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Abstract: We analyze the thermal convection thresholds and linear characteristics of the primary
and secondary instabilities for viscoelastic fluids saturating a porous horizontal layer heated from
below by a constant flux. The Galerkin method is used to solve the eigenvalue problem by taking
into account the elasticity of the fluid, the ratio between the viscosity of the solvent and the total
viscosity of the fluid and the lateral confinement of the medium. For the primary instability, we found
out that depending on the rheological parameters, two types of convective structures may appear
when the basic conductive solution loses its stability: stationary long wavelength instability as for
Newtonian fluids and oscillatory convection. The effect of the lateral confinement of the porous
medium by adiabatic walls is to stabilize the oblique and longitudinal rolls and therefore selects
transverse rolls at the onset of convection. In the range of the rheological parameters where stationary
long wave instability develops first, we use a parallel flow approximation to determine analytically
the velocity and temperature fields associated with the monocellular convective flow. The linear
stability analysis of the monocellular flow is performed, and the critical conditions above which the
flow becomes unstable are determined. The combined influence of the viscoelastic parameters and
the lateral confinement on the characteristics of the secondary instability is quantified. The major new
findings concerning the secondary instabilities may be summarized as follows: (i) For concentrated
viscoelastic fluids, computations showed that the most amplified mode of convection corresponds
to oscillatory transverse rolls, which appears via a Hopf bifurcation. This pattern selection is
independent of both the fluid elasticity and the lateral confinement of the porous medium; (ii) For
diluted viscoelastic fluids, the preferred mode of convection is found to be oscillatory transverse
rolls for a very laterally-confined medium. Otherwise, stationary or oscillatory longitudinal rolls
may develop depending on the fluid elasticity. Results also showed the destabilizing effect of the
relaxation fluid elasticity and the stabilizing effect of the viscosity ratio for the onset of both primary
and secondary instabilities.
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1. Introduction

The study of viscoelastic fluids has applications in a number of processes that occur in industry,
such as the extrusion of polymer fluids, solidification of liquid crystals, suspension solutions and
petroleum activities. In contrast to the case of Newtonian fluids, the study of the thermal convection of
viscoelastic fluids in porous media is limited. In rheology, one crucial problem is the formulation of
the constitutive equations regarding viscoelastic fluid flows in porous media. Recently, a modified
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Darcy’s law was employed to study the stability of a viscoelastic fluid in a horizontal porous layer
using linear and nonlinear stability theory [1–9]. Kim et al. [1] and Yoon et al. [2] performed a linear
stability analysis and showed that in viscoelastic fluids, such as polymeric liquids, a Hopf bifurcation,
as well as a stationary bifurcation may occur depending on the magnitude of the viscoelastic parameter.
From the nonlinear point of view, Kim et al. [1] carried out a nonlinear stability analysis by assuming
a densely-packed porous layer and found that both stationary and Hopf bifurcations are supercritical
relative to the critical heating rate. The question of whether standing or traveling waves are preferred
at onset has been fully addressed by Hirata et al. [4]. The three-dimensional convective and absolute
instabilities of a viscoelastic fluid in the presence of a horizontal pressure gradient have been analyzed
by Hirata and Ouarzazi [5]. Alves et al. [6] studied the effect of viscous dissipation of viscoelastic fluids
at the onset of convection. In addition to its theoretical interest, Delenda et al. [7] have shown that
viscoelastic convection in porous media may be useful for industrial applications for the separation
of species of viscoelastic solutions. The introduction of a porous packing allows one to control the
average vertical convective velocity and to generate a homogeneous convection current, improving the
separation of species. Fu et al. [8] performed direct numerical simulations on two-dimensional thermal
convection of a viscoelastic fluid saturating a porous square cavity. Their numerical experiments
revealed the existence of a second transition from oscillatory convection to a stationary one followed by
a third transition to oscillatory convection for some combinations of rheological parameters, while these
successive transitions never occur for other combinations of viscoelastic parameters. Taleb et al. [9] used
both theoretical and numerical approaches and obtained a global picture and bifurcations diagrams
on possible successive bifurcations of convection patterns in a square porous cavity saturated by
a viscoelastic fluid.

All of the above investigations considered conventional boundary conditions, namely
impermeable isothermal horizontal plates, commonly known as Horton–Rogers–Lapwood convection.
With a configuration of an isothermal upper wall and impermeable adiabatic side walls, Niu et al. [10]
were the first to introduce at the bottom plate a general variable heat flux boundary condition expressed
in terms of the Biot number (Bi). They proved by a linear stability analysis that when Bi → 0,
the thermal convection properties of a viscoelastic fluid of an Oldroyd fluid type approach that subject
to uniform heat flux heating. On the other hand, when Bi→ ∞, linear properties of convection coincide
with those corresponding to isothermal heating. Therefore, convection with different thermal boundary
conditions may be analyzed by adjusting the Biot number. However, to the best of our knowledge,
no results have been published for thermal convection of viscoelastic fluids in situations more
commonly met in engineering applications, namely when the porous medium is subjected, both in the
upper and lower walls, to a general variable heat flux boundary condition. Therefore, the objective
of this work is to fill a part of this gap by investigating the onset of three-dimensional primary
and secondary instabilities of a viscoelastic fluids under the assumption that the upper and lower
horizontal walls are kept at a constant flux as a limiting case of a more general variable heat flux
boundary condition.

For Newtonian fluids, the stability of an infinite porous layer with different boundary conditions
was studied by Nield [11] and is well documented in Section 6.2 of the book by Nield and Bejan [12].
For the case of a porous medium heated from the bottom and cooled from the top by a constant heat flux,
Nield [11] found that the critical Rayleigh number at the onset of convection is approximately 12 with
a vanishing critical wavenumber. Mamou et al. [13] extended the work of Nield [11] by taking into
account the effect of the anisotropy of the porous medium. Mojtabi and Rees [14] studied the case
where the impermeable boundary walls have a finite thickness. They analyzed the combined influence
on the onset of convection of the ratio between the thermal conductivity of the horizontal walls and
the thermal conductivity of the porous medium, as well as the ratio between the thickness of the
horizontal walls and the thickness of the porous layer. The problem of thermal convection in a rotating
horizontal layer of a porous medium was analyzed by Falsaperla et al. [15] for a single fluid and by
Falsaperla et al. [16] in the case of a binary fluid mixture. In both papers, the authors examined the
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effects on the linear properties of the convection of boundary conditions for the temperature of the
Newton–Robin type with heat flux prescribed as a limiting case.

Kimura et al. [17] investigated secondary instabilities for a Newtonian fluid saturating a porous
medium heated from below by a constant flux. For a Rayleigh number larger than its critical value 12
above which the conduction state looses its stability against long wave instability, these authors
used the parallel flow approximation and obtained a nonlinear solution, which corresponds to
a monocellular flow. Two-dimensional numerical results were also presented to test the validity of the
approximated nonlinear solution. In addition, they analyzed its stability against three-dimensional
disturbances and showed that the monocellular flow is linearly stable to transverse disturbances for
Rayleigh number as high as 506, at which point, a Hopf bifurcation sets in. However, further analysis
indicated that an exchange of stability due to longitudinal disturbances will occur much sooner at
a Rayleigh number equal to 311.53.

This contribution aims to understand how the viscoelastic character of the fluid influences the
properties of convection at the onset of primary and secondary instabilities, when the porous layer
is heated from below by a constant flux. Therefore, this work may be viewed as an extension to
viscoelastic fluids of the work done by Kimura et al. [17].

The paper is organized as follows. After presenting the governing equations in Section 2,
the stability of the conductive state is studied in Section 3 by considering steady, as well as oscillatory
three-dimensional perturbations. Section 4 is devoted to the discussion of the combined effects of the
viscoelastic parameters and the lateral aspect ratio of the porous medium on the pattern selection at
the onset of secondary instabilities. Finally, in Section 5, the main conclusions of the present study
are presented.

2. Mathematical Formulation

Let us consider an isotropic and homogeneous porous cavity of thickness e, height H and width
W (see Figure 1). The porous medium is saturated by an Oldroyd-B fluid, and we assume that the solid
matrix is in local thermal equilibrium with the fluid. The upper and lower horizontal walls are kept at
constant flux, while the lateral vertical walls are considered adiabatic. The solid walls of the domain
Ω = [0, W]× [0, e]× [0, H] are considered impermeable. We assume that the Oberbeck–Boussinesq
approximation holds.

∂T
∂x = 0 ∂T

∂x = 0
H

y e

W
x

z

q

q

Figure 1. The porous rectangular cavity heated from below by a constant flux.

There are several ways to obtain macroscopic laws for polymeric flows in a porous medium:
by direct numerical simulations of viscoelastic flows in a specific pore geometry model (a good review
of these studies can be found in [18]) or by analytical means. In general, the former is the most
commonly-used method for the derivation of macroscopic laws. It can be divided in two techniques:
the REV method (representative elementary volume method) and the homogenization theory.
The starting point for the two techniques is a local description in a pore scale. The pore space is
assumed to be saturated by an incompressible viscoelastic fluid. For slow flows, the momentum
balance equation can be linearized:
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ρ
∂U∗

∂t∗
= −∇p∗ + ρg +∇ · τ̃ (1)

where U∗ is the fluid velocity field, p∗ is the pressure, τ̃ is the stress tensor and g is the gravity field.
In Newtonian incompressible fluids, the constitutive relation between stress tensor τ̃ and strain

tensor D̃ (Di,j = [u∗i,j + u∗j,i]/2) is the Newtonian law τ̃ = 2 µN D̃, where µN is the dynamic viscosity,
and, in this case, the relation ∇ · τ̃ = µN∇2U∗ is obtained.

The simplest rheological model useful for describing dilute viscoelastic solutions at high rates
of deformation is the Oldroyd-B model. In this model, τ̃ and D̃ for viscoelastic fluids composed
of a Newtonian solvent and a polymeric solute of “Newtonian” viscosity µs and “elastic viscosity”
µp [19], respectively, are given by:

τ̃ = τ̃s + τ̃p (2)

with:

τ̃s = 2 µsD̃ (3)

and:

(1 + λ∗1
∂

∂t∗
)τ̃p = 2 µpD̃ (4)

where λ∗1 represents the relaxation time. Then, by combining (2)–(4), we obtain the
constitutive equation:

(1 + λ∗1
∂

∂t∗
)τ̃p = 2 µ(1 + λ∗2

∂

∂t∗
)D̃ (5)

where the dynamic viscosity µ and the retardation time λ∗2 are related to µs and µp by:

µ = µs + µp and λ∗2/λ∗1 = µs/(µs + µp).

An Oldroyd-B fluid may thus be characterized by three parameters: the dynamic viscosity µ,
the relaxation λ∗1 and the retardation λ∗2 times. The relation Γ = λ∗2/λ∗1 may also be used instead of λ∗2 .

In order to derive a macroscopic filtration law based on the Oldroyd constitutive equation,
we have to introduce, in a fashion similar to that done in the derivation of the classical Darcy law for
Newtonian fluids, the superficial velocity V∗ defined by:

< V∗ >=
1
v

∫

v

U∗dv (6)

where v is a representative elementary volume (REV) of the medium, incorporating both solid
and fluid. Using the REV method by averaging Equation (1) and taking into account Equation (6)
leads to:

µ

K
(1 + λ∗2

∂

∂t∗
)V∗ + (1 + λ∗1

∂

∂t∗
)(∇P∗ − ρg) = 0, (7)

where K is the permeability.
Under the assumption of low Reynolds number based on the pore dimension, the generalized

Darcy’s law (7) is also derived by [20] using a homogenization theory.
The fluid density ρ obeys the state law:

ρ = ρ0(1− βT(T∗ − T∗0 )) (8)

where ρ0 is the fluid density at temperature T∗0 , which is chosen here as the temperature at the
geometric center of the cavity, and βT is the thermal expansion coefficient.
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Assuming thermal equilibrium between the solid and the fluid phases and neglecting the viscous
dissipation effects, energy and continuity equations can then be written as [1–10]:

(ρc)s f

(ρc) f

∂T∗

∂t∗
+ V∗ · ∇T∗ = ∇ · (α∇T∗) (9)

∇ ·V∗ = 0 (10)

The boundary conditions at the impermeable horizontal walls kept at a constant flux q and the
impermeable insulated vertical walls are:

− kT
∂T∗

∂z
= q at z = 0, H,

∂T∗

∂x
= 0 at x = 0, W,

∂T∗

∂y
= 0 at y = 0, e,

V · n = 0 at ∂Ω.

(11)

Here, (ρc), µ, ν, kT , α = kT/(ρc) f are respectively the heat capacity per unit volume, the dynamic and
kinematic viscosity of the fluid, the effective thermal conductivity and the effective thermal diffusivity.
Subscript sf refers to an effective quantity, while f refers to the fluid alone.

We choose H, kT/(H(ρc) f ), H2(ρc)s f /kT , kTµ/(K(ρc) f ) and qH/kT as reference quantities for the
length, velocity, time, pressure and temperature difference (T∗ − T∗0 ). With this scaling, the following
set of dimensionless equations is obtained:

∇ ·V = 0 (12)

(1 + Γλ1
∂

∂t
)V + (1 + λ1

∂

∂t
)(∇P− RaTez) = 0, (13)

∂T
∂t

+ V · ∇T = ∇2T (14)

The dimensionless boundary conditions are:

∂T
∂z

= −1 at z = 0, 1,

∂T
∂x

= 0 at x = ±A
2

,

∂T
∂y

= 0 at y = 0, a,

V · n = 0 at ∂Ω.

(15)

The dimensionless parameters are: the filtration Rayleigh number:

Ra =
βT gKH2q

ανkT
(16)

the horizontal and lateral aspect ratios:

A = W/H, a = e/H (17)
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the relaxation time:
λ1 = λ∗1kT/(H2(ρc)s f ) (18)

and the ratio Γ that varies in the interval [0, 1]:

Γ = λ∗2/λ∗1 (19)

This model reduces to the Maxwell model in the limit Γ→ 0 and to the Newtonian model in the
limit Γ→ 1.

In the following, we will examine the stability of the conductive state (the primary instability),
as well as the stability of the monocellular flow (the secondary instability).

3. Primary Stationary and Oscillatory Instabilities

In the conductive regime, the basic solution is a motionless state V = 0 with a vertical thermal
stratification T0 = −z + 1

2 .
The aim of this section is to perform a temporal stability analysis of the conductive state with

respect to both stationary and oscillatory disturbances.

3.1. Infinite Aspect Ratios

To investigate the stability of the basic solution, infinitesimal three-dimensional perturbations are
super-imposed onto the basic solution:





V = V0 + v(x, y, z, t)
T = T0 + θ(x, y, z, t)
P = P0 + p(x, y, z, t)

(20)

We first assume very large aspect ratios A(A→ ∞) and a(a→ ∞). The three-dimensional disturbance
quantities are expressed as:

(u, v, w, θ, p) =
[
ũ(z), ṽ(z), w̃(z), θ̃(z), p̃(z)

]
exp(ikx + ily− iωt) (21)

where k and l are the wave numbers in the x and y directions, respectively, and the temporal growth
rate of unstable perturbations is given by the imaginary part of the complex frequency ω = ωr + iωi.
Therefore, the neutral temporal stability curve is obtained for ωi = 0, which selects dominant modes
at the onset of convection.

Substituting Equations (20), (21) into (12)–(15), linearizing the equations and applying the curl
twice to the momentum balance equation, one can obtain:

(1− iωΓλ1)(D2 − k̃2)w̃ + Ra(1− iωλ1)k̃2θ̃ = 0 (22)

− iωθ̃ − w̃− (D2 − k̃2)θ̃ = 0 (23)

where D = d
dz and k̃2 = k2 + l2. The corresponding boundary conditions take the form:

w̃ = 0,
dθ̃

dz
= 0 at z = 0, 1. (24)

The system (40), (41) is solved by means of the Galerkin method using the following expansions:

w̃(z) =
M

∑
n=1

wnsin(nπz) (25)
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θ̃(z) =
M

∑
n=1

θncos[(n− 1)πz] (26)

The number M of modes is chosen so that the quantitative convergence is secured.
We first examine the single-term Galerkin expansion, or single-term truncation, for the present

problem. It allows the generation of analytical expressions that can guide future laboratory experiments,
owing to its simplicity. Even when their error in quantitative predictions was high, their qualitative
behavior prediction was accurate enough to guide additional numerical efforts. Setting M = 1 in
(25), (26), an algebraic dispersion relation is obtained:

(1 − iωΓλ1)(π
2 + k̃2)(k̃2 − iω)− 8

π2 Ra (k̃2 (1 − iωλ1) = 0, (27)

As the viscoelastic parameters appear only in front of a time derivative in the momentum
Equation (13) and in front of −iω in the approximated dispersion Equation (27), the elasticity of the
fluid cannot influence the properties of a stationary instability. Consequently, the characteristics of the
stationary instability are the same as for Newtonian fluids. For such fluids, linear instability analysis
has been considered by Nield [11] and has provided quantitative information on the stability condition
when the porous layer is supposed infinite in the x and y directions.

On evaluating the minimum of the Rayleigh number defined by (27), we obtain the critical values
for the onset of stationarity.

Ras
c =

π4

8
' 12.176 and k̃s

c = 0 (28)

The critical value Ras
c =

π4

8 obtained with a single-term truncation is only 1.5 percent higher than the
exact critical Ras

c = 12 found in [11].
By setting ω = ωr 6= 0 in (27) and minimizing Ra with respect to k̃, we obtain a Hopf bifurcation

giving rise to an oscillatory convection if the Rayleigh number exceeds the critical value:

Raosc
c =

π2

8 λ1
(1 + π

√
λ1Γ)2. (29)

The corresponding critical wave number and critical frequency for oscillatory mode are:

k̃2
c =

π√
λ1Γ

(30)

and

ω2
c =

1
λ2

1Γ
[k̃2

c(λ1 − λ1Γ)− 1] (31)

As ωc is real, the system exhibits oscillatory convection only if ω2
c > 0. This condition is satisfied if:

λ1 >
Γ

π2(1− Γ)2 = λ∗1 (32)

On the other hand, the bifurcation to oscillatory convection precedes the bifurcation to steady
convection, i.e., the critical Rayleigh number for oscillatory instability is less than its value for stationary
instability if:
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λ1 >
1

π2(1−
√

Γ)2
= λ∗∗1 (33)

As computations showed that λ∗1 < λ∗∗1 , we concluded that the system selects oscillatory convection
as a first instability if λ1 > λ∗∗1 . The border separating stationary and oscillatory instabilities is given
by the curve λ1 = λ∗∗1 , as is shown in the plane (Γ, λ1) of Figure 2.

0.2 0.4 0.6

0.2

0.4

0.6

0.8

1

Stationary instability

Oscillatory instability

Γ

λ1

Figure 2. Elasticity levels λ1 versus the viscosity ratio Γ defining the crossover between stationary and
oscillatory primary bifurcations. Results were obtained with the single-term Galerkin expansion (25)
and (26).

The single-term Galerkin truncation does not present accurate results over the entire range of
parameters under consideration, and higher-order truncation becomes necessary. Having used the
Galerkin expansion (25) and (26) with M = 5, we obtain results with a very good agreement with
those obtained in [11] in the case of stationary instability. Figure 3a represents the marginal stability
curve in the (k̃, Ra) plane and shows that a long wave instability (i.e., the critical wave number k̃c = 0)
may develop if the Darcy–Rayleigh number exceeds the critical value Ras = 12.009 in accordance with
the critical value Ras = 12 found in [11].

In Figure 3b, we plot the curve of neutral stability for oscillatory mode of convection in the (k̃, Ra)
plane for Γ = 0.02 and different values of the elasticity number λ1 = 0.4; 0.5; 0.6. It can be seen from
this figure that the minimum value of the Rayleigh number is lower than the critical Rayleigh number
Ra = 12 needed to trigger steady long wave instability. Therefore, oscillatory instability may set up as
a first convective pattern instead of steady long wave instability.

The dependence of the critical Rayleigh number and the critical frequency at the onset of oscillatory
convection on the elasticity number λ1 for fixed values of Γ is numerically determined, and the results
are plotted in Figure 4a,b respectively.

It is clear from Figure 4a that an increase in λ1 leads to flow destabilization, i.e., to a reduction
in the respective critical Rayleigh number. Figure 4a also shows the stabilizing effect of the ratio Γ.
Moreover, as is seen in Figure 4a, for a fixed value of Γ, there exists a particular value of λ1 = λ

f
1 where

the critical Rayleigh numbers for the onsets of both oscillatory and stationary convection coincide,
and therefore, a codimension two bifurcation occurs. For λ1 > λ

f
1 , Figure 4b shows that the critical

frequency decreases with the decrease of the fluid elasticity or the increase of the viscosity ratio.
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Figure 3. Neutral stability curves: (a) stationary instability, which exists independently of viscoelastic
parameters; (b) oscillatory instability, which may develop first depending on viscoelastic parameters.
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as a function of λ1 for different values of Γ. The line Ra = 12 in (a) corresponds to the critical Rayleigh
number at the onset of stationary convection.

3.2. Effect of Lateral Confinement on Pattern Selection

This section is devoted to investigating the effect of the lateral confinement of the porous cavity by
assuming a very large aspect ratio A(A→ ∞) and finite lateral aspect ratio a. The three-dimensional
disturbance quantities respecting the boundary conditions (15) are expressed as:

(u, w, θ, p) =
[
ũ(z), w̃(z), θ̃(z), p̃(z)

]
exp(ikx− iωt)cos(Lπy/a) (34)

v = ṽ(z)exp(ikx− iωt)sin(Lπy/a) (35)

The governing equations are still the system (40) and (41), except with l now replaced by Lπ/a
where the integer L is the number of rolls in the y direction.

We begin the study by considering the stability of the conductive state against stationary rolls
with axes parallel to the x direction, called longitudinal rolls (LRs). Steady longitudinal rolls are
characterized by k = 0, L 6= 0 and ωr = 0. The dependence of the critical Rayleigh number
at the onset of LRs on the lateral aspect ratio a for different numbers L of rolls is displayed in
Figure 5a. For comparison, we also represent in the same figure the threshold of the steady long
wave instability. The threshold of steady three-dimensional patterns in the form of oblique rolls

Figure 4. (a) Critical Rayleigh number and (b) critical frequency at the onset of oscillatory convection
as a function of λ1 for different values of Γ. The line Ra = 12 in (a) corresponds to the critical Rayleigh
number at the onset of stationary convection.

3.2. Effect of Lateral Confinement on Pattern Selection

This section is devoted to investigating the effect of the lateral confinement of the porous cavity by
assuming a very large aspect ratio A(A→ ∞) and finite lateral aspect ratio a. The three-dimensional
disturbance quantities respecting the boundary conditions (15) are expressed as:

(u, w, θ, p) =
[
ũ(z), w̃(z), θ̃(z), p̃(z)

]
exp(ikx− iωt)cos(Lπy/a) (34)

v = ṽ(z)exp(ikx− iωt)sin(Lπy/a) (35)

The governing equations are still the system (40) and (41), except with l now replaced by Lπ/a
where the integer L is the number of rolls in the y direction.

We begin the study by considering the stability of the conductive state against stationary rolls
with axes parallel to the x direction, called longitudinal rolls (LRs). Steady longitudinal rolls are
characterized by k = 0, L 6= 0 and ωr = 0. The dependence of the critical Rayleigh number
at the onset of LRs on the lateral aspect ratio a for different numbers L of rolls is displayed in
Figure 5a. For comparison, we also represent in the same figure the threshold of the steady long
wave instability. The threshold of steady three-dimensional patterns in the form of oblique rolls
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(i.e., k 6= 0, L 6= 0 and ωr = 0) is bounded by the thresholds of the two limiting cases: the steady long
wave instability and steady LRs.

Fluids 2017, 2, 42 10 of 18

(i.e., k 6= 0, L 6= 0 and ωr = 0) is bounded by the thresholds of the two limiting cases: the steady long
wave instability and steady LRs.

0 10 20 30

12

14

16

18

20

a

R
a

(a)

0 1 2 3

7

8

9

10

a

R
a

(b)

Figure 5. Critical Rayleigh number against the lateral aspect ratio with different numbers of rolls
(L = 1: red dashed curve; L = 2: green dotted curve; L = 3: black dash dotted curve; and L = 4: blue
densely-dotted curve): (a) steady longitudinal rolls that exist independently of viscoelastic parameters;
(b) oscillatory longitudinal rolls for Γ = 0.1 and λ1 = 0.5. In both figures, the horizontal lines indicate
the corresponding critical Rayleigh number for transverse rolls.

We remark that the mode L = 1 is the most unstable mode for LRs. As is expected, we note that
the critical Rayleigh number increases as a decreases, meaning that the lateral confinement stabilizes
the conductive state against longitudinal rolls. We also note that as a → ∞, the limiting value of
Ra = 12 is reached monotonically, and an infinity of modes may be simultaneously unstable in
this limit. Consequently, a relatively moderate lateral confinement is necessary to select the long wave
instability, which corresponds in real experiments to a monocellular flow in the x direction.

Now, we consider the effect of the lateral confinement on the stability of the conductive state
against oscillatory LRs defined by k = 0, L 6= 0 and ωr 6= 0. Numerical results for neutral stability
curves of oscillatory LRs with L = 1, L = 2, L = 3 and L = 4 are shown in Figure 5b as functions
of the lateral aspect ratio a. These curves have a parabolic shape and intersect at some particular
values of a, indicating that the true critical Rayleigh number strongly depends on both a and L for
fixed rheological parameters. The destabilizing oscillatory LR mode changes in the intersection points
of neural curves from a mono-cellular flow to a two-cellular flow, and so on, as the lateral aspect
ratio a increases. In addition, the behavior of the critical Rayleigh number is non-monotonic as
a increases. We also note that the maximum of critical Rayleigh number decreases as a increases and
tends asymptotically to the critical threshold found in the unbounded case (a→ ∞). The results are
therefore in contrast to the case of stationary LRs where the dominant mode corresponds to L = 1
independently of the lateral confinement.

In Figure 5b, the critical Rayleigh number at the onset of oscillatory transverse rolls (TRs)
characterized by k 6= 0, L = 0 and ωr 6= 0 is indicated by the horizontal line. As can be seen
from this figure, finite values of a stabilize oscillatory LRs and may select oscillatory TRs as a dominant
mode of convection.

4. Secondary Instabilities

4.1. Nonlinear Solution and Formulation of Its Linear Stability

According to the above linear stability analysis, we found that a stationary bifurcation occurs
giving rise to a convective pattern in the form of a long wave instability in the x direction provided

Figure 5. Critical Rayleigh number against the lateral aspect ratio with different numbers of rolls
(L = 1: red dashed curve; L = 2: green dotted curve; L = 3: black dash dotted curve; and L = 4: blue
densely-dotted curve): (a) steady longitudinal rolls that exist independently of viscoelastic parameters;
(b) oscillatory longitudinal rolls for Γ = 0.1 and λ1 = 0.5. In both figures, the horizontal lines indicate
the corresponding critical Rayleigh number for transverse rolls.

We remark that the mode L = 1 is the most unstable mode for LRs. As is expected, we note that
the critical Rayleigh number increases as a decreases, meaning that the lateral confinement stabilizes
the conductive state against longitudinal rolls. We also note that as a → ∞, the limiting value of
Ra = 12 is reached monotonically, and an infinity of modes may be simultaneously unstable in
this limit. Consequently, a relatively moderate lateral confinement is necessary to select the long wave
instability, which corresponds in real experiments to a monocellular flow in the x direction.

Now, we consider the effect of the lateral confinement on the stability of the conductive state
against oscillatory LRs defined by k = 0, L 6= 0 and ωr 6= 0. Numerical results for neutral stability
curves of oscillatory LRs with L = 1, L = 2, L = 3 and L = 4 are shown in Figure 5b as functions
of the lateral aspect ratio a. These curves have a parabolic shape and intersect at some particular
values of a, indicating that the true critical Rayleigh number strongly depends on both a and L for
fixed rheological parameters. The destabilizing oscillatory LR mode changes in the intersection points
of neural curves from a mono-cellular flow to a two-cellular flow, and so on, as the lateral aspect
ratio a increases. In addition, the behavior of the critical Rayleigh number is non-monotonic as
a increases. We also note that the maximum of critical Rayleigh number decreases as a increases and
tends asymptotically to the critical threshold found in the unbounded case (a→ ∞). The results are
therefore in contrast to the case of stationary LRs where the dominant mode corresponds to L = 1
independently of the lateral confinement.

In Figure 5b, the critical Rayleigh number at the onset of oscillatory transverse rolls (TRs)
characterized by k 6= 0, L = 0 and ωr 6= 0 is indicated by the horizontal line. As can be seen
from this figure, finite values of a stabilize oscillatory LRs and may select oscillatory TRs as a dominant
mode of convection.

4. Secondary Instabilities

4.1. Nonlinear Solution and Formulation of Its Linear Stability

According to the above linear stability analysis, we found that a stationary bifurcation occurs
giving rise to a convective pattern in the form of a long wave instability in the x direction provided
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that the elasticity number λ1 does not exceed a particular value λ
f
1 , which depends on the viscosity

ratio Γ. In that case, the viscoelastic fluid behaves like a Newtonian fluid. Consequently, the nonlinear
solution in the regime of steady long wave convection is the same regardless of weather or not the
fluid is viscoelastic.

By assuming a shallow cavity A � 1 and by using the parallel flow approximation [21–23],
Kimura et al. [17] found that the analytical solution for the monocellular flow consists of: a horizontal
asymmetric velocity with a zero mean along any vertical section,

U(z) =
1
2

Ra C(1− 2z) (36)

and a vertical, as well as a horizontal stratification of the temperature,

T0(x, y, z) = Cx + Θ(z) (37)

with:

Θ(z) =
1
2

Ra C2(
z2

2
− z3

3
− 1

12
)− z +

1
2

(38)

and:

C = ±
√

10
Ra

(1− 12
Ra

) (39)

where C is negative or positive according to whether the flow is clockwise or counter-clockwise, and
both solutions are possible depending on the initial conditions.

From Equation (39), it is seen that no motion may be induced inside the cavity for Ra < 12.
For the case of a porous medium heated from the bottom and cooled from the top by a constant
heat flux, a critical Rayleigh number of Ra = 12 for the onset of convection was predicted by Nield [11].
This result is in agreement with the prediction of Equation (39).

For finite aspect ratio, Kimura et al. [17] performed two-dimensional numerical simulations of
the full problem. Their numerical results show that the conductive state is stable when the Rayleigh
number is smaller than 12. Computations carried out for Ra in excess of 12 were found to agree with
analytical solutions (36)–(38).

The equations governing the linear stability of the monocellular flow are obtained by the same
previous approach used for the stability of the conductive basic solution. By assuming very large
aspect ratios A(A→ ∞) and a(a→ ∞), the following system is obtained:

(1− iωΓλ1)(D2 − k̃2)w̃ + Ra(1− iωλ1)k̃2θ̃ = 0 (40)

− iωθ̃ + w̃DT0 + ikθ̃U0 − (D2 − k̃2)θ̃ = 0 (41)

where we substitute U0 and T0 by their explicit expressions (36)–(38).
The corresponding boundary conditions take the form:

w̃ = 0,
dθ̃

dz
= 0 at z = 0, 1. (42)

On the other hand, if we assume a very large aspect ratio A and a finite value of the lateral aspect
ratio a, the governing equations are still the system (40) and (41) where k̃2 is replaced by k2 + L2π2/a2.

The resulting linear stability problem is solved by means of the Galerkin method, using the
expansion (25) and (26) at the order M = 30.
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4.2. Results for Newtonian Fluids

To verify the accuracy of our numerical results based on the Galerkin expansion to the order
M = 30, we perform a test for the limiting case of a Newtonian fluid and compare the results
with those obtained by Kimura et al. [17]. In the first instance, two-dimensional disturbances,
corresponding to l = 0, were considered. We found out that for the Newtonian fluid, the base velocity
and temperature profiles (36)–(38) are stable for values of Ra less than RaT

c2 = 506.27 as shown by the
neutral stability curve represented in Figure 6a. At this critical Rayleigh number occurs an instability
via a Hopf bifurcation to oscillatory TRs with a critical frequency ωT

c2 = 138.24 and a critical wave
number kT

c2 = 4.80. These results are in a good agreement with those obtained in [17] by using
a shooting method, namely RaT

c2 = 506.07, ωT
c2 = 138.92 and kT

c2 = 4.82.
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Figure 6. Newtonian fluids: (a) neutral stability curve at the onset of oscillatory transverse rolls;
(b) critical Rayleigh number at the onset of steady longitudinal rolls against the lateral aspect ratio
with different numbers of rolls (L = 1: red dashed curve; L = 2: green dotted curve; L = 3: black dash
dotted curve; and L = 4: blue densely-dotted curve). The horizontal line corresponds to the threshold
of oscillatory transverse rolls.

On the other hand, Kimura et al. [17] considered three-dimensional disturbances with the value
of the y-wave number l being gradually increased from zero. For l > 0, the stability analysis indicates
that the monocellular flow will be destabilized not by a Hopf bifurcation, but by an exchange of
stability for which the x-wave number k vanishes. In that case the threshold of the appearance of
steady longitudinal rolls as a secondary instability is found to be RL

c2,s ≈ 311.53. Since this critical
Rayleigh number is much lower than any of those for the Hopf bifurcations obtained when k 6= 0,
Kimura et al. [17] concluded that the monocellular flow will in fact be destabilized by longitudinal,
rather than transverse, disturbances.

In the second instance, three-dimensional disturbances, corresponding to k 6= 0 and l 6= 0,
were considered in this study. Numerical results performed by assuming infinite aspects ratios A and
a indicated that the most unstable mode corresponds to k = 0 and l 6= 0. The corresponding critical
Rayleigh number above which this most unstable mode is in the form of steady LRs is RL

c2,s = 313.107.
Once again, this critical value agrees very well with RL

c2,s ≈ 311.53 obtained in [17].
In the third instance, the effect of the confinement of the porous medium in the y direction

is explored. We plot in Figure 6b the critical Rayleigh number against the aspect ratio for several of the
leading modes, from which it is clear that (L = 1) remains the destabilizing mode, ahead of the other
modes (L > 1), and that the order of these modes, in the sense that Rac(L) < Rac(L + 1), is preserved
as a increases. In particular, we also note that as a → ∞, the limiting value of RL

c2,s = 313.107 is
approached monotonically. Figure 6b also shows that the curve corresponding to steady longitudinal

Figure 6. Newtonian fluids: (a) neutral stability curve at the onset of oscillatory transverse rolls;
(b) critical Rayleigh number at the onset of steady longitudinal rolls against the lateral aspect ratio
with different numbers of rolls (L = 1: red dashed curve; L = 2: green dotted curve; L = 3: black dash
dotted curve; and L = 4: blue densely-dotted curve). The horizontal line corresponds to the threshold
of oscillatory transverse rolls.

On the other hand, Kimura et al. [17] considered three-dimensional disturbances with the value
of the y-wave number l being gradually increased from zero. For l > 0, the stability analysis indicates
that the monocellular flow will be destabilized not by a Hopf bifurcation, but by an exchange of
stability for which the x-wave number k vanishes. In that case the threshold of the appearance of
steady longitudinal rolls as a secondary instability is found to be RL

c2,s ≈ 311.53. Since this critical
Rayleigh number is much lower than any of those for the Hopf bifurcations obtained when k 6= 0,
Kimura et al. [17] concluded that the monocellular flow will in fact be destabilized by longitudinal,
rather than transverse, disturbances.

In the second instance, three-dimensional disturbances, corresponding to k 6= 0 and l 6= 0,
were considered in this study. Numerical results performed by assuming infinite aspects ratios A and
a indicated that the most unstable mode corresponds to k = 0 and l 6= 0. The corresponding critical
Rayleigh number above which this most unstable mode is in the form of steady LRs is RL

c2,s = 313.107.
Once again, this critical value agrees very well with RL

c2,s ≈ 311.53 obtained in [17].
In the third instance, the effect of the confinement of the porous medium in the y direction

is explored. We plot in Figure 6b the critical Rayleigh number against the aspect ratio for several of the
leading modes, from which it is clear that (L = 1) remains the destabilizing mode, ahead of the other
modes (L > 1), and that the order of these modes, in the sense that Rac(L) < Rac(L + 1), is preserved
as a increases. In particular, we also note that as a → ∞, the limiting value of RL

c2,s = 313.107 is
approached monotonically. Figure 6b also shows that the curve corresponding to steady longitudinal
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mode with L = 1 intersects the line RaT
c2 = 506.07 at a particular value of the lateral aspect ratio a = a∗.

This means that perturbations promote the appearance of oscillatory TRs provided that a < a∗ or
stationary LRs otherwise.

4.3. Results for Viscoelastic Fluids

4.3.1. Hopf Bifurcation to Transverse Rolls

In order to study the influence of viscoelastic parameters on the secondary instability, we first
computed the bifurcation line from a stationary monocellular convective pattern to oscillatory TRs
(l = 0) for either a fixed value of the elasticity number λ1 with varying values of the viscosity ratio
Γ or a fixed value of Γ with varying values of λ1. With regard to the question of the influence of the
viscosity ratio Γ for a viscoelastic fluid with a relaxation time λ1 = 0.1 on the onset of a secondary
instability in the form of oscillatory TRs, Figure 7a illustrates the behavior of neutral stability curves in
the (k, Ra) plane for Γ = 0.75, Γ = 0.5 and Γ = 0.3. For a comparison, the Newtonian case (Γ = 1) is
also represented on Figure 7a.

We note in this figure that the minimum of neutral stability curves increases when Γ is augmented
to reach the critical value for Newtonian fluids in the limit of Γ = 1. Physically, this result
means that concentrated polymeric solutions with a small viscosity ratio Γ favor the appearance
of oscillatory multicellular flow convection as a secondary instability. On the other hand, for diluted
viscoelastic solutions, more heating is needed to trigger the secondary instability.

We report in Table 1 the computed results of critical Rayleigh number RaT
c2, critical frequency ωT

c2
and critical wave number kT

c2 at the onset of the secondary instability organized as oscillatory TRs
for λ1 = 0.1 and different values of Γ. Table 1 shows a strong stabilizing effect of the viscosity ratio.
The values of the critical oscillatory frequency decrease with decreasing Γ. This implies that emerging
transversal convection rolls have a larger time-period and move with a larger phase velocity when the
polymer concentration is high.
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Table 1. Critical Rayleigh number RaT
c2, frequency ωT

c2 and wave number kT
c2 at the onset of moving

transverse rolls as a secondary instability for λ1 = 0.1 and different values of Γ.

Γ RaT
c2 ωT

c2 kT
c2

Newtonian 506.27 138.24 4.8
0.75 358.62 115.209 4.660
0.70 329.48 110.448 4.630
0.65 300.89 105.918 4.610
0.60 272.90 101.395 4.590
0.55 245.58 96.897 4.570
0.50 219.04 92.825 4.570
0.45 193.39 88.902 4.575
0.40 168.81 85.603 4.610
0.35 145.47 83.112 4.685
0.30 123.55 81.578 4.805

We now present results corresponding to the influence of the fluid elasticity by considering the
properties of the emerging oscillatory TRs at different values of λ1 for a fixed value of Γ. Figure 7b
presents neutral stability curves for Γ = 0.75, a typical viscosity ratio value for Boger fluids and
different values of the relaxation time λ1 = 0.1, λ1 = 0.35 and λ1 = 0.5. We note from this figure that
the neural stability curves are nearly superposed when λ1 is increased, meaning that beyond λ1 = 0.1,
the increase in the fluid elasticity has little influence on the critical Rayleigh number at the onset of
oscillatory TRs. Table 2 gathers the results for seven values of λ1. It can be observed from Table 2 that
critical Rayleigh number RaT

c2, critical frequency ωT
c2 and critical wave number kT

c2 at the onset of the
secondary instability are weakly dependent on the elasticity number number λ1. We conclude that the
preponderant effect on the properties of the emerging oscillatory TRs is mainly linked to the variations
in the viscosity ratio, while the effect of the elasticity remains very weak.

Table 2. Critical Rayleigh number RaT
c2, frequency ωT

c2 and wave number kT
c2 at the onset of moving

transverse rolls as a secondary instability for Γ = 0.75 and different values of λ1.

λ1 RaT
c2 ωT

c2 kT
c2

0.7 354.21 110.819 4.545
0.6 354.31 110.979 4.550
0.5 354.45 111.042 4.550
0.4 354.66 111.251 4.555
0.3 355.05 111.642 4.565
0.2 355.83 112.584 4.590
0.1 358.62 115.209 4.660

4.3.2. Bifurcation to Steady or Oscillatory Longitudinal Rolls

Finally, we present in the second part of this section the secondary instability results in the
case where disturbances are assumed in the form of longitudinal rolls LRs. We mention that
as for the primary instability, the onset of stationary LRs convection is not affected by the two
viscoelastic parameters. Consequently, the critical Rayleigh number above which stationary LRs
convection develops as a secondary instability is the same as that found for Newtonian fluids,
namely RL

c2,s = 313.107. However, the computations indicate Hopf bifurcation from steady unicellular
flow to oscillatory LRs convection. We emphasize that the Hopf bifurcation to oscillatory LRs is not
observed for Newtonian fluids and is due solely to the viscoelastic character of the fluids. The effects of
the two viscoelastic parameters on the linear properties of the oscillatory LRs convection are examined
in the remainder of this subsection. In order to evaluate the effect of elasticity alone, the λ1 = 0.1,
λ1 = 0.3 and λ1 = 0.5 cases are investigated for a fixed Γ = 0.75. On the other hand, the effect of
viscosity ratio alone is studied by fixing λ1 = 0.1 and investigating the Γ = 0.75, Γ = 0.6, Γ = 0.5 and
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Γ = 0.3 cases. The computed results for the six different cases are reported in Table 3, which indicates
the critical Rayleigh number, wave number and oscillatory frequency at the onset of oscillatory
LRs’ secondary instability. As has already been highlighted in the previous sections considering the
primary instability and the TRs’ secondary instability, we recognize the destabilizing effect of the
elasticity number λ1 and the stabilizing effect of the viscosity ratio Γ. Moreover, a comparison of
Tables 1–3 attests that the frequencies of oscillatory LRs are much smaller than those corresponding to
oscillatory TRs.

An additional remark about Table 3 is necessary. For comparison purposes, we also indicate in
this table the threshold of both stationary and oscillatory LRs. It is clear that the true critical Rayleigh
number depends on the combination of the rheological parameters. The least stable mode of convection
is the one with smallest critical Rayleigh number and is identified in Table 3 with a bold character.
For instance, we consider diluted viscoelastic solutions with Γ = 0.75 with different elasticity number
λ1. For the combination of the rheological parameters (λ1 = 0.1, Γ = 0.75), the true critical Rayleigh
number is RL

c2,s, indicating that the secondary instability pattern is in the form of steady LRs. In that
case, polymeric solutions are almost inelastic and evolve as a Newtonian fluid. In contrast, for the
combination (λ1 = 0.5, Γ = 0.75), the least stable mode of convection changes from steady LRs to
oscillatory LRs, meaning that elastic effects become the most important ones in this range. In the same
way, the preferred pattern as a secondary instability depends on the viscosity ratio Γ. Table 3 shows
that by keeping λ1 = 0.1 and decreasing gradually Γ from Γ = 0.75 (diluted solutions) to Γ = 0.3
(concentrated solutions), the most amplified mode of convection evolves from steady LRs to oscillatory
LRs and eventually to oscillatory TRs.

Table 3. Critical Rayleigh number RaL
c2, frequency ωL

c2 and wave number kL
c2 at the onset of oscillatory

longitudinal rolls as the secondary instability for different values of Γ and λ1.

λ1 Γ RaL
c2,osc ωL

c2 kL
c2 RT

c2 RL
c2,s

Newtonian - - - 506.27 313.107
0.1 0.75 426.27 1.53 5.8 358.62 313.107
0.3 0.75 317.55 3.58 4.5 355.03 313.107
0.5 0.75 291.34 2.65 3.9 354.45 313.107
0.1 0.6 333.47 12.35 6.3 272.90 313.107
0.1 0.5 288.08 17.53 6.5 219.04 313.107
0.1 0.3 194.20 33.62 7.0 123.55 313.107

All of the results stated in the Section 4.3 are obtained by assuming infinite aspects ratios in the
x and y directions. For the sake of brevity, we exemplify the effect of the lateral aspect ratio a on the
pattern selection for two combinations of rheological parameters (Γ = 0.75, λ1 = 0.3) and (Γ = 0.5,
λ1 = 0.1). We plot in Figure 8a,b the variation of the critical Rayleigh number for both stationary
LRs and oscillatory LRs as a function of the lateral aspect ratio a in the cases (Γ = 0.75, λ1 = 0.3)
and (Γ = 0.5, λ1 = 0.1), respectively. Computations showed that there is a competition between the
two patterns in the sense that depending on the magnitude of lateral confinement, the system may
select either stationary LRs or oscillatory LRs. For a fixed value of L and by increasing a, the following
behavior is observed for the curves representing the critical Rayleigh number for LRs and all values of
rheological parameters (see Figure 8a,b): (i) the curve associated with the critical Rayleigh number of
oscillatory LRs decreases to reach a minimum equal to its value for infinite a. This minimum point
moves to the right in the (a, Ra) plane when the number of rolls L is increased; (ii) then, the same curve
increases to intersect another branch corresponding to the critical Rayleigh number of steady LRs at
a particular value of a; (iii) finally, when a exceeds this particular value, the curve associated with
the critical Rayleigh number of steady LRs becomes the lower curve, decreases monotonically and



Fluids 2017, 2, 42 16 of 18

tends asymptotically to the critical Rayleigh number RL
c2,s = 313.107 of steady LRs found in the case of

infinite a.
For the particular combination (Γ = 0.75, λ1 = 0.3) and in the limit of infinite a, the critical

Rayleigh number RL
c2,s = 313.107 of steady LRs is less than the critical Rayleigh number RL

c2,osc = 317.55
of oscillatory LRs. Consequently, the decreasing curve of the critical Rayleigh number of steady LRs
(ultra thick curve) with L = 1 crosses the absolute minimum RL

c2,osc = 317.55 of oscillatory LRs at
a particular value a = a∗∗ (a∗∗ ≈ 2 as shown in Figure 8a). This means that for all values of a larger
than a∗∗, the dominant mode of convection is a steady monocellular LRs. Otherwise, the system may
select oscillatory LRs or steady monocellular LRs depending on a. It is important to note that Figure 8a
also shows that the curve corresponding to oscillatory longitudinal mode (thick curve) with L = 1
intersects the horizontal line representing the critical Rayleigh number of oscillatory TRs RaT

c2 = 355.03
at a particular value of the lateral aspect ratio a = a∗ ≈ 0.4. This means that perturbations promote the
appearance of oscillatory TRs if a < a∗, oscillatory LRs or a steady monocellular LRs if a∗ < a < a∗∗

and stationary LRs if a > a∗∗.
In the case of the combination (Γ = 0.5, λ1 = 0.1), this behavior is not observed, since as can be

seen from Figure 8b, the critical Rayleigh number of oscillatory TRs is much smaller than the critical
Rayleigh number for both stationary and oscillatory LRs. For this particular combination, the system
selects oscillatory TRs independently of the lateral confinement.
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Figure 8. Critical Rayleigh number for the onset of steady (ultra thick curves) and oscillatory
(thick curves) longitudinal rolls as a function of aspect ratio a for different numbers L of rolls (L = 1: red
dashed curve; L = 2: green dotted curve; L = 3: black dash-dotted curve; L = 4: blue densely-dotted
curve). (a) Γ = 0.75 and λ1 = 0.3; (b) Γ = 0.5 and λ1 = 0.1. The horizontal line corresponds to the
threshold of oscillatory transverse rolls.

5. Conclusions

In the present paper, the Galerkin method was used to investigate the primary and
secondary instabilities of viscoelastic fluids saturating a porous layer heated from below by a
constant flux. The modified Darcy’s law based on the Oldroyd-B model was used for modeling
the momentum equation. In addition to the Darcy–Rayleigh number Ra, two viscoelastic parameters
play a key role when characterizing the temporal behavior of the instability, namely the relaxation
time λ1, which measures the elasticity of the fluid and the ratio Γ between the viscosity of the solvent
and the total viscosity of the fluid. In the first part of the paper, three-dimensional disturbances were
considered in order to study the stability of the basic motionless solution. For sufficiently elastic
fluids, we found that the primary instability is oscillatory. Otherwise, the primary bifurcation gives
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threshold of oscillatory transverse rolls.

5. Conclusions

In the present paper, the Galerkin method was used to investigate the primary and secondary
instabilities of viscoelastic fluids saturating a porous layer heated from below by a constant
flux. The modified Darcy’s law based on the Oldroyd-B model was used for modeling the
momentum equation. In addition to the Darcy–Rayleigh number Ra, two viscoelastic parameters
play a key role when characterizing the temporal behavior of the instability, namely the relaxation
time λ1, which measures the elasticity of the fluid and the ratio Γ between the viscosity of the solvent
and the total viscosity of the fluid. In the first part of the paper, three-dimensional disturbances were
considered in order to study the stability of the basic motionless solution. For sufficiently elastic
fluids, we found that the primary instability is oscillatory. Otherwise, the primary bifurcation gives
rise to stationary long wave instability. Results indicated that the lateral confinement of the porous
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layer by isolated side walls eliminates oblique or longitudinal rolls in favor of two-dimensional
transverse rolls. Based on a fully-developed parallel flow assumption, a nonlinear analytical solution
for the velocity and temperature fields was developed in the range of the rheological parameters
where stationary long wave instability develops first. In the second part of the paper, we reported
findings on the linear stability analysis of the monocellular flow, which is performed with special
attention given to the interplay between the viscoelastic parameters and the lateral aspect ratio a of
the porous layer. For weakly-elastic fluids, we determined a second critical value of Rayleigh number
above which the system exhibits a Hopf bifurcation from steady monocellular flow to oscillatory
transverse rolls convection. The well-known limit of RaT

c2 ≈ 506 for Newtonian fluids is recovered,
and the fluid elasticity effect is found to delay the onset of the Hopf bifurcation.

Three-dimensional analysis showed that for the diluted solutions, as the Boger fluid type
(i.e., Γ = 0.75), the monocellular flow is more unstable for either stationary longitudinal disturbances
for weakly-elastic fluids (λ1 = 0.1) or for oscillatory longitudinal rolls for strongly-elastic fluids
(λ1 = 0.5). This pattern selection holds if the lateral walls are pushed to infinity. When a finite lateral
confinement is taken into account, there exist particular values a∗ and a∗∗ of the lateral aspect ratio a
such that perturbations promote the appearance of oscillatory transverse rolls if a < a∗, stationary or
oscillatory longitudinal rolls if a∗ < a < a∗∗ and stationary longitudinal rolls if a > a∗∗. Computations
proved that the interval [a∗, a∗∗] is enlarged by increasing the fluid elasticity.

For concentrated viscoelastic fluids (Γ = 0.6, Γ = 0.5 and Γ = 0.3), it is found that oscillatory
transverse rolls are the preferred mode of convection even for weakly-elastic fluids and independently
of the lateral confinement of the porous medium.
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