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Abstract: The flow of a non-Newtonian, power-law fluid, directed normally to long, two-dimensional
horizontal bodies, is considered in the present note. It is found that for low Reynolds numbers
(Re ≤ 0.1) and a low power-law index (shear-thinning fluids) the drag coefficient always obeys
the relationship cD = A/Re, whereas at a high power-law index (shear-thickening fluids) the drag
coefficient tends to become identical for all bodies irrespective of their cross-section form.
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1. Introduction

The incompressible flow past a stationary circular cylinder is a classical bluff body problem in
fluid mechanics. Its enriched physics and real-life applications have attracted the attention of engineers
and scientists for over a century, leading to many theoretical and experimental investigations. Despite
its simple geometry, the flow past a circular cylinder is considered to be a baseline case of more complex
flows [1].

In recent years the investigation has been extended to non-Newtonian power-law fluids past
cylindrical bodies with different cross-sections. Although the problem has been studied extensively,
there are two universal behaviors of the drag coefficient which have not been found until now. The
first one is that the drag coefficient follows the simple law cD = A/Re for shear-thinning fluids with a
low power-law index and a low Reynolds number. The second is that the drag coefficients tend to
coincide at a high power-law index. The above two properties are valid for all kinds of cylindrical
bodies irrespective of the cross-section form. This is the subject of the present note.

2. The Mathematical Model and Numerical Code

Consider the flow of a non-Newtonian power-law fluid across a horizontal circular cylinder as it
is shown in Figure 1. The full equations of this flow are [2] the continuity equation:
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where D  is the cylinder diameter and 
u  is the free stream velocity. The drag coefficient is 

defined as  
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where F  is the force acting on the body, S is the surface area and xn  is the horizontal component 

of the unit vector normal to the surface of the cylinder. The first surface integral represents the 

pressure force and the second the stress force.  
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The relation between the stress tensor τ and the rate-of-strain tensor S is the following:

τij = 2ηSij (4)

where η is the apparent viscosity and the strain tensor is

Sij =
1
2
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)
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Taking into account Equations (4) and (5), the momentum equations take the form of the
x-momentum equation:
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and the y-momentum equation:
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where x is the horizontal coordinate, y is the vertical coordinate, u is the horizontal velocity, v is the
vertical velocity, p is the pressure and ρ is the fluid density. The apparent viscosity is:
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where n is the power-law index and K is the consistency coefficient which reduces to dynamic
viscosity in the case of Newtonian fluids. The fluid is characterized as shear-thinning for 0 < n < 1,
shear-thickening for n > 1 and Newtonian for n = 1. In the shear-thinning regime with a low power-law
index (n = 0.2) there are polymer melts, rubber, styling gel and some paints, whereas aggregates with
particles and pastes belong to shear-thickening fluids. During the last years the US Army has shown
great interest in shear-thickening fluids (STF). They came to the conclusion that impregnating STF into
Kevlar fabrics improved its performance. It seems that the most suitable STF for such application is
the suspension of silica particles in ethylene glycol. Ethylene glycol is an organic compound widely
used as automotive antifreeze. It was chosen as a solvent due to its volatility and thermal stability.
The silica particles were, for better dispersibility, predispersed in methanol and then blended with
ethylene glycol. Experimental research suggests that the best way to include STF in body armor vests
is to impregnate it into Kevlar fabrics. A great advantage of STF impregnated over neat Kevlar is the
protection against stabbing [3].

The flow is governed by the Reynolds number which is given by the following relationship,

Re =
ρu∞

2−nDn

K
(9)

where D is the cylinder diameter and u∞ is the free stream velocity. The drag coefficient is defined as

cD =
F
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∫
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where F is the force acting on the body, S is the surface area and nx is the horizontal component of the
unit vector normal to the surface of the cylinder. The first surface integral represents the pressure force
and the second the stress force.

The present numerical study has been carried out using ANSYS FLUENT (version 12.0).
The two-dimensional, steady, laminar solver was used with the third-order scheme for the convective
terms in the momentum equation. The coupled scheme was used for pressure-velocity coupling and
the non-Newtonian power-law model was used for viscosity. A double precision accuracy was used
and a convergence criterion of 10−10 was used for the x- and y-velocity components as well as for the
residuals of continuity.

The applied boundary conditions (Figure 1) are the following according to the ANSYS FLUENT
code. The boundary AE was defined as the “velocity inlet” where the horizontal velocity is constant
and the vertical velocity is zero, while the boundary BC was defined as the “outflow”. The boundaries
AB and EC were defined as a “moving wall” with velocity equal to the free stream velocity. The cylinder
surface was defined as a “stationary wall” (no slip condition). In order to achieve grid-independent
results, all computational boundaries were placed far away from the cylinder (at distance of 25,000 D).
Although this computational field is very large, all calculations were carried out within this large field.
The cylinder diameter was 10 mm and the perimeter length was 31.4 mm. On the cylinder surface
314 grid points were located and each step on the cylinder surface was 0.1 mm long. The first grid
point normal to the cylinder surface was located at a distance of 0.05 mm (0.005 D). The grid step at
the boundaries was 800 mm. However, this was only the initial mesh. In ANSYS FLUENT there is a
grid-adaptation function which adds more grid points at places where the solution is not satisfactory.
Therefore, this initial mesh changed and was made much denser using the grid adaptation function.

3. Results and Discussion

The validation of the present model has been done extensively in two previous works by the
present author [4,5] and no further information will be given here.

In Table 1 we present the values of the drag coefficient for very low Reynolds numbers for three
two-dimensional cylindrical bodies (a circular cylinder, a square cylinder and a normal flat plate).
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The results for the square cylinder and normal flat plate were taken from Pantokratoras [4,5] whereas
the results for the circular cylinder were calculated in the present work. In addition, for a Newtonian
fluid (n = 1) and the circular cylinder, the results based on the Oseen [6] formula

cD =
8π

Re
[
0.5 − 0.577216 + ln

( 8
Re
)] (11)

are included for comparison. It is seen that the results of the present work compare well with those of
Oseen [6] at low Reynolds numbers, but as the Re number increases, the divergence increases. This is
rational because the Oseen formula is valid for very low Re numbers. From this table it is seen that
in the range of low Reynolds numbers (Re ≤ 0.1) and a low power-law index (n ≤ 0.5), the drag
coefficient obeys the law cD = A/Re for all cases. Values of the constant A for the circular cylinder are
given in Table 2.

Table 1. Values of the drag coefficient for flow normal to a circular cylinder, square cylinder and flat
plate at low Reynolds numbers.

n Circular Cylinder Present Work Square Cylinder [5] Normal Flat Plate [4]

Re 0.001 0.01 0.1 0.001 0.01 0.1 0.001 0.01 0.1

0.1 26,421 2642 264.23 31,134 3114 311.46 24,686 2465.0 246.20
0.2 26,764 2672 267.56 30,824 3081 308.31 24,802 2480.0 247.84
0.3 25,534 2553 255.35 28,961 2895 289.53 23,570 2350.0 235.66
0.4 23,155 2315 231.57 25,827 2582 258.22 21,369 2131.0 213.49
0.5 19,866 1986.6 198.70 21,817 2181.7 218.22 18,425 1841.0 184.27
0.6 15,956 1595.5 159.92 17,243 1722.0 172.69 14,930 1492.0 149.35
0.7 11,779 1180.0 122.17 12,517 1251.3 130.07 11,130 1115.0 115.32
0.8 7879 814.13 92.636 8227 848.14 97.449 7500.9 776.54 87.800
0.9 4797 548.03 71.054 4946 567.83 74.487 4617.7 527.33 67.700
1.0 2846 373.67 55.711 2912 384.80 58.143 2769.5 362.03 53.341
1.2 1097 189.79 36.678 1113 194.24 38.100 1077.6 184.96 35.282
1.4 501.2 109.22 26.147 507.3 111.53 27.098 494.12 106.84 25.230
1.6 266.3 69.826 19.855 269.3 71.232 20.554 262.99 68.421 19.205
1.8 159.2 48.439 15.829 161.0 49.415 16.382 157.41 47.505 15.343
2.0 104.2 35.785 13.106 105.4 36.524 13.565 103.06 35.127 12.734
1.0 2846 373.67 55.711

Oseen 2821 380.37 58.383
Difference % 0.9 1.8 4.8

Table 2. Values of constant A (cD = A/Re) for the calculation of the drag coefficient for flow normal to
a circular cylinder, for Re ≤ 0.1 and n ≤ 0.5.

n A

0.1 26.42
0.2 26.72
0.3 25.53
0.4 23.16
0.5 19.90

Although the relation cD = A/Re is clear from Table 1, a theoretical proof will be given here.
Tanner ([7] Equation (34)), using dimensional analysis, produced the following equation for the force
acting on a circular cylinder by a non-Newtonian power-law fluid with (n < 1)

F
KR1−nu∞n = a + bRe (12)
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where R is the radius of the circular cylinder and a and b are constants. The above relation is valid when
a small amount of inertia is present. In our case the Reynolds number is very small and Equation (11)
takes the form

F
KD1−nu∞n = a (13)

In Equation (12) we used the diameter of the cylinder instead of the radius. Combining
Equations (10) and (12), the drag coefficient takes the form cD = A/Re. It is seen that this simple form
of the drag coefficient, which is obvious from the numerical results included in Table 1, is also based
on the dimensional analysis of the shear-thinning fluids and is apparently correct.

Another conclusion drawn from Table 1 is the fact that, as the power-law index increases,
approaching 2, the drag coefficients of all bodies tend to coincide. For example, the drag coefficients of
the circular and square cylinders at Re = 0.001 and n = 0.1 differ 15% and the difference becomes 1% at
n = 2. The drag coefficients of the square cylinder and flat plate at Re = 0.001 and n = 0.1 differ 21%
and the difference becomes 2% at n = 2. This trend is clearly shown in Figures 2–4.

The physical explanation for the above behavior of drag coefficients at high values of the
power-law index will be given here and is based on the work of Whitney and Rodin [8]. These
authors investigated the problem of rigid bodies translating through unbounded shear-thinning
power-law fluids and found the relationship between the velocity and the force acting on the rigid
body. Referring to shear-thinning fluids, the authors say, “The velocity gradient decay is much stronger
for highly non-linear fluids than for Newtonian fluids. This implies that in highly non-linear fluids one should
expect strong flow localization near the body whereas in Newtonian fluids the localization is weak and the flow
intensity decays gradually with distance. Consequently, one should expect that the strong flow localization
makes problems that involve highly non-linear fluids very sensitive to the geometrical details of the body.”
The meaning of the above excerpt is that for highly non-linear fluids, such as shear-thinning fluids,
the drag coefficient depends strongly on the body cross-section. In contrast to shear-thinning fluids
which are highly non-linear, the shear-thickening fluids with a high n tend to become linear with
very small viscosity [9]. Extending the above argument of Whitney and Rodin [8], we expect that at
shear-thickening fluids the drag coefficient will not be sensitive to the geometrical details of the body
and this argument is supported by the present results.
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4. Conclusions

The conclusions of the present note are the following. The drag coefficient of non-Newtonian
power-law shear-thinning fluids with a low n on any cylindrical body follows the simple law
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cD = A/Re at low Reynolds numbers. The second conclusion is that the drag coefficients of all
bodies, irrespective of their cross-section, tend to coincide at high values of the power-law index.
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