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Abstract: An analytical model of long Rossby waves is developed for a continuously-stratified,
planetary geostrophic ocean in the presence of arbitrary bottom topography under the assumption
that the potential vorticity is a linear function of buoyancy. The remaining dynamics are controlled
by equations for material conservation of buoyancy along the sea surface and the sea floor. The
mean, steady-state surface circulation follows characteristics that are intermediate to f and f /H
contours, where f is the Coriolis parameter and H is the ocean depth; for realistic stratification and
weak bottom currents, these characteristics are mostly zonal with weak deflections over the major
topographic features. Equations are derived for linear long Rossby waves about this mean state.
These are qualitatively similar to the long Rossby wave equations for a two-layer ocean, linearised
about a state of rest, except that the surface characteristics in the wave equation, which dominate the
propagation, follow precisely the same path as the mean surface flow. In addition to this topographic
steering, it is shown that a weighted integral of the Rossby propagation term vanishes over any
area enclosed by an f /H contour, which has been shown in the two-layer model to lead to Rossby
waves “jumping” across the f /H contour. Finally, a nonlinear Rossby wave equation is derived as a
specialisation of the result previously obtained by Rick Salmon. This consists of intrinsic westward
propagation at the classical long Rossby speed, modified to account for the finite ocean depth, and
a Doppler shift by the depth-mean flow. The latter dominates within the Antarctic Circumpolar
Current, consistent with observed eastward propagation of sea surface height anomalies.

Keywords: Rossby waves; ocean circulation; Southern Ocean; Antarctic Circumpolar Current;
bottom topography; topographic steering; Doppler shift; planetary geostrophic equations

1. Introduction

The fluid dynamics of the Southern Ocean is distinct from other ocean basins in a number of
key respects. Firstly, unimpeded by continental barriers, the Antarctic Circumpolar Current (ACC)
is the only ocean current to circumnavigate the globe. Moreover, since the input of momentum
from the surface wind stress is mostly balanced by the transfer of momentum to the solid Earth
by a bottom form stress [1], the ACC extends all the way down to the sea floor; yet, despite
navigating a complex topographic domain, the ACC follows a remarkably zonal path with only
weak steering of the upper level circulation by the bottom topography. Furthermore, whereas
surface anomalies propagate westward at virtually all latitudes [2,3], within the ACC surface,
anomalies propagate eastward relative to the sea floor [4–6]. While the vast majority of these
observed surface anomalies are admittedly nonlinear eddies, as opposed to linear long Rossby waves,
Chelton et al. [2] and Chelton et al. [3] find that these nonlinear eddies propagate westward at roughly
the long Rossby wave speed at mid-latitudes. Klocker and Marshall [6] show that the eastward
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propagation of anomalies within the ACC is consistent with the long Rossby wave speed if the latter
includes a Doppler shift by the depth-mean flow.

Traditionally, the impact of bottom topography on the depth-integrated circulation has been
described through the JEBAR (“Joint Effect of Baroclinicity and Relief”) mechanism [7,8]. However,
JEBAR can greatly exaggerate the topographic forcing, for example predicting large impact of
topography even on a surface-confined current in which the abyssal velocities vanish [9]. Instead,
Marshall [10], Marshall [11], and Marshall and Stephens [12] (see also [13]) formulate a model of
topographic steering in which bottom topography affects the circulation in compensating ways.
Firstly, the vertical velocities at the sea floor, generated as fluid parcels, move up and down the bottom
slope, compressing and stretching the vortex tubes above. However, this vertical motion also advects
the buoyancy field, creating lateral buoyancy gradients throughout the fluid column which indirectly
modify the vorticity balance by creating a depth-integrated lateral advection of planetary vorticity.
For realistic oceanographic parameters, it turns out that this latter process is dominant, having the
effect of greatly reducing the net topographic impact.

For steady-state flow at low Rossby number, de Szoeke [14], Marshall [10] and Marshall [11] have
shown that the circulation is determined by a characteristic problem in which the “characteristics”,
corresponding to the surface streamlines in the absence of forcing, are intermediate to f contours and
f /H contours, where f = 2Ω sin φ is the Coriolis parameter, Ω is the angular velocity of rotation
of the Earth and φ is latitude, and H is the ocean depth. The limiting cases of the characteristics
being dominated by f and f /H contours correspond to a surface-intensified, baroclinic circulation
and depth-independent barotropic circulation, respectively. This leads to the natural definition of
“topographic steering” of the mean flow as the extent to which these characteristics are deformed
by the bottom topography from latitude circles. This topographic steering depends on both the
stratification and strength of the bottom currents. However, for time-dependent flow, the concept
of topographic steering is, a priori, less obvious.

In this manuscript, an analytical model is developed for long Rossby waves in the Southern
Ocean in the presence of both background flow and arbitrary variations in bottom topography
by extending the mathematical approach of Marshall [11] for the steady problem to include
time-dependence. The resultant model represents a specialisation of the more general approach of
Salmon [15] who derived equations for low Rossby number flow under an assumption of a functional
relation between the potential vorticity and buoyancy. Specifically, it is shown that:

• Long Rossby waves are “steered” by the bottom topography in precisely the same manner
as the time-mean surface streamlines. In the limit in which the surface flow is relatively
unaffected by the bottom topography, so are the long Rossby waves. This concept is made
rigorous through comparison of the mathematical equations for long Rossby waves in the present
continuously-stratified model with variable bottom topography and the the equivalent equations
for long Rossby waves in a two-layer model, linearised about a state of rest.

• The result that long Rossby waves propagate quasi-zonally breaks down catastrophically
wherever f /H contours close, irrespective of the stratification. This is demonstrated through
the derivation of an integral constraint in which a weighted integral of the dominant Rossby
propagation term vanishes over any area enclosed by an f /H contour. Such behaviour has been
studied in the analogous two-layer model [16] and has been shown to result in the long Rossby
waves partially “jumping” across the closed f /H contour.

• Following the approach of Salmon [15], a nonlinear long Rossby wave equation can be derived
which demonstrates, in this model, that the long Rossby wave speed is Doppler shifted by the
depth-mean flow. For realistic ACC parameters, the latter term dominates and causes eastward
propagation relative to the sea floor, at speeds consistent with the observed eastward propagation
of Southern Ocean surface anomalies.

The manuscript is organised as follows. In Section 2, the planetary geostrophic equations
are stated, along with the kinematic boundary conditions and the general steady-state solution.
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In Section 3, these equations are applied to the Southern Ocean through the ansatz of the potential
vorticity being a linear function of the buoyancy. In Section 4, the mean, steady-state solution is
reviewed. In Section 5, the equations for linear long Rossby waves about the mean state are derived,
related to the two-layer model to identify explicitly how long Rossby waves are “steered” by the
bottom topography. Moreover, it is demonstrated that bottom topography still has a major impact
whenever the f /H contours close through an integral constraint, leading to the long Rossby waves
partially “jumping” across these closed contours. In Section 6, the nonlinear long Rossby wave
equation is derived following the approach of Salmon [15] to establish that the long Rossby waves
are Doppler-shifted by the depth-mean flow. Concluding remarks are made in Section 7.

2. Planetary Geostrophic Equations

We consider unforced, planetary geostrophic flow [17] between two rigid boundaries located at
the sea surface, z = 0, and sea floor, z = −H(x, y), as sketched in Figure 1. The equations of motion
are thus:

f k× u +
∇p
ρ0

= 0, (1)

−b +
1
ρ0

∂p
∂z

= 0, (2)

∇ · u +
∂w
∂z

= 0, (3)

∂b
∂t

+ u · ∇b + w
∂b
∂z

= 0. (4)

Here, u and w are the horizontal and vertical components of the velocity, f = f (y) is the Coriolis
parameter that varies with latitude, and p is pressure. ρ0 is the reference density and b is buoyancy.
For simplicity, we adopt a Cartesian coordinate system (x, y, z) where x is the zonal, y the meridional
and z the vertical coordinate, and t is time. Note that compressibility effects are not taken into account.
Boundary conditions are no normal flow at the sea floor and sea surface:

w = 0 (z = 0), (5)

w = −u · ∇H (z = −H). (6)

These equations hold only in the limit of a very small Rossby number, Ro = U/ f L � 1,
where U and L are characteristic velocity and length scales e.g., [18]. Thus, for consistency, it is
necessary for the bottom topography to vary only on planetary scales, which is generally not the
case in the ocean. Furthermore, the model may spontaneously generate smaller scales of motion that
invalidate the planetary geostrophic dynamics through instabilities [19] or through interactions with
the bottom topography (of which the mechanism discussed in [16] and Section 5.3 of this manuscript
is a good example).

The general steady-state solution to these planetary geostrophic equations can be written [20]:

Q = Q(M, b), (7)

where
Q = f

∂b
∂z

(8)

is the potential vorticity, and

M =
p
ρ0
− bz (9)
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is the Montgomery potential (the planetary geostrophic approximation to the Bernoulli potential).
It is easily shown that the flow materially conserves each of Q, M and b in the steady state [20].
Likewise, in the steady state, the boundary conditions can be rewritten as:

Ms = Ms(bs), (10)

Mb = Mb(bb), (11)

where the subscripts s and b are introduced for the surface and bottom boundaries, respectively [11].

H

xy

zbb

bs

φ

Saturday, 26 March 2011

Figure 1. Schematic diagram illustrating the key ingredients of the model. In the ocean interior, the
ansatz that the potential vorticity is a linear function of buoyancy imposes a known exponential decay
of buoyancy (thick solid contours) with depth. The solution is therefore determined by conservation
of buoyancy along the sea surface, bs(x, y), and along the sea floor, bb (see Section 3). The total ocean
depth is H(x, y) and the path of the surface streamlines in equilibrium is given by the characteristic
function, φ(x, y) (thin solid contours, see Section 4).

3. Application to the Southern Ocean

We now describe the specific application of the planetary geostrophic equations to the Southern
Ocean. The following represents the extension of Marshall [11] to include time dependence.

3.1. Interior Dynamics

The basic concept underlying the present model is to focus on the dynamical influence of the
surface and bottom boundaries. In this spirit, we exclude any interesting interior dynamics, a priori,
by imposing the ansatz of uniform potential vorticity on density surfaces, which renders the solution
for the evolution interior potential vorticity field trivial. Salmon [15], Marshall [10], Marshall and
Stephens [12] discuss steady solutions for more general functional relations between the potential
vorticity and density, but here we restrict our attention to the analytically simpler scenario of a
linear relation,

Q = f
∂b
∂z

= ab, (12)
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giving an exponential variation of buoyancy with depth:

b = bs eaz/ f . (13)

Marshall [11] used the value a = −6.44 × 10−8 m−1 s−1 estimated by Marshall et al. [21] from a
logarithmic fit to potential density observations, giving an e-folding scale for the stratification of about
1600 m. However, a more recent analysis by Kartsen and Marshall [22] finds that the e-folding scale
varies across the ACC between about 500 m on its southern flank and 1500 m on its northern flank,
with a mean value of about 1000 m. These variations in e-folding depth provide some indication
of the limitations of the ansatz Equation (12). Taking f ≈ 10−4 s within ACC, we obtain the value
a = −10−7 m−1 · s−1, slightly larger than used in [11]; however, this different choice has minimal
qualitative impact on the solutions.

Setting z = −H provides a relation between the surface and bottom densities,

bb = bs e−aH/ f , (14)

and hence it is sufficient to determine the solution for either bs or bb since only one is independent in
this model. We also have, through hydrostatic balance (Equation (2)) and the functional form of the
potential vorticity (Equation (12)):

1
ρ0

∂p
∂z

=
f
a

∂b
∂z

. (15)

Integrating vertically and using Equation (9) gives

Mb = Ms − γbs, (16)

where

γ =
f
a

{
1− e−aH/ f − aH

f
e−aH/ f

}
(17)

depends purely on the bottom depth, H(x, y), the Coriolis parameter, f (y), and the prescribed
constant a that sets the e-folding depth of the stratification.

3.2. Boundary Conditions

At the surface and bottom boundaries, material conservation of buoyancy equation (4) can
be rewritten:

∂bs

∂t
+ us · ∇bs = 0, (18)

∂bb
∂t

+ ub · ∇bb = 0. (19)

Noting that

us =
1
f

k×∇Ms, (20)

since Ms = ps/ρ0, and

ub =
1
f

k×∇Mb −
H
f

k×∇bb, (21)

(see Appendix A in [10]), we obtain:

∂bs

∂t
+

1
f

J (Ms, bs) = 0, (22)

∂bb
∂t

+
1
f

J (Mb, bb) = 0. (23)
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Here, the Jacobian operator is defined:

J(a, b) =
∂a
∂x

∂b
∂y
− ∂a

∂y
∂b
∂x

.

Through Equation (14), only one of the time derivatives in Equations (22) and (23) is
independent, resulting in the balance condition:

e−aH/ f J (Ms, bs) = J (Mb, bb) . (24)

Substituting for bb and Mb using Equations (14) and (16), we find, after some algebra,

J(γ, bs) = J
(

aH
f

, Mb

)
= J

(
aH

f
, Ms − γbs

)
. (25)

This relation Equation (25), which is equivalent to a depth-integrated linear vorticity balance, couples
variations in surface density along γ contours to Mb variations along f /H contours. With some
caveats that we shall discuss in Section 5.3, Equations (22) and (25) provide a complete description
of the temporal evolution of the surface fields, bs and Ms, and thence for the three-dimensional
circulation. Equations (22) and (25) are necessarily equivalent to (2.17) and (2.19) in Salmon [15]
in the specialised limit of a linear relation between potential vorticity and buoyancy.

4. Steady State

4.1. Characteristics

In the steady state, Equations (22) and (23) indicate that the Montgomery potential and density
contours are coincident at the upper and lower boundaries. Following Marshall [11], we assume a
linear functional relation at the sea floor,

Mb = Href bb, (26)

where Href is the “reference depth” [10]. This linear relation allows for analytical solution of the
problem at the expense of some generality. The bottom velocity Equation (21) becomes

ub = −
(H − Href )

f
k×∇bb. (27)

Thus, the reference depth has a simple physical interpretation as that at which the fluid velocity
vanishes along the sea floor. Note that this concept is different to the more general “level of no
motion”, frequently encountered in physical oceanography, in the sense that the flow vanishes at the
reference depth only along the sea floor but not in the ocean interior.

Now substituting Equation (26) in Equation (16), we find

Ms =
{

γ + Href e−aH/ f
}

bs = φ bs, (28)

where

φ = γ + Href e−aH/ f =
f
a

{
1− e−aH/ f −

a(H − Href )

f
e−aH/ f

}
. (29)

Since both bs and Ms are materially conserved by fluid parcels in the steady state, the surface flow
follows contours of φ, as sketched schematically in Figure 1:

bs = bs(φ), (30)

Ms = Ms(φ). (31)
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Contours of φ are the characteristics for the more general steady-state problem with wind forcing
(Marshall, 1995a). Note that these characteristics, and hence the path of the surface current, depend
only on the bottom depth, the Coriolis parameter, and the prescribed constants, a and Href .

Plotted in Figure 2 are contours of f /H, γ (Equation (17)), and φ for Hre f = 4 km and 6 km.
Note that the characteristic contours, φ, are quasi-zonal for these parameter choices, with only slight
deflections over the major topographic, in marked contrast to both f /H and γ. The Kerguelen
Plateau (between about 65◦–70◦E, in the Indian sector) is notable in representing a more substantial
topographic obstacle.

(a) f/H (b) γ

(c) φ (Href =4 km) (d) φ (Href =6 km)

Figure 2. Contours of: (a) f /H; (b) γ; (c) φ with Href = 4 km; (d) φ with Href = 6 km. The contours of
φ represent the characteristics along which the surface geostrophic flow is directed in the absence of
forcing (Section 4) and also along which long Rossby waves propagate (Section 5).

4.2. An Illustrative Solution

In order to construct the full solution, it is necessary to construct a mapping between the
characteristic function, φ, and the surface buoyancy, bs. Several such examples are discussed in
Marshall [11]; here, a single example is presented to provide the reader with an illustration of the
key features, strengths and limitations of the model solutions. Specifically, the solution is constructed
with the reference depth, Hre f = 4 km; the surface buoyancy is set to a uniform constant value of
0.2× 10−2 m · s−2 poleward of the φ = 1250 m contour (located around 60S), then it increases linearly
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with φ across the model ACC until φ = 1150 m (located around 52N), north of which the surface
buoyancy is held constant.

Thereafter, the full solution can be constructed. The vertical structure of the pressure field is
obtained by using Equation (15), alongside Equations (9) and (28), to give:

p
ρ0

= Ms −
f bs

a

(
1− eaz/ f

)
=

f bs

a

(
eaz/ f − e−aH/ f −

a(H − Hre f )

f
e−aH/ f

)
. (32)

Having obtained the vertical structure of the flow, the streamfunction for the depth-integrated flow
can be shown to be:

ψ =
bs

a

[
2φ− Hre f e−aH/ f − aH

f
(H − Hre f )e−aH/ f

]
−
∫

φ(bs)

a
dbs (33)

(see Appendix A). The reader is also referred to [11] for further details.
A three-dimensional perspective of the surface buoyancy field and a vertical section through

the solution at the longitude of 150 W is shown in Figure 3, and the streamfunction for the
depth-integrated flow is plotted, along with the pressure, or geostrophic streamlines, at depths of
0 km, 2 km and 4 km, and these are shown in Figure 4. By construction, the surface buoyancy
contours, bs, and surface pressure contours, ps/ρ0 = Ms, follow the surface characteristic contours, φ.

Figure 3. Illustrative steady-state solution with Hre f = 4 km. The figure shows buoyancy at the sea
surface, bs, which is a prescribed function of the characteristic function, φ, and also a vertical section
of the buoyancy, b, at the longitude 150W. The buoyancy is related to (neutral) density anomalies, δρ,
by b = −g δρ/ρ0, where g is the gravitational acceleration, and so the values should be multiplied by
a factor of roughly −102 to convert to (neutral) density anomalies in kg ·m−3.

The flow is quasi-zonal over most of the water column with only modest excursions over the
topographic features. The two most obvious exceptions are in the Drake Passage where most, but
not all, of the streamlines are able to pass through the passage, and the Kerguelan Plateau, which
acts as a complete barrier to the modelled ACC. In reality, the ACC flows several degrees further
north in the Indian sector and hence is able to skirt the northern tip of the Kerguelan Plateau. The
latter is a limitation of the present model which lacks the necessary dynamics to allow the current
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to deflect northward after passing through the Drake Passage and return poleward as it passes
around Antarctica. Traditionally, the latter has been assumed to be a consequence of Sverdrup
balance following Stommel [23], although more recent work points to an important role for mesoscale
eddies in controlling these meridional excursions [24].

(a)    (Sv) (b)     at 0 km (m2 s-2)p

⇢0

(c)     at 2 km (m2 s-2)p

⇢0

(d)     at 4 km (m2 s-2)p

⇢0

30
90
150

0.1 0.2

3

25
15

5

2
1

Wednesday, 18 May 16
Figure 4. Flow fields in the steady-state solution with Hre f = 4 km. (a) depth-integrated
streamfunction, ψ (Sv); (b) geostrophic streamlines, p/ρ0, at 0 km (m2 · s−2); (c) geostrophic
streamlines, p/ρ0, at 2 km (m2 · s−2); (d) geostrophic streamlines, p/ρ0, at 4 km (m2 · s−2).

The circulation is strongly surface-intensified, but nevetheless roughly equivalent barotropic
over the upper 3 km of the water column, consistent with the theoretical arguments of Killworth [25].
In contrast, at 4 km depth, the flow consists of local abyssal recirculation gyres, confined by the
bottom topography. Indeed, it is easily confirmed, by substituting z = −H = −Hre f in Equation (32),
that the pressure is constant along the reference depth contour on the sea floor, i.e., the contour
H = Hre f is a geostrophic streamline.

In summary, the time-mean solution has both strengths and weaknesses. The most significant
virtue of the model is that it provides a continuously stratified solution to the planetary geostrophic
equations that satisfies the kinematic boundary conditions at the sea surface and sea floor. However,
the underlying assumptions, including uniform potential vorticity on buoyancy surfaces and the
neglect of forcing by surface winds and mesoscale eddies, limit its broader applicability. Also note
that some of the flow features formed within the solution are at odds with the low Rossby number
assumption required for validity of the model. Nevertheless, the model provides a nice theoretical
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laboratory within which to investigate the behaviour of long Rossby waves in the presence of variable
bottom topography.

5. Linear Rossby Waves

5.1. Linear Wave Equations

We now seek wave solutions, linearised about the steady state solution reviewed in Section 4.
The linearised surface buoyancy equation (22) is:

∂b′s
∂t

+
1
f

J
(

Ms, b′s
)
+

1
f

J
(

M′s, bs

)
= 0. (34)

Using Equations (16) and (28), this can be rewritten:

∂b′s
∂t

+
1
f

J
(

φ bs, b′s
)
− 1

f
J
(

bs, γb′s
)
− 1

f
J
(

bs, M′b
)
= 0.

Finally, using the relation

J
(

bs, γb′s
)
= φJ

(
bs, b′s

)
− J

(
bs, Href b′b

)
,

which follows from Equations (29), (30) and (14), the linear long Rossby wave equation is:

∂b′s
∂t

+
bs

f
J
(
φ, b′s

)
− 1

f
J
(

bs, M′b − Href b′b
)
= 0. (35)

In addition, we have the linearized version of Equation (25) as a constraint:

J(γ, b′s) = J
(

aH
f

, M′b

)
, (36)

or equivalently:

J(φ, b′s)− a J
(

H
f

, M′b − Href b′b

)
= 0. (37)

Together, Equations (35) and (37) describe the evolution of linear long Rossby waves in a planetary
geostrophic ocean with arbitrary bottom topography and linear relations between the potential
vorticity and buoyancy, and the bottom Montgomery potential and bottom buoyancy, respectively.

5.2. Relation to the Two-Layer Model

We now exploit qualitative relation between the linear long Rossby wave equations (35) and (37),
and the equivalent linear wave equations for a two-layer ocean, linearised about a state of rest. The
advantage of the two-layer model for this purpose is that it admits a mean solution in which there is
no mean flow, whereas the present model with its assumption that the potential vorticity is a linear
function of buoyancy, necessarily implies a mean flow. While there is not exact equivalence between
the two models, this qualitative relation is useful in highlighting the nature of the impact of variable
bottom topographic on long Rossby wave propagation in the continuously-stratified model.
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The two-layer equations, linearised about a state of rest, can be written:

∂h′1
∂t
− βg′h1

f 2
∂h′1
∂x
− g k×∇

(
h1

f

)
· ∇η′2 = 0, (38)

− βg′h1

f 2
∂h′1
∂x
− g k×∇

(
H
f

)
· ∇η′2 = 0, (39)

e.g., [16,26] where h1 is the thickness of the upper layer, β = d f /dy is the meridional gradient in the
Coriolis parameter, g′ = g ∆ρ/ρ0 is the reduced gravity where g is the gravitational acceleration and
∆ρ/ρ0 is the fractional density difference between the layers, and η2 is the dynamic topography in the
lower layer. For convenience in this and the subsequent subsection, we also adopt a locally Cartesian
coordinate system in which x and y are zonal and meridional coordinates.

These two layer equations can be rewritten in the following form:

∂

∂t

(
g′h′1

f

)
+

g′h1

f 2 J
(

f ,
g′h′1

f

)
− 1

f
J

(
g′h1

f
, gη′2

)
= 0, (40)

J
(

f ,
g′h′1

f

)
− f

h1
J
(

H
f

, gη′2

)
= 0, (41)

where g′h1/ f is inversely proportional to the upper layer potential vorticity, and gη′2 is proportional
to the dynamic topography in the lower layer.

Comparing Equations (35) and (37) with Equations (40) and (41), the equations are qualitatively
related with the associations:

b′s ↔
g′h′1

f
, (M′b − gHref b′b)↔ gη′2, bs ↔

g′h1

f
, φ↔ f ,

f
a
↔ h1. (42)

It is natural to relate the surface buoyancy and (a function of) the upper layer potential vorticity, each
of which is materially conserved. Likewise, M′b − gHre f b′ is analogous to η′2 within the lower layer
(noting that b′ = 0 within an isopycnal layer, by assumption). The quantity f /a sets the e-folding
depth of the stratification, so again has a natural association with h1 which, for a thin upper layer, can
be identified with the pycnocline depth. Most significant, for the present paper, is the result that the
characteristic, φ, is associated with the Coriolis parameter, f , in the two-layer model, linearised about
a state of rest. Thus, without further analysis, we can deduce from the analogy with the two-layer
model that the surface-intensified long Rossby waves follow contours of φ, i.e., the same path as the
mean surface streamlines, in the present continuously-stratified model, in contrast to latitude circles
in the two layer model.

5.3. Shallow Pycnocline Limit: Topographic Shielding and Rossby Wormholes

In the limit of a shallow pycnocline, aH/ f = H/Hstrat � 1, we have φ ≈ f /a and bs ≈ bs(y),
irrespective of the shape of the bottom topography. Thus, the linear Rossby wave Equation (35) is
well approximated by:

∂b′s
∂t
− βbsHstrat

f 2
∂b′s
∂x

+
1
f

∂bs

∂y
∂

∂x
(M′b − Href b′b) ≈ 0. (43)

We can estimate the magnitude of M′b − Href b′b from the appropriate limit of Equation (37):

− βH2
0

f 2
∂b′s
∂x
− J

(
H
f

, M′b − Href b′b

)
≈ 0, (44)
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giving

M′b − Href b′b ∼
βH2

strat
f |∇H| b′s,

where we assume topographic gradients locally dominate the gradient in the Coriolis parameter.
Hence, the relative magnitude of the third, bottom interaction term in Equation (43) to the second,
classical Rossby propagation term is:

1
f

∂bs

∂y
∂

∂x
(M′b − Href b′b)

/
βbs Hstrat

f 2
∂b′s
∂x
∼ Hstrat

|∇H|
∂

∂y
ln bs.

Assuming |∆bs/bs| ≤ O(1) and Hstrat � H, consistent with the assumption of a shallow pycnocline,
and that the topography varies on scales comparable to the buoyancy field, this ratio is� 1, meaning
that the bottom interaction term is negligible,

∂b′s
∂t
− βbsHstrat

f 2
∂b′s
∂x
≈ 0, (45)

i.e., the long Rossby waves propagate westward.
However, as discussed in Marshall [16] for the analogous two-layer ocean, this simple westward

propagation can break down catastrophically in regions surrounded by closed f /H contours. To see
this, integrate Equation (44) over any area, A( f /H), enclosed by an f /H contour to obtain:

∫ ∫
∂b′s
∂x

dx dy =
∫
(b′se − b′sw) dy ≈ 0, (46)

where b′se and b′sw are the surface buoyancy anomalies along the eastern and western arms of the
bounding f /H contour. Thus, a weighted integral of the Rossby propagation term in Equation (45)
vanishes over this area. Marshall [16] confirms through numerical calculations in the analogous
two-layer model that this leads to the Rossby waves partially “jumping” across the closed f /H
contour, termed a “Rossby wormhole”—see also Tailleux and McWilliams [26] and Tailleux and
McWilliams [27] for related numerical calculations and discussion.

Note that an integral constraint applies irrespective of whether the pycnocline is shallow: a
weighted integral of the dominant Rossby propagation term vanishes in the more general long
Rossby wave Equation (35), confirmed by integrating Equation (37) over the area contained within a
closed f /H contour. Hence, the Rossby wormhole mechanism holds even when the Rossby waves
propagate eastward due to Doppler shifting by the depth-mean flow, as in the ACC.

6. Nonlinear Rossby Wave Equation

One of the outstanding features of anomaly propagation in altimetric data is the anomalous
eastward propagation within the latitude band of the ACC [4–6]. Typical eastward propagation
speeds are of the order 2− 4 cm s−1, significantly less than the mean surface current speed [5,6,28,29].
This eastward propagation is often attributed to advection by the “mean flow”, although by
precisely which “mean flow”—surface, depth-mean or other—is typically not discussed. Klocker
and Marshall [6] found good consistency between the long Rossby wave speed and the propagation
speeds of anomalies in altimetric data as inferred by Chelton et al. [2] and Chelton et al. [3] if the long
Rossby wave speed is Doppler-shifted by the depth-mean flow. Since nonlinear anomalies appear to
propagate at roughly the long Rossby wave speed at other latitudes [2,3], it is natural to ask if there
is a theoretical reason to expect that the long Rossby wave speed should be Doppler shifted by the
depth-mean flow. The following analysis closely follows Salmon [15] in the specialised limit that the
potential vorticity is a linear function of the buoyancy.
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The depth-mean velocity is:

1
H

0∫

−H

u dz = − 1
H

0∫

−H

(z + H)
∂u
∂z

dz + us = −
1

f H
k×

0∫

−H

(z + H)∇b dz + us.

Substituting b = bseaz/ f using Equation (13) and evaluating the integral gives:

1
H

0∫

−H

u dz = (· · · )k×∇bs −
abs

f H
k×

0∫

−H

z(z + H)eaz/ f∇ 1
f

dz + us, (47)

where the dotted terms in brackets are not evaluated since they make no further contribution to
the analysis. Now, taking the inner product of Equation (47) with the surface buoyancy gradient,
we obtain:

us · ∇bs =
1
H

0∫

−H

u dz · ∇bs +
βabs

f 3H
∂bs

∂x

0∫

−H

z(z + H)eaz/ f dz. (48)

Let
Hstrat(y) =

f
a

(49)

be the e-folding scale of the stratification. Evaluating the integral on the right-hand side of
Equation (48) gives:

us · ∇bs = uz · ∇bs −
βbsHstrat

f2

{
1 + e−H/Hstrat − 2Hstrat

H
(1− e−H/Hstrat)

}
∂bs

∂x
.

Substituting into the surface buoyancy equation and using bs − bb = bs (1− e−H/Hstrat) gives:

∂bs

∂t
+ c · ∇bs = 0 (50)

where

c =
1
H

0∫

−H

u dz− β(bs − bb)Hstrat

f 2

{
coth

(
H

2Hstrat

)
− 2Hstrat

H

}
i. (51)

This represents a specialisation of equation (2.19) in Salmon [15]. Note that this expression for
the long Rossby wave speed Equation (51) contains explicit symmetry in the vertical, giving the
same propagation speed for surface-enhanced (Hstrat > 0) and bottom-enhanced (Hstrat < 0)
stratification, as one would expect from the vertical symmetry inherent in the dynamics in the absence
of topographic variations.

Taking the time-mean of Equation (50), we see that the mean long Rossby velocity vectors are
aligned with surface buoyancy contours:

c · ∇bs = 0.

Taking linear perturbations, we obtain:

∂b′s
∂t

+ c · ∇b′s = −c′ · ∇bs. (52)

Thus, if the topographic interactions are sufficiently small that the long Rossby waves do not project
significantly onto the depth-integrated transport, and assuming that the mean buoyancy contours are
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zonal to leading order, the term on the right-hand side of Equation (52) is small, meaning that the
long Rossby waves propagate, to leading order, along the surface buoyancy contours.

In the limit that the stratification is strongly surface-intensified (Hstrat � H), the function
coth (H/2Hstrat)− 2Hstrat/H ≈ 1− 2Hstrat/H, giving:

c ≈ 1
H

0∫

−H

u dz− β(bs − bb)

f 2
Hstrat(H − 2Hstrat)

H
i. (53)

This expression is qualitatively similar to the Rossby propagation speed in the two-layer model
e.g., [26], where the reduced gravity is evaluated using the buoyancy difference between the sea
surface and sea floor, and the waves are Doppler-shifted by the depth-mean velocity.

More generally, the variation of the function coth (H/2Hstrat) − 2Hstrat/H with H/2Hstrat is
shown in Figure 5. For Hstrat ≈ H/4 ≈ 103m [22], the function is approximately 0.54. Also
taking bs − bb ≈ 10−2 m · s−2, β ≈ 1.6 × 10−11 m−1 · s−1, f ≈ 10−4 s−1 gives an intrinsic long
Rossby speed, relative to the mean flow, of c − uzt ≈ −1 × 10−2 m · s−1. The depth-averaged
mean velocity can be estimated from the volume transport of the ACC (relative to the sea floor),
T = (137 ± 7) × 106 m3 · s−1 [30], a characteristic ACC width, Ly ≈ 1.5 × 106 m, and depth,
H ≈ 4× 103 m, giving uzt ≈ T/Ly H ≈ 2.5× 10−2 m · s−1. Thus, Doppler shifting dominates the net
long Rossby propagation which is eastward relative to the sea floor, c ≈ 1.5× 10−2 m · s−1. This value
is also broadly consistent with the observed propagation speed of nonlinear anomalies in altimetric
data and general circulation models [4–6,28,29], although we emphasise that the analysis presented
in this paper neither predicts, nor explains why, nonlinear anomalies should propagate at roughly
this same long Rossby wave speed.

coth

✓
H

2H0

◆
� 2H0

H

H

2H0

0

1

100

0.54

2
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H
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babs

f 3H
∂bs

∂x

0Z

�H

z(z + H)eaz/ f dz. (44)

Let
Hstrat(y) =

f
a

(45)

be the e-folding scale of the stratification. Evaluating the integral on the right-hand side of (44) gives:

us · rbs = uz · rbs �
bbsHstrat

f2

⇢
1 + e�H/Hstrat � 2Hstrat

H
(1 � e�H/Hstrat)

�
∂bs

∂x
.

Substituting into the surface buoyancy equation and using bs � bb = bs (1 � e�H/Hstrat) gives:

∂bs

∂t
+ c · rbs = 0 (46)

where

c =
1
H

0Z

�H

u dz � b(bs � bb)Hstrat

f 2

⇢
coth

✓
H

2Hstrat

◆
� 2Hstrat

H

�
i. (47)
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Figure 5. Graph of coth (H/2Hstrat)− 2Hstrat/H versus H/2Hstrat.

Finally, we comment that this result is qualitatively consistent with the “non-Doppler shift”
effect that occurs when zonal mean flow has the same modal structure as the baroclinic wave under
consideration [31–34]. In the present model, the baroclinic wave necessarily has the same vertical
structure as the mean flow aside from a depth-independent barotropic component, and hence it is
natural to expect that the latter is solely responsible for the Doppler shift. More generally, when the
potential vorticity is not prescribed as a function of buoyancy, it is likely that an additional Doppler
shift will arise due to the different baroclinic structures of the propagating waves and mean flow
following [35–37].
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7. Conclusions

In this paper, an analytic model has been studied for long Rossby waves in the Southern Ocean.
By assuming planetary geostrophic dynamics and that the potential vorticity is a linear function of
buoyancy, equations have been derived that reveal the impact of bottom topography and mean flows
on the propagation of Rossby waves. The key findings are:

• Long Rossby waves propagate along the same path as followed by the mean surface geostrophic
flow, characteristics that are intermediate to f and f /H contours. For realistic Southern
Ocean parameters, these characteristics are nearly zonal, with only slight deflections over
major topographic features, aside from the Kerguelan Plateau which represents a more
substantial obstacle.

• The quasi-zonal propagation of long Rossby waves breaks down catastrophically in regions of
closed f /H contours where, by analogy with the simpler two-layer model, the long Rossby
waves can be expected to partially jump across the closed f /H contour.

• In the absence of topographic variations, the Rossby propagation speed consists of an intrinsic
Rossby speed, slightly modified from the classical Rossby speed to account for finite ocean
depth, and Doppler shifting by the depth-mean flow, consistent with an earlier result obtained
by Salmon [15]. This Doppler shift dominates for realistic Southern Ocean parameters,
consistent with the observed eastward propagation of Southern Ocean anomalies in surface
altimetric observations.

The model analysed in this paper relies on a number of overly restrictive assumptions. Firstly,
the assumption of planetary geostrophic dynamics clearly breaks down in the presence of major
topographic obstacles such as the Kerguelan Plateau, where inertial boundary layers, separated
jets and short Rossby waves are each generated, e.g., [38–40]. Secondly, the ansatz of uniform
potential vorticity on density surfaces is a convenient analytical and conceptual device in isolating
the dynamical effects of the boundary conditions from the interior dynamics but is an extremely
crude model of the hydrography observed in the Southern Ocean. More general functional relations
between the mean potential vorticity, buoyancy and Montgomery potential will result in higher
baroclinic Rossy wave modes, which are excluded in the present model. Thirdly, the model
has excluded any explicit wind and buoyancy forcing, although such forcing is included in the
more general theoretical approach of Salmon [15]. Fourthly, the effects of compressibility, and the
separate contributions to the buoyancy from temperature and salinity, have been completely ignored.
While common in practise in theoretical models of the ocean circulation (see [18,41]) for reviews,
this simplification is purely for analytic convenience and not justified; the duality noted by [42]
between the Boussinesq and non-Boussinesq hydrostatic equations of motion may provide a means
of incorporating compressibility effects in a more consistent manner cf. [43,44].

Finally, it is important to emphasise that the theory presented in this paper applies only to long
Rossby waves described by planetary geostrophic dynamics. In contrast, the propagating anomalies
observed by satellite altimeter measurements of sea surface elevation are mostly nonlinear in the
sense that the eddy velocities exceed the Rossby wave speed [2,3] such that planetary geostrophic
dynamics are invalid. While these nonlinear anomalies do appear to propagate at roughly the long
Rossby wave speed at mid latitudes [2,3], and in the Southern Ocean if the long Rossby wave speed
is Doppler shifted by the depth-mean velocity [6], the present analysis does not predict the speed
at which nonlinear anomalies should propagate, nor why. There are competing mechanisms for
the zonal propagation speed of nonlinear eddies—for example, the existence of a critical layer in
any baroclinically unstable current at which the local zonal velocity and intrinsic phase speed of the
unstable mode match [45–48]. The existence of a critical layer means that the phase speed of the most
unstable mode must lie within the envelope of zonal velocities of the mean current; in the case of the
ACC, this means that the most unstable mode is eastward propagating, at a speed no greater than
that of the surface zonal velocity (see also [28,29,49,50].
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Appendix A. Derivation of Streamfunction of the Depth-Integrated Flow

Here, we outline the derivation of the expression Equation (33) for the depth-integrated
streamfunction. First, we note that the depth-integrated velocity can be rewritten, using
Equation (12), as

0∫

−H

u dz =

bs∫

bb

f u
ab

db =

bs∫

bb

k×∇b M
ab

db,

where ∇b is the gradient operator evaluated along a buoyancy surface. Thus, defining the
streamfunction for the depth-integrated flow, ψ, such that

0∫

−H

u dz = k×∇ψ,

we can identify:

∇ψ = ∇
bs∫

bb

M
ab

db− Ms

abs
∇bs +

Mb

abb
∇bb.

Again using Equation (12) alongside Equations (26) and (28) gives:

∇ψ = ∇
0∫

−H

M
f

dz− φ

a
∇bs +∇

(
Hre f bb

a

)
.

Now, substituting for M using the time-mean of Equation (9), substituting for p using Equation (32),
substituting for b and bb using Equations (13) and (14), and evaluating the integrals, the final
result follows:

ψ =
bs

a

[
2φ− Hre f e−aH/ f − aH

f
(H − Hre f )e−aH/ f

]
−
∫

φ(bs)

a
dbs,

which is Equation (33).
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