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Abstract: In this short paper, we discuss and provide constitutive relations for the stress tensor and the
heat flux vector for a nonlinear density-gradient dependent (Korteweg-type) fluid. Specifically, we
attempt to present a unified thermo-mechanical approach to the two models given in papers of
Massoudi (International Journal of Non-Linear Mechanics, 2001, 36(1), pp. 25–37.) and Massoudi
(Mathematical Methods in the Applied Sciences, 2006, 29(13), pp. 1599–1613.) where the entropy law
is used and restrictions are also obtained on the constitutive parameters. In most thermomechanical
studies of nonlinear fluids using the entropy law, the stress tensor is assumed to be nonlinear and
the heat flux vector still has the form of the Fourier type, i.e., it is proportional to the temperature
gradient. In this paper, we use a generalized (nonlinear) form for the heat flux vector. When our
model is linearized we obtain constraints, due to the entropy inequality, which are in agreement with
the earlier results.
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1. Introduction

Coal-water or coal-oil slurries are used as the primary fuel in many coal power plants. Studies have
shown that the viscosity of coal-slurries depends on a few parameters such as the volume fraction
of the coal particles, the mean size and the size distribution of the coal, and in some cases the shear
rate ([1]). It has also been observed that preheating the fuel can result in better performance; as
a result of such heating, the viscosity of the suspension may change. Constitutive modeling of
nonlinear fluids (non-Newtonian fluids) has received much attention [2], where many empirical or
semi-empirical equations have been suggested [3]. Most of these fluids are multi-component mixtures.
Sometimes these fluids can be treated as a single continuum suspension with nonlinear material
properties, and the techniques and models used in rheology or mechanics of nonlinear fluids can be
used where global or macroscopic information about velocity or temperature fields for the whole
suspension can be obtained. For some applications, however, there is a need to know the details of the
field variables such as velocity, concentration, temperature, etc., and in these cases a multi-component
modeling approach should be used. See [4–6] for examples of nonlinear fluids where both approaches
can be used.

Density variations sometimes play a significant role in the theory of interacting continua, i.e.,
mixture theory, where constitutive relations are needed for the stress tensors, interaction forces, heat
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flux vectors, etc. Density gradients can appear as independent constitutive parameters in these theories.
The ”gradient-type” theories for fluids are well known in continuum mechanics, since the pioneering
works of Stokes [7] and Maxwell [8]. The history of density-gradient dependent viscous fluids began
with Korteweg in 1901, who modeled the effects of the fluid capillarity. He proposed a smooth
constitutive equation for the stress tensor [9,10],

T = (−p + α4ρ + β∇ρ · ∇ρ) I + γ∇ρ⊗∇ρ + ν∇(∇ρ) + λTr(D)I + 2µD (1)

where p, α, β, γ, ν, λ and µ are functions of ρ and θ, and 4 is the Laplacian operator. If we replace
the density ρ by the temperature θ, we obtain an equation very similar to that given by Maxwell [8],
who derived an equation for the stress tensor in rarified gases arising from inequalities of temperature.
Dunn and Serrin ([11]) also studied the thermodynamics of density-gradient dependent viscous fluids.
Later, Mehrabadi et al., [9] derived constitutive relations for a density-gradient dependent viscous fluid;
they also discussed the relationship between their model and the Korteweg fluid (see also [12,13]).
Density gradients may also play a role in the formulation of the constitutive relation. Rajagopal
and Massoudi [14] derived a nonlinear expression for the Cauchy stress tensor which depends on
the gradient of the density and the symmetric part of the velocity gradient. Their model has been
generalized and used for a variety of applications [15,16]. In their model, Rajagopal and Massoudi [14]
did not perform a second law analysis.

In most of the heat transfer problems, the classical theory of heat conduction proposed by
Fourier ([17]; see also [18]) is used, where the heat flux is related to the temperature gradient

q = −k∇θ (2)

where k (thermal conductivity) is a material property and θ is the temperature. For complex materials,
k in the above equation is replaced with an effective or modified form of the thermal conductivity,
which can depend on concentration, temperature, etc., and in fact, for anisotropic materials, k becomes
a second order tensor. For a discussion of the effective thermal conductivity concept in porous media
and multiphase flows, see [19]. Massoudi [20,21], (without using a second law analysis) derived
a constitutive relation for the heat flux vector, where q depends not only on the gradient of the
temperature, but also on the gradient of the density and the symmetric part of the velocity gradient, D.

In most thermomechanical studies of nonlinear fluids using the entropy law, the stress tensor
is assumed to be nonlinear and the heat flux vector still has the form of the Fourier type, i.e., it is
proportional to the temperature gradient. In this paper, we use a generalized (nonlinear) form for the
heat flux vector. When our model is linearized we obtain constraints, due to the entropy inequality,
which are in agreement with the earlier results. We present a unified thermo-mechanical approach to
the two papers of Massoudi [20] and Massoudi and Mehrabadi [16], where the entropy law is used and
restrictions are also obtained on the constitutive parameters. In Section 2, we discuss the governing
equations, and in Section 3 we provide a short review of the two constitutive relations used in our
study. In Section 4, which is the core of the current paper, we develop restrictions on the material
properties obtained by applying the Clausius-Duhem inequality to the constitutive relations.

2. The Governing Equations

We assume that the nonlinear fluid can be modeled as a single continuum. The governing
equations are the conservation of mass, the conservation of linear momentum, and the energy
equation [22],

∂ρ

∂t
+ div(ρv) = 0 (3)

ρ
dv
dt

= div T + ρb (4)
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ρ
dε

dt
= T : L− div q + ρr (5)

where v is the velocity, ρ is the density, and d
dt is the material time derivative, also shown as

a superposed dot (̇), given by
d()
dt

=
∂()

∂t
+ [grad()] v (6)

Here, T is the Cauchy stress tensor and b is the body force, ε denotes the specific internal energy,
q is the heat flux vector, r is the radiant heating, and L is the velocity gradient. These are all identified
in the nomenclature list at the beginning of the paper. The balance of angular momentum indicates
that in the absence of couple stresses the Cauchy stress tensor is symmetric. In continuum mechanics
applications, thermodynamical considerations [10,23–25] require the application of the second law of
thermodynamics or the entropy inequality. The local form of the entropy inequality is given by [25]:

ρη̇ + div ϕ− ρs ≥ 0 (7)

where η(x, t) is the specific entropy density, ϕ(x, t) is the entropy flux, and s is the entropy supply
density due to external sources. Rajagopal and colleagues (see for example, [26,27]) have devised
a thermodynamic framework by appealing to the maximization of the rate of entropy. This is different
from the traditional thermodynamic approach (for example, Dunn and Fosdick [28]) whereby a form
for the stress is assumed (or derived) and restrictions on the material parameters are obtained by
invoking the Clausius-Duhem inequality. In this new thermodynamic approach, specific forms for the
Helmholtz potential and the rate of dissipation are assumed at the outset.

Assuming that ϕ = θ−1q and s = θ−1r where θ is the absolute temperature, (7) is reduced to the
Clausius-Duhem inequality

ρη̇ + div
q
θ
− ρ

r
θ
≥ 0 (8)

For a detailed discussion of the Clausius-Duhem inequality, we refer the reader to [25].
For a detailed discussion of the above equations as given within the context of Rational Thermodynamics,
we refer the reader to [29].

Inspection of the governing equations reveals that constitutive equations are needed for T, q, ε,
and r. In this paper, we ignore the effects of radiation, and we do not directly discuss or assume any
particular form for the constitutive relation for ε. The emphasis here is on constitutive modeling of T
and q for potential application to nonlinear suspensions such as coal-slurries.

3. The Constitutive Equations

The most important constitutive relations in the thermomechanics of fluids are the (Cauchy) stress
tensor T and the heat flux vector q (related to heat conduction). Since the publication of the paper by
Rivlin and Ericksen [30], where fluids of complexity n were discussed [10], to a recently published
book [31], the term complex fluids refers to fluid-like materials whose response functions, namely the
stress tensor and the heat flux vector, are ”nonlinear” in some fashion.

3.1. Stress Tensor

In this paper, we study a fluid-like material where the density is a variable. In fluid suspensions,
the volume fraction field φ(x, t) plays a major role; this is a continuous function of position and
time ([32]) and is an independent kinematical variable called the volume distribution function with
the property 0 ≤ φ(x, t) ≤ φmax ≤ 1. Before the process of homogenization, φ is either one or zero
at any position and time. The classical mass density or bulk density ρ is related to ρs and φ through
ρ = ρsφ, where ρs is the density of a single particle. It is clear that in practice φ is never equal to one:
it has a maximum value, known as the maximum packing fraction.
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We start with the constitutive relation derived by Rajagopal and Massoudi [14], which was
generalized and elaborated by [16], where the Cauchy stress tensor depends on the gradient of
the density (or volume fraction) and the symmetric part of the velocity gradient. For a detailed
description of this model, the reader is referred to [15]. In the original work by Rajagopal and
Massoudi [14], they assumed: β0(ρ) = κρ; β1(ρ) = β10 + β11ρ+ β12ρ2; β2(ρ) = β20 + β21ρ+ β22ρ2 and
β3 (ρ) = β30 + β31ρ + β32ρ2; β4(ρ) = β40 + β41ρ + β42ρ2 where in general, the material parameters
κ, β’s have to be measured experimentally. In [14], no couple stresses or temperature variations were
allowed. Nevertheless, due to the presence of higher order gradient terms, it is necessary to provide
additional boundary conditions before one can solve practical and simple boundary value problems.
These issues are discussed in [16].

They [16], that is, Massoudi and Mehrabadi, assumed that the stress tensor T can be expressed as
T = T(ρ, gradρ, D), and using representation theorems (see [33]), the following form is obtained:

T =
[
β0(ρ) + β1(ρ)∇ρ · ∇ρ + β2(ρ)trD

]
I + β3(ρ)D + β4∇ρ⊗∇ρ + β5(ρ)D2 (9)

where

β0 = f ρ

β1 = β∗1(1 + ρ + ρ2)

β2 = β∗2(1 + ρ + ρ2)

β3 = β∗3(1 + ρ + ρ2)

β4 = β∗4(1 + ρ + ρ2)

β5 = β∗5(1 + ρ + ρ2) (10)

In (9), ⊗ designates the outer (dyadic) product of two vectors, tr is the trace of a second order
tensor, and I is the identity tensor. The coefficients βi are material properties which are assumed
to be functions of the density (or volume fraction) and D = 1

2 [∇v + (∇v)T]. We can think of the
above representation as a Taylor series approximation for the material parameters [34]. Rajagopal &
Massoudi [14] provided the following interpretations: β0(ρ) is similar to the pressure in a compressible
fluid where an equation of state is needed, β2(ρ) is similar to the second coefficient of viscosity in
a compressible fluid, β1(ρ) and β4(ρ) are the material parameters related to the distribution of the
particles, β3(ρ) is the viscosity, and β5(ρ) is the coefficient of cross viscosity. Rajagopal et al. [35]
proved existence of solutions, in case of the fully developed flow down an incline plane for a selected
range of parameters, when

β1 + β4 ≥ 0

f < 0 (11)

Now, (9) can also be written as

T = Te + Td (12)

where

Te = [β0(ρ) + β1(ρ)∇ρ · ∇ρ]I + β4(ρ)∇ρ⊗∇ρ (13)

Te can be thought of as the equilibrium part of the stress tensor and

Td = [β2(ρ)trD]I + β3(ρ)D + β5(ρ)D2 (14)

Td is the dynamic contribution.
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Equation (9) can also represent a constitutive model for a fluid which is capable of exhibiting
normal stress effects. For example, if β1 = β2 = β4 = 0, then the model reduces to a form similar to
the Reiner-Rivlin fluid model.

3.2. Heat Flux Vector

Fourier, in 1822, proposed a constitutive relationship for the heat flux vector, where

q = −k∇θ (15)

q is the heat flux vector, θ is the temperature, ∇ is the gradient operator, and k is a material
property known as thermal conductivity. It is interesting to note that Fourier considered the thermal
conductivity of a material as a mathematical concept rather than an experimentally measurable
parameter (see [36]). In heat transfer studies related to porous media, an effective thermal conductivity
is usually used (see [19]); several studies have shown that in some cases the heat flux vector should
depend not only on the temperature gradient but also on the shear rate, and other parameters.

Massoudi [20,21], derived a general nonlinear constitutive relation for q (see Section 3 of [20])
with no entropy analysis. There, it is assumed that the heat flux vector q can be expressed as
q = q(θ, gradθ, ρ, gradρ, D), and using representation theorems (see [33]), the following form
is obtained:

q = a1n + a2m + a3Dn + a4Dm + a5D2n + a6D2m (16)

where a1 = −k (thermal conductivity) and a2 − a6 are scalar functions of

ρ, θ, m.m, n.n, m.n,I1 = trD, I2 = trD2, I3 = trD3

n.Dn, n.D2n, m.Dm, m.D2m, n.Dm, n.D2m (17)

In this formulation, m = grad ρ and n = grad θ. Without a thermodynamic analysis, it is not clear
whether the material properties (coefficients) ai are positive, negative, or zero. An equivalent version
of (16) appropriate for a second law analysis is

q = (a1I + a3D + a5D2)∇θ + (a2I + a4D + a6D2)∇ρ (18)

It is noted that similar expressions were obtained by Wang [37] and Jaric and Golubovic [38].
We can see that if a2 = a3 = a4 = a5 = a6 = 0, then Equation (16) or (18) reduces to the classical

heat conduction law due to Fourier. Yang et al. [39] used Equation (16) to study the heat transfer
and the flow of a nonlinear fluid flowing down an inclined plane. They non-dimensionalized the
resulting equations and performed a parametric study. In their problem, due to the simplifying
kinematical assumptions, only the effects of terms multiplied by a1, a2, a5, and a6 were included.
However, other than a1 (which is related to the thermal conductivity of the fluid), it was not clear
whether the dimensionless numbers arising from a2, a5, and a6 (P2, P5, and P6 in their paper) were
positive or negative. Therefore, in their numerical simulations they considered both the positive
and negative cases for these dimensionless numbers and as a result very interesting temperature
profiles were obtained. They, however, raised the question that some of these solutions might not be
physically realistic due to the uncertainty in the sign of these material parameters. It therefore became
necessary to do a thermodynamic (entropy) analysis for the constitutive relation given by (16). This is
considered next.

4. Entropy Analysis

Entropy analyses of granular type constitutive models are complicated by the fact that they
generally are incompatible with conventional notions of thermodynamics unless the interaction
coefficients are severely restricted as noted in [11]. Nevertheless, such an analysis is important.
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As discussed by Hutter and Schneider [40], both objectivity and second law analyses reduce constitutive
equations to a ”minimal” form. See also [41,42] for additional discussion regarding objectivity and
constraints imposed by the second law.

A useful approach to overcome this matter is to postulate additional kinematic terms that
appear in the energy equation to accommodate interactions between the density and velocity fields.
For example, Goodman and Cowin [32] introduce a dissipative ”intrinsic equilibrated body force”
while Dunn and Serrin [11] introduce an ”interstitial work flux.” These appear in the energy equation
and hence the entropy inequality. Both studies provide an entropy analysis and obtain constraints
on phenomenological coefficients consistent with linear viscous fluids and Fourier’s law for heat
conduction. However, there are additional constraints arising from the inclusion of the additional terms
in the entropy inequality. The Goodman and Cowin [32] study relies on both the phenomenological
coefficients and the volume fraction, while in Dunn and Serrin [11] the inequality involves the
phenomenological coefficients and the density gradient and temperature.

The objective of the current work is to present a unified thermo-mechanical approach to the
models given in the two papers of Massoudi [20] and Massoudi & Mehrabadi [16]. We will attempt to
use the entropy law to obtain restrictions on the constitutive equations. Our starting point is the theory
given by [15,16], where a general nonlinear constitutive relation is derived for T (with no entropy
analysis). A more general case is included in the papers by Massoudi [20] and Mehrabadi et al. [9],
where a general nonlinear constitutive relation is derived for q (with no entropy analysis). Starting
with T as given in (9) we have:

T(ρ, θ, gradθ, D) = [β0(ρ) + β1(ρ)∇ρ + β2(ρ)trD] I + β3(ρ)D + β4(ρ)∇ρ⊗∇ρ (19)

And for q:
q(ρ, θ, gradθ, D) = (a1I + a3D)∇θ + (a2I + a4D)∇ρ (20)

Note that for the analysis here the nonlinear terms in D are neglected. That is, in (8) and (15)
β5 = a5 = a6 = 0. Furthermore, eliminating ρr between Equations (5) and (7) and introducing the
Helmholtz function ψ = ε− θη gives the basic dissipation inequality

− ρ(ψ̇ + ηθ̇) + T : L− (q/θ) · ∇θ ≥ 0 (21)

Inserting (19) and (20) into (21) gives

[β0 tr D + β1|∇ρ|2trD + β2(trD)2] + β3D : D + β4(∇ρ⊗∇ρ) : D− a1|∇θ|2

−a2(∇ρ · ∇θ)− a3∇θ · (D∇θ)− a4(D∇ρ) · ∇θ − ρ(ψ̇ + ηθ̇) ≥ 0 (22)

Clearly

β3 ≥ 0

β2 + β3/3 ≥ 0

a1 ≤ 0 (23)

The remaining coefficients are constrained by

β3D : D + β2(tr D)2 − a1|∇θ|2 + β0 trD + β1 | ∇ρ |2 trD + β4(∇ρ⊗∇ρ) : D− a2(∇ρ · ∇ρ)

−a3∇θ · (D∇θ)− a4(D∇ρ) · ∇θ − ρ(ψ̇ + ηθ̇) ≥ 0 (24)
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For comparison with other results it is useful to replace the tensors D and ∇ρ⊗∇ρ by their trace
and deviatoric components, i.e., D = D̂ + ID/3 and ∇ρ⊗∇ρ = M̂ + |∇ρ|2/3. Then (24) becomes

β3D̂2 + (β2 + β3/3)D2 + β4D̂ : M̂ + (β1 + β4/3)D|∇ρ|2 + β0D− a2(∇ρ · ∇θ)

−a3(D∇θ) · ∇θ − a4(D∇ρ) · ∇ρ− ρ(ψ̇ + ηθ̇) ≥ 0 (25)

(where D = trD).
In the Dunn and Serrin [28] theory, T does not depend on ∇ρ and q depends only on ∇θ. That is,

β1 = β4 = a2 = a3 = a4 = 0 and β0 trD were replaced by the "interstitial working" and a constitutive
equation for ψ. The inequality (25) is then in agreement with the results of Massoudi & Mehrabadi for
a Korteweg material.

The general condition proposed here admits a special case that is more general than their theory.
If one imposes an equation of state ρ = ρ(θ) and ∂ρ/∂θ = r, then (25) simplifies to

β3D : D + β2(trD)2 − a1|∇θ|2 + β0trD + r2β1|∇θ|2trD + r2β4(∇θ ⊗∇θ) : D =

a2r|∇θ|2 − a3∇θ · (D∇θ)− a4r(D∇θ) · ∇θ − ρ(ψ̇ + ηθ̇) ≥ 0 (26)

Now recall the existence criteria of Rajagopal and Massoudi [14] and Rajagopal et al. [35],
β1 + β4 > 0 and a1 < 0. The latter criterion is consistent with (26), i.e., the heat flux is consistent with
the second law inequality, (7). The former criterion suggests that for solutions to exist the density and
strain rate fields must be consistently aligned. Intuition suggests that D̂ : M̂ > 0. This implies β4 ≥ 0
for entropy generation. The existence criterion requires that β1 > −β4. This is consistent with (23)
for incompressible material. However, for compressible material, the second law inequality and the
existence criterion imply a nuanced relation between the magnitude of the density gradient and the
divergence of the velocity field.

5. Discussion and Conclusions

The textbook examples of entropy analysis of materials focus on linear constitutive equations.
Then the entropy production terms are quadratic in the objective constitutive variables and entropy
analysis is straightforward. Entropy production lies on a quadratic surface in the phase space defined
by the constitutive variables. Non-negativity (or convexity of the surface) is assured by appropriate
constraints on the phenomenological parameters. We are unaware of comparable entropy analyses
involving nonlinear constitutive equations.

As shown here, the production terms do not reduce to simple quadratic forms as is the case for
linear viscous fluids and heat conducting materials. Instead, they form complicated surfaces in the
constitutive variable phase space. Unlike quadratic surfaces, there is no simple paradigm for ensuring
convexity. Depending on solution properties, positive entropy production may be restricted to portions
of this phase space. How might one find this region? Rajagopal et al. [14,35] showed that the existence
of solutions required constraints on some of the phenomenological coefficients. Here we showed that
these were consistent with the entropy analysis constraints. This suggests a fundamental connection
between existence requirements and positive entropy production.

Acknowledgments: We thank Karal Gregory for technical assistance with the manuscript.

Author Contributions: Mehrdad Massoudi and A. D. Kirwan conceived and formulated the problem;
Mehrdad Massoudi and A. D. Kirwan both contributed to the derivation, the writing, the editing of the paper.
A. D. Kirwan performed the analysis in Section 4.

Conflicts of Interest: The authors declare no conflict of interest.



Fluids 2016, 1, 19 8 of 9

Nomenclature

D symmetric part of the velocity gradient
I identity tensor
L gradient of the velocity vector
T Cauchy stress tensor
ai heat flux vector constitutive coefficients, i = 1 to 6
b body force vector
div divergence operator
k thermal conductivity
q heat flux vector
r radiant heating
u velocity vector
x spatial position
βi material constitutive coefficients, i = 0 to 5
ε specific internal energy
θ temperature
ρ bulk density
ρ10 reference density
φ volume fraction
∇ gradient symbol
4 Laplacian operator
⊗ outer product
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