

ξk ' kξ1 − RJ (110)

The kinetic equation for k = 1 then takes the form

dξ1

dt
= −2J2 −

∞

∑
k=3

Jk ' −
m1 + M1

RM0
(k2 − k1)ξ1 (111)

Hence, the relaxation time is

1
tR

= (k2 − k1)
m1

RM0

(
1 +

M1

m1

)
(112)
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which is similar to AW formula. The solution of (111) is given by

ξ1(t) = Ce−t/tR (113)

with C ≡ (1− p̄1)/ p̄1.
Substituting (110) into the gel-point condition (105), we have

f ′
{

k1

∑
k=2

(k− 1)kp̄k + ∑
k≥k2+1

(k− 1)kp̄k

}
ξ1(tg)− f ′RJ ∑

k≥k2+1
p̄k = 1− f ′ ∑

k≥2
(k− 1) p̄k (114)

and hence we finally find the form

tg = tRQ(z̄) (115)

for the gelation time with the thermodynamic factor

Q(z̄) = ln
{

f ′CM
f ′ ∑k≥2(k− 1) p̄k − 1

}
(116)

where
M ≡ M1

M0
(m1 + M1)−m2 −M2 (117)

To see the relaxation time more specifically, we consider the special case in which the
multiplicity of the cross-links is limited from above such that only k = 1, 2, · · · s are allowed.
Then, the last step from s− 1 to s is expected to be slower than other steps, and hence
we can choose k1 = 2 and k2 = s− 1. Figure 7 shows the quasi-stationary approximation
schematically. Circles connected by dotted lines indicate the probability deviation ξk(t) at
time t. Since the moments are reduced to m1 = m2 = p̄1 and M0 = p̄s, M1 = sp̄s, we have

1
tR

= (s− 2)
p̄1

Rp̄s

(
1 + s

p̄s

p̄1

)
(118)

This is again KHDS form with an effective rate constant

βeff = (s− 2)
p̄1

Rp̄s
(119)

written in terms of the resistance constant

R ≡
s−1

∑
k=2

k
βk p̄k

=
s−1

∑
k=2

1
βkKk z̄k (120)

Let us compare this with the relaxation time of the fixed multiplicity model (55) whose
association takes place simultaneously. In the stepwise association, cross-link junctions
grow one by one from smaller to larger until they are saturated. All intermediate states
must reach equilibrium before the last one (largest junction), and hence they serve as a
resistance for the solution to go back to equilibrium. As a result, the dissociation rate β
is replaced by an effective one βeff. Relaxation is much slower, in particular, for the high
concentration region.
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Figure 7. Quesi-stationary state of the stepwise cross-linking for the multiplicity with upper bound.
The intermediate cross-link junctions (k = 2, · · · , s− 1) are close to equilibrium with ξk ' 0, and
hence the fluxes Jk (k = 2, · · · , s− 1) are kept nearly constant.

Figure 8 shows the gelation time tg , the relaxation time tR, and the thermodynamic
factor Q plotted against the scaled concentration x ≡ λ(T)φ for the functionality f = 4
with the varied upper bound s = 3, 5, 7, 9, 11 of the junction multiplicity. For simplicity,
uniform βk is assumed. The case of s = 3 goes back to the three-state model studied above.
With an increase of the upper limit s, relaxation becomes slower because the resistance R
due to the stepwise time development increases by the existence of many intermediate
states. This tendency is opposite to the simultaneous formation of the fixed-multiplicity
junctions by one step, for which relaxation becomes faster with k. In the high concentration
region, the reciprocal relaxation time behaves with a power index 2/s as 1/tR ∼ x2/s . We
can study these results in more detail by comparing the experimental data of associating
polymer solutions measured by using a temperature-jump technique.

x = λ(T)ψ 

1
/β

t R
, 
1
/β

t g
, 
Q s = 11

Q

f = 4

s = 3

s = 5

s = 11

1/βt
R

1/βt
g

s = 3

Figure 8. The reciprocal gelation time 1/βtg (solid lines), relaxation time 1/βtR (dotted lines) and the
thermodynamic factor Q (broken dotted lines) plotted against the scaled concentration x ≡ λ(T)φ
for the functionality f = 4 with varied upper limit s = 3, 5, 7, 9, 11 of the junction multiplicity. With
increasing s, the gelation time becomes slower with a smaller slope at high concentration region.
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4. Discussion

On the basis of the kinetic equation of cross-linking reaction, we have found the gela-
tion time in the temperature/concentration jump experiments. In the high concentration
region, we find the power law t−1

g ∼ xn with the power index n: n = 1 for pairwise
cross-linking, n = k− 1 for simultaneous association of k functional groups, and n = 2/s
for stepwise association with the maximum multiplicity s. These results can be compared
with the experimental data for (1) to study the formation process of the cross-links. For the
amplitude, we find

A(T) ' λ(T)n ∼ exp(n∆H/kBT) (121)

where ∆H is the enthalpy of association. The factor n = k− 1 is associated because there
are k− 1 bonds in a cross-link of multiplicity k.

In the vicinity of the gel point ∆φ << 1, on the other hand, we have found a logarith-
mic singularity n = 0. The index corresponds to the critical exponent of a phase transition.
It is generally a fractional number. However, since our kinetic equation is based on a
mean-field picture (equal reactivity), we have reached a mean-field exponent n = 0.

As for the temperature quench, we can do a similar analysis in the critical region by
the plot

t−1
g = B(φ)(∆T)m (122)

We have again m = 0 for the index. For the deep quench temperature jump experiment
(∆T/Tgel >> 1), however, we exponential law (121).

For simplicity, we assumed cold-setting gelation, i.e., gelation at low temperature. In
nature, however, we often observe heat-setting gelation phenomena. Some examples are
biopolymer hydrogels and temperature-responsive polymers in water. Polymers are dis-
solved in water due to hydration. When the temperature is raised, polymers are dehydrated,
and exposed to water, followed by the intermolecular association of the hydrophobic seg-
ments interfering with LCST phase separation. For heat-setting gelation, therefore, we
have to consider the dehydration process (dissociation of bound water molecules from
the polymer chain segments) before the cross-linking reaction. We will treat them in a
separate paper.

Throughout this paper, we have confined our study to the pre-gel region t ≤ tg before
the solution reaches the gel point. In this region, the conservation law (6) of the functional
groups, equilibrium reactivities p̄k (5), and the gel-point condition (48) all hold without
ambiguity as they are given in the text. From the equilibrium constants, we can derive the
detailed balance condition for the rate constants in the kinetic equation. However, in the
post-gel region tg ≤ t where gel networks exist, there is a possibility such that the reaction
within the gel part may be different from that of the sol part.

There are several treatments of the reaction in the post-gel region in the theoretical
study of polycondensation by tree statistics; one assumes a tree structure for a gel network
as for the sol, but the other permits cycle formation within the network. The former was
proposed by Stockmayer [33], and the latter by Flory [41–43]. Later, Ziff and Stell [35–39]
examined another possibility from a kinetic point of view. We have, however, avoided this
problem because, for the estimation of the gelation time, we need only information on the
reactivities before the gel point. After the gel point is passed, the solution, in particular its
sol part, may change very differently depending on the mechanism of cross-linking reaction.

5. Conclusions

We have presented a very general theoretical framework for the study of the gelation
time of thermoreversible gels with specified multiple structures of cross-link junctions.
It is based on the kinetic equation for the stepwise association of functional groups. All
results are presented from a unified point of view in terms of the gelation-time diagram—
simultaneous plot of 1/tg, 1/tR and Q against the scaled concentration variable x ≡ λ(T)ψ
in a single graph.
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From the theoretical modeling, the following conclusions can be drawn:

(1) The gelation time tg, the relaxation time tR, and the thermodynamic factor Q are all
functions of a single variable x ≡ λ(T)ψ (scaled concentration), where λ(T) is the
stepwise association constant at the final temperature T at which cross-linking reaction
proceeds. Therefore, temperature and concentration are not separable, but give the
same effect if they are properly scaled under a fixed value of x. Data for different
concentrations can be superimposed onto a single curve by using an appropriate
temperature shift factor.

(2) These three factors obey a fundamental relation tg(x) = tR(x)Q(x). The thermody-
namic factor Q(x) is logarithmically singular at the equilibrium gel point x = xg, while
the relaxation time tR(x) is continuous across the gel point. They are calculated for
some important models of cross-link junctions, such as pairwise cross-linking, three-
state model, cross-linking with fixed high multiplicity, and micellar cross-linking.

(3) The gelation time tg(x) of reversible cross-linking approaches the power law of
the irreversible one in the asymptotic region of large x (either high concentration
φ or high values of the association constant λ(T)). The power index of 1/tg lies
at somewhere between k− 1 (simultaneous cross-linking) and 2/s (stepwise cross-
linking). Hence, the reaction kinetics, simultaneous or stepwise, can be inferred by
measuring the power.

(4) For large micellar cross-link junctions, the gelation time is derived on the basis of
the quasi-stationary approximation (Aniansson–Wall formula) for the relaxation time.
Combination with the singular part of the thermodynamic factor estimated by our
preceding equilibrium gelation theory provides an accurate estimation of the gelation
time, and enables a comparison with experimental data.

The model solutions proposed in this study have obvious advantages in finding the
microscopic parameters regarding the cross-linking reaction, such as stepwise rate constants
and cross-link multiplicity, from macroscopic measurements on the gelation time and the
relaxation time.

Our theoretical framework may directly be applicable to some important thermore-
versible gels for which the equilibrium sol–gel transition lines are established. We hope
detailed experimental data on the gelation time for the systems treated here will be reported
in the near future.
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Appendix A. Solution of the Kinetic Equation

Because of the second order nature of the reaction, we have a factorized form

g(p) = (p− η(+))(p− η(−)) (A1)

with Equation (15). Equation (11) can easily be integrated. The solution is given by

p(τ) =
[η(+) − p(0)]η(−) − [η(−) − p(0)]η(+)e−γτ

[η(+) − p(0)]− [η(−) − p(0)]e−γτ
(A2)

where γ ≡ η(+)− η(−) is the relaxation rate, and p(0) is the initial value of the reactivity. We
assume for simplicity that the initial temperature is sufficiently high, so that all functional
groups are free p(0) = 0. Hence, we have the result (14).
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Appendix B. Retardation Coefficient

To find the retardation coefficient and investigate the behavior of the gelation time in
a high concentration region, we consider the integral of the Equation (42)

τ =
∫ p

0

dp
(1− p)k − β′p

(A3)

where β′ = 1/kxk′ . Expanding the integrand in powers of β′, and fixing the reactivity at its
gel-point value pg = 1/ f ′k′, we have

τg =
∞

∑
m=0

Im(pg)β′
m (A4)

where integrals are defined by

Im(pg) ≡
∫ pg

0

pmdp
(1− p)k(m+1)

(A5)

Then, the gelation time takes the form

βtg =
I0(pg)

kxk′

{
1 +

R f ,k

xk′ + O
(

1
x2k′

)}
(A6)

and hence we have
R f ,k = I1(pg)/kI0(pg) (A7)

for the retardation coefficient. We have already found it in (29) for the pairwise cross-linking
k = 2. For a general k, it is explicitly given by Equation (64). The first order correction to
gelation time is proportional to 1/xk−1.

Appendix C. Quasi-Stationary Approximation

Because the flux Jk is given by

Jk ' βkKk z̄k(ξk−1 − ξk + ξ1) for k ≥ 2 (A8)

in the linear approximation, we find for k ≥ k2 + 1

k

∑
k=2

(ξk−1 − ξk + ξ1) =
k

∑
k=2

Jk

βkKk z̄k ' J
k2

∑
k=k1+1

1
βkKk z̄k (A9)

The left hand side is simply −ξk + kξ1 by cancellation, so that we have

ξk ' kξ1 − RJ (A10)

where R defined by (109) is the analogy of the resistance in the heat flow. Similarly, for
k ≤ k1, we find

ξk ' kξ1 (A11)

To find J, we substitute these relations into the materials conservation law ∑ pk = 1. We find

k1

∑
k=1

p̄k(kξ1) +
∞

∑
k=k1+1

p̄k(kξ1 − RJ) ' 0 (A12)

and hence we have (107).
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