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Abstract: To investigate the translation of a compound particle in a highly viscous, incompressible
fluid, we carry out an analytic study on flow past a fixed spherical compound particle. The spherical
object is considered to have a rigid kernel covered with a fluid coating. The fluid within the coating
has a different viscosity from that of the surrounding fluid and is immiscible with the surrounding
fluid. The inertia effect is negligible for flows both inside the coating and outside the object. Thus,
flows are in the Stokes regime. Taking advantage of the symmetry properties, we reduce the problem
in two dimensions and derive the explicit formulae of the stream function in the polar coordinates.
The no-slip boundary condition for the rigid kernel and the no interfacial mass transfer and force
equilibrium conditions at fluid interfaces are considered. Two extreme cases: the uniform flow past a
sphere and the uniform flow past a fluid drop, are reviewed. Then, for the fluid coating the spherical
object, we derive the stream functions and investigate the flow field by the contour plots of stream
functions. Contours of stream functions show circulation within the fluid coating. Additionally,
we compare the drag and the terminal velocity of the object with a rigid sphere or a fluid droplet.
Moreover, the extended results regarding the analytical solution for a compound particle with a rigid
kernel and multiple layers of fluid coating are reported.
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1. Introduction

The flow around an object moving in highly viscous, impressible fluid has been an interesting
subject in fundamental studies and applications. The applications range widely from the determination
of electron charges [1–3], physics aerosols [4], and medical applications [5], to biotechnological industries
and engineering processes. From the very first study on the effects of viscosity pendulums [6], to a
rigid body moving in an arbitrary flow [7], to fluid drops translating in another fluid [8], numerous
works considering the motion of rigid and fluid objects in both bounded and unbounded domains
have been reported. In the body frame, the translation of a particle in fluid is equivalent to the flow
past a fixed obstacle. The problem of Stokes flow past a spherical object is an important one, owing to
the manifold applications in science and engineering.

To analyze the flows, explicit and analytical solutions play a critical role. For example, an analytical
solution is the starting point of the stability of a particle sediment. However, analytical solutions are
rarely obtained for objects moving in flows, even in the Stokes regime. Uniform flow past a rigid
sphere is first extensively studied [9], then the study of exact solutions is extended to the linear flow
past an ellipsoid [10], and more work about other background flows past spheres or a spheroid [11].
Utilized with a singularity method, studies have been extended to linear and quadratic flow past a
spheroid [12–15]. The exact solution of uniform flow past a fluid drop has also been reported [16,17].

Recently, compound multiphase particles have received much interest because of their significance
in a variety of biomedical applications [18–23]. Johnson [19] studied the uniform Stokes flow
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past a rigid sphere with a thin immiscible fluid film covering its surface using a perturbation
scheme. In his work, the fluid-film profile is achieved by numerical calculations. Later, Johnson
and his collaborators further studied bubbles and drops partially coated with thin films [24,25].
Gupta et al. [26] extended Johnson’s work [19] to micropolar fluid for the outer region [26]. Rushton
and Davies [27] studied an encapsulated droplet, which is a spherical two-layer fluid object. However,
they focused on the drag force only. In their paper, there is no report about parameters for the stream
functions, which are keys to exploring the flow pattern. Also, it is important to notice that the boundary
conditions at the interface inside the fluid drop are different from the boundary conditions between
the rigid kernel and the fluid coating of the object studied in this paper. Li and Pozrikidis [28], and
Blawzdziewicz et al. [29] investigated the effects of insoluble surfactants on the hydrodynamics and
rheology of dilute emulsions in Stokes flow numerically. Most recently, Datta and Raturi [30] studied a
swarm of spherical particles by modifying boundary conditions to account for the interaction effect.
However, the flow with compound particles is not fully understood yet.

In this paper, we study the problem of a rigid spherical kernel, with a fluid coating, falling freely
in a viscous dominated fluid. In the body frame (the moving frame), this is the problem for uniform
flow past a fixed spherical object. Rigorous analytical solutions for stream functions are achieved by
taking advantage of the axial symmetry properties. The hydrodynamic drag and terminal velocity are
analyzed. From a rigid kernel with one layer of fluid coating, we extend the study to spherical particles
with multiple-layer coating. Results from this study can shed light on the hydrodynamics of biomedical
applications with similar obstacles. In those applications, the movement of particles is essential for
drug delivery [31,32] and metastasis movements [33] of cancers. For example, magnetic beads coated
with antibodies are used to isolate circulating tumor cells [34].

2. Formulation of Problem

Assume that a sphere with a rigid kernel and a fluid coating is embedded in unbounded,
uniform fluid flow with constant velocity U, density ρ and dynamic viscosity µ. The rigid kernel

x2 + y2 + z2 = a2, a ≥ 0, (1)

is covered by a layer of fluid coating. The fluid coating with thickness d ≥ 0 occupies

a2 ≤ x2 + y2 + z2 ≤ R2, R = a + d. (2)

Figure 1 schematically illustrates the setup of the problem.

a

d
U

R

Figure 1. Uniform flow past a rigid sphere with a fluid coating. The background uniform flow is
U = Uez. The dark colored region indicates the rigid spherical kernel with radius a. The light colored
region shows the fluid coating with thickness d. In total, the radius of the obstacle is R = a + d.
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If the thickness of the fluid layer, d, is zero, this is reduced to the problem of uniform flow past a
purely rigid sphere. If the radius of the rigid kernel, a, is zero, the problem is indeed the flow past a
fluid drop, as long as d > 0. The density and dynamic viscosity of the fluid within the layer of coating
are ρ̄ and µ̄, respectively. The fluid in the coating is assumed to be immiscible with the surrounding
background fluid and the surface tension at the fluid interface is sufficiently strong to keep the obstacle
spherical against any deformation.

Since both fluids are incompressible, the continuity equation is ∇ · u = 0, where u is the flow
velocity. In this paper, we assume that the inertial terms in the Navier–Stokes equations for both fluids
can be neglected. Thus, the equations of motion are

µ∇2u = ∇p, (3)

where p denotes the fluid pressure. Similar governing equations apply to the fluid coating, but the
viscosity of the fluid µ̄ can be different from the viscosity µ of the fluid in the unbounded domain.
Later, subindices are also used to identify different fluids. The condition for (3) to hold is that
Re = U R ρ/µ � 1, where U is the magnitude of the uniform velocity U = Uez. For example,
the Reynolds number is about 10−3∼10−4 for the flow with CO2/HCO−3 past a Xenopus oocyte [32,35].
The boundary conditions are no-slip boundary condition at the solid–fluid interface, and no-slip and
no interfacial mass transfer condition (no penetration and continuity of tangential velocity) at the fluid
interface. This forms a force equilibrium condition at the fluid–fluid interface. Also, u is asymptotic to
the basic uniform flow at large distances from the obstacle. These conditions are specified explicitly
when we derive analytical solutions.

3. Analytical Solution for Uniform Flow past Spherical Objects

Before reporting the solution for the uniform flow past a general two-layer obstacle at Section 3.3, two
extreme cases are reviewed. The case is the well-known result for a uniform flow past a fixed rigid sphere.
The other one is the flow past a fluid drop, in which the viscosity is different from the background flow.
The two fluids are immiscible. These simple cases are documented in the paper to make it self-contained
when we compare the results between different problems. As we provide the results for these simple
cases, it is also helpful to illustrate the derivation of the general multiple-layer obstacle.

3.1. Uniform Flow past a Rigid Sphere

If the thickness d of the fluid coating is zero in Figure 1, this is the well-known uniform flow past
a rigid sphere. With the axisymmetric property, the problem is reduced to two dimensions. In this
situation, the stream function and velocity can be found in the literature. In spherical polar coordinates
(θ = 0 in the direction of U) the stream function is [16,17,36]

Ψ(r, θ) = U
sin2 θ

2

(
r2 − 3ar

2
+

a3

2r

)
. (4)

This result was obtained by Stokes [6]. Inside the parentheses, the first term corresponds to the
uniform background flow, and the second term is due to the doublet [12]; together they represent
an inviscid flow past a sphere. The third term representing the viscous correction is the Stokeslet.
The velocity components vr and vθ in the polar coordinates are

vr =
1

r2 sin θ

∂ψ

∂θ
= U cos θ

(
1− 3a

2r
+

a3

2r3

)
, (5)

vθ = − 1
r sin θ

∂ψ

∂r
= −U sin θ

(
1− 3a

4r
− a3

4r3

)
. (6)

Figure 2 shows streamlines in the symmetry plane.
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Figure 2. Streamlines in the symmetry plane for a uniform flow past a rigid sphere. The radius of the
rigid sphere is a = 1.

From this figure, it is obvious that there are two stagnation points on two sides of the sphere [14,15].
The flow is separated by the stagnation lines attached to the stagnation points on the sphere.

According to the stream functions and velocity fields, the Stokes force F exerted on a rigid
stationary spherical particle immersed in the uniform Stokes flow field U is

F = 6πµaU. (7)

By Newton’s law, when the sphere reaches its terminal velocity U, the forces acting on the sphere
are balanced. Thus, the magnitude of the terminal velocity U is

U =
4
3

πa3 (ρ− ρs) g
6πaµ

=
2
9

a2 (ρ− ρs) g
µ

, (8)

where g is the acceleration due to gravity and ρs is the density of the sphere. Equation (7) is the Stokes
law and can be further corrected by Faxén’s laws. Considering the Faxén correction, the drag on a
stationary rigid sphere in the Stokes flow is

F = 6πµa(U +
1
6

a2∇2U). (9)

The second term comes from Faxén correction. However, if the sphere reaches its terminal velocity,
∇2U = 0, the terminal velocity is the same as (8).

3.2. Uniform Flow past a Fluid Drop

If the rigid sphere discussed above is replaced by a spherical fluid drop of radius d, i.e., the radius
of the rigid kernel, a, is zero in Figure 1, this is the case for uniform flow past a fluid drop. The fluid
of the drop is immiscible with the surrounding fluid and the interface is spherical. The fluid drop is
moving at a constant speed through the surrounding fluid without changing its shape [37,38], or the
flow is past a fixed, undeformed fluid drop. The most general expressions for the stream functions
outside and inside the drop [36] are

ψ(r, θ) = sin2 θ

(
A
r
+ Br + Cr2 + Dr4

)
(10)
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and

ψ̄(r, θ) = sin2 θ

(
Ā
r
+ B̄r + C̄r2 + D̄r4

)
, (11)

respectively. Here, A, B, C, D, Ā, B̄, C̄, D̄ are unknown constant coefficients. From the stream functions,
the velocity fields and stress tensors can be deduced with specified boundary conditions.

In the region outside the drop, the fluid velocity is asymptotic to u = U = Uez as r → ∞.

C =
1
2

U, and D = 0. (12)

On the drop boundary, the normal velocity is zero, vr(d, θ) = 0, which implies

A
d3 +

B
d
+

U
2

= 0. (13)

Inside the drop, the fluid velocity must remain finite as r → 0, i.e.,

Ā = B̄ = 0, (14)

and vr(d, θ) = 0, which requires

Ā
d3 +

B̄
d
+ C̄ + d2D̄ = 0. (15)

Two additional constraints—continuity of tangential velocity and continuity of tangential
stress—are required at the interface of the two fluids. These constraints set

− A
d3 +

B
d
+ 2C + 4d2D = − Ā

d3 +
B̄
d
+ 2C + 4d2D̄ (16)

and

µ
A
a4 = µ̄ aD̄. (17)

After solving the above Equations (12)–(17), the coefficients in the stream functions are determined
as

A =
d3µ̄U

4(µ̄ + µ)
, B = −dU(3µ̄ + 2µ)

4(µ̄ + µ)
, C̄ = − µU

4(µ̄ + µ)
, D̄ =

µU
4d2(µ̄ + µ)

. (18)

Thus, the stream functions outside and inside the drop are

ψ(r, θ) =
1
4

Ud2 sin2 θ

[(
µ̄

µ + µ̄

)
d
r
−
(

2µ + 3µ̄

µ + µ̄

)
r
d
+ 2

( r
d

)2
]

(19)

and

ψ̄(r, θ) =
1
4

U sin2 θ

(
µ

µ + µ̄

)
r2
[( r

d

)2
− 1
]

, (20)

respectively. This result is known as the Hadamard–Rybczyński equation [39]. Figure 3 shows
streamlines in the symmetry plane for uniform flow past a fluid drop.
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Figure 3. Streamlines in the symmetry plane for uniform flow past a fluid drop. The radius of the fluid
drop is d = 1 and the viscosity ratio µ̄/µ = 10.

In the limit, µ̄ � µ, in which the drop is much more viscous than the surrounding fluid,
Equation (4) is recovered from the stream functions (19) and (20).

The drag on the fluid drop is predicted as

Fdrag = 2πµdU
2µ + 3µ̄

µ + µ̄
. (21)

If the drop is falling in fluid, it reaches the terminal velocity U when the forces exerted on it are
balanced. So, the magnitude of the terminal velocity is

U =
2d2g
3ν

(
1− ρ̄

ρ

)(
µ + µ̄

2µ + 3µ̄

)
, (22)

where ν = µ/ρ is the kinematic viscosity of the surrounding fluid.

3.3. Uniform Flow past a Rigid-Kernel Sphere with a Fluid Coating

For uniform flow past a rigid sphere with a fluid coating, we make similar assumptions for
boundaries as in the above cases. First of all, the rigid spherical kernel with fluid coating remains
spherical. Both fluids are Newtonian and mutually immiscible, and there is no interfacial mass transfer
(the radial velocity is zero at the interface). Following (10) and (11), the general stream functions are
proposed as

ψ(r, θ) = sin2 θ

(
A
r
+ Br + Cr2 + Dr4

)
, for r ≥ R (23)

ψ̃(r, θ) = sin2 θ

(
Ã
r
+ B̃r + C̃r2 + D̃r4

)
, for a ≤ r ≤ R (24)

in which A, B, · · · , D̃ are constant coefficients. Consequentially, for r > R,

vr(r, θ) = 2 cos θ

(
A
r3 +

B
r
+ C + Dr2

)
, (25)

vθ(r, θ) = − sin θ

(
− A

r3 +
B
r

+ 2C + 4Dr2
)

, (26)

σrθ(r, θ) = σθr(r, θ) = −6µ sin θ

(
A
r4 + Dr

)
. (27)
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For a < r < R,

ṽr(r, θ) = 2 cos θ

(
Ã
r3 +

B̃
r
+ C̃ + D̃r2

)
, (28)

ṽθ(r, θ) = − sin θ

(
− Ã

r3 +
B̃
r
+ 2C̃ + 4D̃r2

)
, (29)

σ̃rθ(r, θ) = σ̃θr(r, θ) = −6µ̄ sin θ

(
Ã
r4 + D̃r

)
. (30)

To determine the unknown coefficients in Equations (23) and (24), we impose the boundary
conditions. Boundary conditions are evaluated at the fluid-fluid interface r = R, and the interface of
the rigid spherical kernel and the fluid coating r = a.

1. The boundary condition at infinity implies

C =
1
2

U and D = 0. (31)

2. The zero normal velocity at the interface of fluids vr(R−, θ) = ṽr(R+, θ) = 0 sets

2 cos θ

(
A
R3 +

B
R
+

1
2

U
)
= 2 cos θ

(
Ã
R3 +

B̃
R
+ C̃ + D̃R2

)
= 0. (32)

3. With the continuity of tangential velocity at the interface of fluids, the following equation is satisfied

− A
R3 +

B
R
+ U = − Ã

R3 +
B̃
R
+ 2C̃ + 4D̃R2. (33)

4. The no-slip boundary condition at r = a requires

Ã
a3 +

B̃
a
+ C̃ + D̃a2 = 0 and − Ã

a3 +
B̃
a
+ 2C̃ + 4D̃a2 = 0. (34)

5. Continuity of tangential stress at the interface of the fluids σrθ (R−, θ) = σ̃rθ (R+, θ) implies

−6µ sin θ

(
A
R4 + DR

)
= −6µ̄ sin θ

(
Ã
R4 + D̃R

)
. (35)

Finally, combining Equations (31)–(35), we solve for the constant coefficients. The constant
coefficients are attained as

A =
µ̄R3U(a + R)

(
2a2 + aR + 2R2)

8a3(µ̄− µ) + 6a2R(2µ̄− µ) + 6aR2(2µ̄ + µ) + 8R3(µ̄ + µ)
,

B = −RU
a3(6µ̄− 4µ) + a2R(9µ̄− 3µ) + 3aR2(3µ̄ + µ) + 2R3(3µ̄ + 2µ)

8a3(µ̄− µ) + 6a2R(2µ̄− µ) + 6aR2(2µ̄ + µ) + 8R3(µ̄ + µ)
,

Ã = a3R2(2a + R) f (a, R, µ, µ̄), (36)

B̃ = −a
(

2a3 + 4a2R + 6aR2 + 3R3
)

f (a, R, µ, µ̄),

C̃ =
(

3a3 + 6a2R + 4aR2 + 2R3
)

f (a, R, µ, µ̄),

D̃ = −(a + 2R) f (a, R, µ, µ̄),

where

f (a, R, µ, µ̄) =
1
2

µUR
4a4(µ̄− µ) + a3R(2µ̄ + µ) + 6a2µR2 + aR3(µ− 2µ̄)− 4R4(µ̄ + µ)

.
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Thus, the stream functions for the flow outside the particle and the flow inside the coating,
Equations (23) and (24), are determined:

ψ(r, θ) = U sin2 θ

[
r2

2
+

µ̄

2r
R(a + R)

(
2a2 + aR + 2R2) (R2 − 3r2)

4a3(µ̄− µ) + 3a2R(2µ̄− µ) + 3aR2(2µ̄ + µ) + 4R3(µ̄ + µ)

(37)

µ

2
R r(a− R)

(
4a2 + 7aR + 4R2)

4a3(µ̄− µ) + 3a2R(2µ̄− µ) + 3aR2(2µ̄ + µ) + 4R3(µ̄ + µ)

]
,

ψ̃(r, θ) =
sin2 θ(a− r)2(R− r)

[
2(a2 + rR)(r + R) + a

(
r2 + 5rR + R2)]

r
f (a, R, µ, µ̄). (38)

Figure 4 shows the streamlines of the fluid field outside the object and inside the fluid coating.
For this figure, the radius of the rigid kernel a = 1, the thickness of the fluid coating d = 1, and the
viscosity ratio of two fluids is µ̄/µ = 5.

Figure 4. Streamlines in the symmetry plane for the flow field of a uniform flow past a fluid-coated
rigid-kernel sphere. The black region is the rigid kernel and the gray region with circulation is the fluid
coating. The viscosity ratio is µ̄/µ = 5. The radius of the rigid kernel and the thickness of the fluid
coating are set as a = d = 1.

In the limit of high viscosity stratification µ
µ̄ → 0, Equation (4) is recovered from the stream

functions (37) and (38). Even if the viscosities of two fluids are the same, µ
µ̄ = 1, the streamline pattern

for this special case is still similar to the general situation shown in Figure 4. The stream functions are
simplified as

ψ(r, θ) = U sin2 θ

[
r2

2
−

r
(
a3 + 3a2R + 6aR2 + 5R3)

3a2 + 9aR + 8R2 +
R2(a + R)

(
2a2 + aR + 2R2)

2r (3a2 + 9aR + 8R2)

]
,

ψ̃(r, θ) = −U sin2 θ(a− r)2(r− R)
2r(a− R)

2(a2 + rR)(r + R) + a
(
r2 + 5rR + R2)

3a2 + 9aR + 8R2 .

The discontinuity in the radial stress across the fluid–fluid interface is related to the surface
tension of the interface at r = R

σrr(R+, θ)− σ̃rr(R−, θ) =
2α

R
, (39)
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where α is the surface tension [36,39]. As long as the drop moves at the constant terminal velocity
U, all constraints at the interface between the two fluids are completely satisfied. This fact validates
the previous assumptions that the interface is spherical and the drop moves constantly through the
surrounding fluid at a constant speed without changing its shape. This is different from the sphere
coated with a thin film studied by Johnson [19]. For the thin film results, the surface tension force is
larger than the viscous force, and “the mechanism driving the fluid circulation within the film is not
too large.” The radial velocity in the thin film is assumed to be one order lower than the tangential
velocity for the asymptotical analysis. Furthermore, global force equilibrium has also been proposed
for the thin fluid film. The above assumptions are relaxed in our problem. The compound particle is
held as spherical with enough surface tension. However, the surface tension in Equation (39) may be
significant and is important for the stability of the problem. It would be important to further analyze
the stability and the Magrangoni effect—which is totally neglected—in the future work.

3.4. Hydrodynamic Drag Force and Terminal Velocity

Hydrodynamic drag force is of fundamental interest for the flow being examined. The drag force
is evaluated by integrating the surface stress vector over the body surface. For this axisymmetric
problem, the integration can be carried out explicitly.

According to the results (37) and (38), the Stokes force Fdrag exerted on a stationary spherical
particle immersed in the uniform Stokes flow field U are

Fdrag = 4πµR U
a3(6µ̄− 4µ) + a2R(9µ̄− 3µ) + 3aR2(3µ̄ + µ) + 2R3(3µ̄ + 2µ)

4a3(µ̄− µ) + 3a2R(2µ̄− µ) + 3aR2(2µ̄ + µ) + 4R3(µ̄ + µ)
. (40)

Note the viscosity ratio as λ = µ̄
µ and the volume fraction in terms of ratio γ = a

R .
After nondimensionalizing the drag with a dimensional factor 4πµR U, the non-dimensional drag force is

F(λ, γ) =
Fdrag

4πµR U
=

γ3(6λ− 4) + γ2(9λ− 3) + 3γ(3λ + 1) + 2(3λ + 2)
4γ3(λ− 1) + 3γ2(2λ− 1) + 3γ(2λ + 1) + 4(λ + 1)

. (41)

Figures 5 and 6 show the dimensionless drag F(λ, γ) with one variable fixed. Figure 5
demonstrates the dimensionless drag F(λ, γ) as a function of the viscosity ratio λ with the volume
fraction γ3 fixed. With the fluid coating, the object experiences less drag on it. The outcome is consistent
with other studies [19,26]. When the viscosity ratio approaches the limit λ→ ∞, the object behaves
likes a rigid sphere with radius R, which implies the volume framce γ = 1 case. The drag force satisfied
the Stokes drag Equation (7) reviewed in Section 3.1.

0.1 1 10 100
Λ

1.0

1.5

FHΛ,ΓL

Γ=1

Γ=1�2

Γ=1�4

Γ=1�16

Γ=1�256

Volume fraction Γ3

Figure 5. Loglog plot of the dimensionless drag force F(λ, γ) as a function of the viscosity ratio λ with
fixed values of the volume fraction, γ3.
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Γ
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1.4

1.5
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Λ=100

Λ=5

Λ=2

Λ=1

Λ=1�2

Λ=1�5

Λ=1�10

Λ=1�100

Viscosity ratio Λ

Figure 6. The dimensionless drag force F(λ, γ) as a function of γ with fixed values of the viscosity
ratio λ. γ3 is the volume fraction of the object.

The dependence of the dimensionless drag F(λ, γ) on the volume fraction γ3 is depicted in
Figure 6. In the limiting case of γ = 1, the result for the solid sphere is recovered. Given the viscosity
ratio λ, the dimensionless drag force decreases if the volume of the fluid coating increases. When the
viscosity ratio is small and the volume fraction goes to the limit γ→ 0, the result is asymptotic to the
fluid drop result (21) in Section 3.2.

When the sphere reaches its terminal velocity U, the forces acting on the sphere are balanced, i.e.,

F =
4π

3
R3(ρ− ρ̄)g− 4π

3
a3(ρs − ρ̄)g. (42)

Here, ρ, ρ̄ and ρs are density for the background flow, the fluid coating and the rigid kernel,
respectively. Applying the results for hydrodynamic force in (40) to (42), we can calculate the terminal
velocity of such a freely falling spherical object

U =
R3(ρ− ρ̄)− a3(ρs − ρ̄)

3µR
4a3(µ̄− µ) + 3a2R(2µ̄− µ) + 3aR2(2µ̄ + µ) + 4R3(µ̄ + µ)

a3(6µ̄− 4µ) + a2R(9µ̄− 3µ) + 3aR2(3µ̄ + µ) + 2R3(3µ̄ + 2µ)
g

(43)

=
R2gρ

3µ

(
1− ρ̄

ρ
− γ3

(
ρs

ρ
− ρ̄

ρ

))
4γ3(λ− 1) + 3γ2(2λ− 1) + 3γ(2λ + 1) + 4(λ + 1)
γ3(6λ− 4) + γ2(9λ− 3) + 3γ(3λ + 1) + 2(3λ + 2)

.

To compare the terminal velocity of this compound particle with a rigid sphere or a fluid
drop, the densities of the fluid in the coating and the rigid kernel are both set as the mean density
ρmean = ρ̄ + γ3 (ρs − ρ̄). Therefore, their masses and volumes are the same. Then, from (43), the

terminal velocity of the compound particle is

U =
R2gρ

3µ
(1− κ)

4γ3(λ− 1) + 3γ2(2λ− 1) + 3γ(2λ + 1) + 4(λ + 1)
γ3(6λ− 4) + γ2(9λ− 3) + 3γ(3λ + 1) + 2(3λ + 2)

, (44)

where κ = ρmean
ρ . Nondimensionalize the terminal velocity,

Un =
U

2R2gρ
9µ (1− κ)

=
3
2

[
4γ3(λ− 1) + 3γ2(2λ− 1) + 3γ(2λ + 1) + 4(λ + 1)
γ3(6λ− 4) + γ2(9λ− 3) + 3γ(3λ + 1) + 2(3λ + 2)

]
, (45)
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in which 2R2gρ
9µ (1− κ) is the terminal velocity of the corresponding rigid sphere from (8). Applying the

same nondimensionalization, we know the terminal velocity of the rigid sphere and fluid drop are

for a rigid sphere, Un = 1,

for a fluid drop, Un = 3
(

1 + λ

2 + 3λ

)
.

Figure 7 shows the nondimensionless terminal velocities for those objects. With this figure,
the transition and the asymptotic behavior to two limit cases, i.e., a rigid sphere and a fluid
drop, are demonstrated well. It is interesting to see that by selecting the volume fraction and
viscosity of fluids, the designed terminal can be targeted. This is an important feature for the drug
delivery applications.

0 5 10 15 20 25 30
Λ

1.0

1.1

1.2

1.3

1.4

1.5

UnHΛ,ΓL

Air bubble

Rigid sphere

Fluid drop

Γ=1�8

Γ=1�4

Γ=1�2

Fluid drop

Rigid sphere

Air bubble

Volume fraction Γ3

Figure 7. The dimensionless terminal velocity Un(λ, γ) as a function of the viscosity ratio λ with fixed
volume fraction γ3. The densities of the fluid in the coating and the rigid kernel are set be the same as
the mean density ρmean. The radii of the two-layer object, the rigid sphere, the fluid drop, and the air
bubble are the same. The air bubble result is obtained by taking the viscosity ratio λ = µ̄/µ = 0 for the
fluid drop.

3.5. Multiple-Layer Fluid Coating

Under similar assumptions for the particle and the properties of fluids, we assume the rigid
kernel is covered by two or three layers of fluid coating. Between adjacent layers, boundary
conditions (32)–(35) hold with their corresponding fluid viscosities. The same type of stream function
is proposed in each fluid coating layer. When a new layer is added, four more unknown coefficients
are introduced in the stream function. These four coefficients are coupled with the coefficients in the
stream function of the fluid coating layer(s) next to it. To solve this fluid problem, a linear system
for the unknown coefficients is constructed. When the unknowns are arranged in a particular way, a
block tridiagonal matrix arises. The reason to arrange the unknowns in a certain order is to achieve the
resulting efficiencies. For example, solution algorithms are most efficient if these patterns are taken
into account in the LU decomposition. Once we obtain the unique coefficients, the analytical formulae
for the stream functions can be written out. Further analysis about the flow field is possible.
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For a sphere with a rigid kernel and one layer of fluid coating discussed before (n = 1, see
Figure 1), the linear system is the combination of Equations (31)–(35):

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1

R3
1
R 1 R2 0 0 0 0

µ

R4 0 0 µR − µ̄

R4 0 0 −µ̄R
− 1

R3
1
R 2 4R2 1

R3 − 1
R −2 −4R2

0 0 0 0 1
R3

1
R 1 R2

0 0 0 0 − 1
a3

1
a 2 4a2

0 0 0 0 1
a3

1
a 1 a2





A
B
C
D
Ã
B̃
C̃
D̃


=



U
2
0
0
0
0
0
0
0


. (46)

It is easy to see that we can eliminate the unknowns C = U
2 and D = 0, even for the other cases.

However, they are saved to illustrate that the number of unknown coefficients grows arithmetically and
four unknown coefficients are associated with each fluid layer, even the unbounded region outside the
particle. As the determinant of the coefficient matrix is not equal to zero, the system is invertible. The
coefficients are uniquely determined and the solution is non-trivial as documented in Equation (36).

For a spherical particle with a rigid kernel and two-layer fluid coating, Figure 8a shows the
diagram of the problem. Radii for the fluid coating satisfy a ≤ R1 ≤ R. Keep {A, B, C, D} for the
stream function outside the particle and {Ã, B̃, C̃, D̃} for the inner layer next to the rigid kernel, as
the previous case. Note {A1, B1, C1, D1} as the coefficients for the stream function of the outer layer
(R1 ≤ r ≤ R). The viscosity of fluid outside the particle is µ; µ̃ is the viscosity of the fluid in the layer
a ≤ r ≤ R1, and the new parameter µ1 is for the fluid in the layer R1 ≤ r ≤ R2. To attain the analytical
solution, we collect the boundary conditions in terms of the unknowns. The linear system for the
unknowns is

T1

(
A B C D A1 B1 C1 D1 Ã B̃ C̃ D̃

)T
= (47)(

U
2 0 0 0 0 0 0 0 0 0 0 0

)T
,

where the coefficient matrix is

T1 =



0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
1

R3
1
R 1 R2 0 0 0 0 0 0 0 0

µ

R4 0 0 µR − µ2
R4 0 0 −µ2R 0 0 0 0

− 1
R3

1
R 2 4R2 1

R3 − 1
R −2 −4R2 0 0 0 0

0 0 0 0 1
R3

1
R 1 R2 0 0 0 0

0 0 0 0 1
R3

1

1
R1

1 R2
1 0 0 0 0

0 0 0 0 µ1
R4

1
0 0 µ1R1 − µ

R4
1

0 0 −µR1

0 0 0 0 − 1
R3

1

1
R1

2 4R2
1

1
R3

1
− 1

R1
−2 −4R2

1

0 0 0 0 0 0 0 0 1
R3

1

1
R1

1 R2
1

0 0 0 0 0 0 0 0 − 1
a3

1
a 2 4a2

0 0 0 0 0 0 0 0 1
a3

1
a 1 a2


and

det(T1) 6= 0.
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The entries in terms of the new layer radius R1 are highlighted in the matrix, and the block matrices
on the diagonal are marked out. The coefficient matrix can be viewed as a block tridiagonal matrix.

U

a
R1

R

(a)

U

a R1

R2
R

(b)

Figure 8. The uniform background flow U = Uez past a rigid sphere with a multiple-layer fluid
coating. The gray region with radius a indicates the rigid kernel. The light colored regions show the
fluid coating with radii R1, R2, and R for the three-layer case. (a) The rigid kernel covered with a
two-layer fluid coating. a ≤ R1 ≤ R; (b) The rigid kernel covered with a three-layer fluid coating.
a ≤ R1 ≤ R2 ≤ R.

For a spherical rigid kernel covered with a three-layer fluid coating as shown in Figure 8b, radii of
the fluid coating satisfy a ≤ R1 ≤ R2 ≤ R. Compared to the linear system (47), four more unknowns
are introduced. The coefficient matrix for the corresponding linear system is

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1

R3
1
R 1 R2 0 0 0 0 0 0 0 0 0 0 0 0

µ
R4 0 0 µR − µ2

R4 0 0 −µ2R 0 0 0 0 0 0 0 0
− 1

R3
1
R 2 4R2 1

R3 − 1
R −2 −4R2 0 0 0 0 0 0 0 0

0 0 0 0 1
R3

1
R 1 R2 0 0 0 0 0 0 0 0

0 0 0 0 1
R3

2

1
R2

1 R2
2 0 0 0 0 0 0 0 0

0 0 0 0 µ2

R4
2

0 0 µ2R2 − µ1

R4
2

0 0 −µ1R2 0 0 0 0

0 0 0 0 − 1
R3

2

1
R2

2 4R2
2

1
R3

2
− 1

R2
−2 −4R2

2 0 0 0 0

0 0 0 0 0 0 0 0 1
R3

2

1
R2

1 R2
2 0 0 0 0

0 0 0 0 0 0 0 0 1
R3

1

1
R1

1 R2
1 0 0 0 0

0 0 0 0 0 0 0 0 µ1

R4
1

0 0 µ1R1 − µ̃

R4
1

0 0 −µ̃R1

0 0 0 0 0 0 0 0 − 1
R3

1

1
R1

2 4R2
1

1
R3

1
− 1

R1
−2 −4R2

1

0 0 0 0 0 0 0 0 0 0 0 0 1
R3

1

1
R1

1 R2
1

0 0 0 0 0 0 0 0 0 0 0 0 − 1
a3

1
a 2 4a2

0 0 0 0 0 0 0 0 0 0 0 0 1
a3

1
a 1 a2



.

The entries in terms of the new layer radius R2 are highlighted in the matrix. Since the determinant
of this coefficient matrix is not equal to zero, the unknown coefficients in the stream functions can be
uniquely determined.

The above results show the analytical solution, i.e., the stream function, is well defined when
we propose the ideal conditions for the fluids and boundaries. In reality, these conditions may not
be physical preferred. However, such solutions could be used as the fundamental solution to further
explore the complicated situations. In general, we can keep adding more layers to the fluid coating.
The solvability for a general N-layer fluid coating is an interesting linear algebra problem and will be
reported in a future study.
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4. Summary and Future Directions

In this paper, we have studied a uniform flow past a spherical compound object in the Stokes
regime. The object consists of a rigid kernel with a fluid coating. Rigorous analytical solutions are
presented for different cases. The explicit stream functions are derived for both the fluid flow outside
the object and the fluid flow inside the coating layer. The resulting plots of the streamlines show the
circulation inside the fluid coating. From the stream functions, we obtained the explicit drag force and
discussed terminal velocity of the object.

The results show that, given a fixed size, the spherical object, with a rigid kernel and covered with
a fluid coating, experiences less drag than a pure rigid object, if they have the same mass and same
volume. This finding is valuable to biomedical applications, as drag is closely related to the energy
required to keep the object in motion.

This study is fundamental. The analytical results provide the basis to investigate the stability of
the problem. With the exact solutions, the study of flow patterns can be extended to the bifurcation
of the flow field and the Marangoni effect can be further explored. Such analytical results will also
be critical to a future study of more complicated systems. For example, results reported in this paper
will provide the solution for fluid in which chemical reactions are coupled with hydrodynamics when
oxygen is pumped in flow past an oocyte [32].

Conflicts of Interest: The author declares no conflict of interest.
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