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Abstract: The paper is focused on the simulation and modeling of the dispersion from an
instantaneous source of heat or mass located at the center of a turbulent flow channel. The flow is
modeled with a direct numerical simulation, and the dispersion is modeled with Lagrangian methods
based on Lagrangian scalar tracking (LST). The LST technique allows the simulation of scalar sources
that span a range of Prandtl or Schmidt numbers that cover orders of magnitude. The trajectories
of individual heat or mass markers are tracked, generating a probability distribution function that
describes the behavior of instantaneous point sources of a scalar in the turbulent field. The effect of
the Prandtl or Schmidt number on turbulent dispersion is examined, with emphasis on the dispersion
pattern. Results for Prandtl or Schmidt numbers between 0.1 and 15,000 are presented. For an
instantaneous source at the channel center, it is found that there are two zones of cloud development:
one where molecular diffusion plays a role at very small times (early stage of the dispersion), and one
where turbulent convection dominates. The asphericity of the scalar marker cloud is found to increase
monotonically, in contrast to published results for isotropic, homogenous turbulence, where the
asphericity goes through a maximum.
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1. Introduction

As turbulence is the rule rather than the exception in fluid flows, in industry as well as in the
environment, a strong and ongoing effort by scientists and engineers has focused on the modeling
and simulation of turbulent flows. The development of both experimental [1–3] and simulation
techniques [4–6] has improved our understanding of the mechanisms of turbulence generation and
dissipation [7–9] and as a consequence has enabled the use of computational fluid dynamics (CFD)
techniques to reliably design processes and equipment where turbulence dominates. In addition,
the case when a scalar is dispersed within a turbulent flow field is important in a host of applications
where the flow is coupled with transport of heat or mass. Typical examples from everyday life are the
dispersion of smoke and chemicals from industrial smoke stacks, agitated mixing, etc. Other examples
with industrial applications are heat exchangers, industrial mixing, flow in chemical reactors and in
catalyst regeneration units, heat transfer over moving blades, and the dispersion of pollutants in rivers
and oceans.

While a much broader research effort has been devoted to the modeling of turbulent flow [4,5],
the effort to simulate and develop models for turbulent heat transfer has been more limited [10–17].
The simulations are mainly divided into two categories: those that are based on the Eulerian approach
to describing transport phenomena (and where the system of reference is not moving), and those that
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are based on the Lagrangian approach to transport phenomena (where the system of reference moves
with the scalar being dispersed).

Eulerian techniques are employed by typical CFD software packages. In these, models that are
by-and-large based on the Reynolds analogy for heat or mass transport in turbulent flows are utilized.
These models typically are based on the concepts of eddy diffusivity, the mixing length, the turbulent
kinetic energy, and the rate of turbulence dissipation. Models based on the Reynolds analogy make
the assumption that the eddy diffusivity of a scalar is related to the eddy viscosity for the flow through
a form of the turbulent Prandtl number (Prt). Such models are empirical and require the calibration
of several variables with experiments. They often fail to produce accurate results, for example in
asymmetric flows, like the flow between a rough and a smooth plate, or transfer in annular flow [18].
Other models include those that are based on heat transfer equations that are analogous to the k-ε
models suffer from the same shortcomings as the k-ε models for flow [17]. Second moment closure
models, such as the analogues of Reynolds Stress Models for heat transfer, require the modeling of
a large number of terms in the scalar flux transport equations and in the turbulent stress equations,
which are difficult to measure experimentally (i.e., the terms of the pressure-strain term, and the
turbulent dissipation term) and are known to be inaccurate close to solid boundaries [19–21]. In wall
turbulence, where a solid boundary is present, the Reynolds analogy–based models fail because of a
fundamental reason: the scales of turbulence that contribute to scalar transport are not the same as the
scales that contribute to heat or mass transport, and the later depend on the Prandtl number (Pr) of the
fluid [22–26]. (Note that from now on, we use terminology that can be applied to heat transfer and the
Prandtl number, while the results and analysis apply to mass transfer and the Schmidt number.).

Lagrangian techniques have also been employed for the study of turbulent transport, but mostly
for developing theoretical understanding. In isotropic, homogeneous turbulence, such simulation
techniques have been very successful in exploring the stochastic modeling of turbulence over a range
of Pr between 0.04 and 1024 [27–33], while in anisotropic wall turbulence, they have been used to
describe transport over a range of Pr that covers six orders of magnitude (from Pr = 0.01 to Pr = 50,000)
and different modes of heat transfer [34–36]. Hybrid Eulerian-Lagrangian methods have also been
recently utilized [37]. An advantage in terms of computations for Lagrangian methods is the ability to
simulate heat transfer cases with practically no limits on the Pr. Eulerian direct numerical simulation
methods are limited not only to relatively low Reynolds numbers (Re), but also to a narrow range of
small and intermediate Pr. This limitation arises because, in order to resolve all the scales of motion
and temperature [38], the number of computational mesh points has to be proportional to Pr3/2Re9/4.
An increase of Pr by one order of magnitude means an increase of the number of grid points by about
thirty times. The main disadvantage of Lagrangian methods is the need to use a large number of scalar
markers to simulate turbulent transfer and the slow convergence of particle-based methods [39].

In the present work, Lagrangian scalar tracking (LST) is used to investigate turbulent dispersion
from instantaneous point sources of a scalar at the middle of a turbulent flow channel simulated with a
direct numerical simulation (DNS). (The cloud of scalar markers resulting from an instantaneous point
release is usually called a puff ). The DNS method has been employed and validated with experiment
results in Poiseuille and Poiseuille-Couette flow [40], while LST simulation results have been found to
agree well with different experimental results for heat or mass transfer [41]. The significant advantage
of the LST, in terms of physics, is the ability to release such particle puffs that form the most elementary
unit for heat transfer. The heat markers in the puff can be followed individually and can be correlated
with actual flow structures [25,26]. The contributions of this work are (a) to describe the computational
method utilized to develop the LST results, (b) to investigate the characteristics of turbulent transport
in a channel flow and its comparison to turbulent dispersion in an isotropic turbulent field, and (c)
to explore possible Pr effects on turbulent dispersion, with the use of results for Pr = 0.1, 6, 100, 2400,
and 15,000, which correspond to liquid metals, gases, liquids, and heavy oils.



Fluids 2017, 2, 46 3 of 12

2. Results

2.1. Statistics of the Marker Location and Prandtl number (Pr) Effects

The friction Re for the presented simulation results is Reτ = 300. Figure 1 is a plot of the mean
streamwise position of the puffs that result from the release of 10,000 particles at an instant at a
point source located at the middle of the turbulent flow channel at x0 = 0 and y0 = 0. The time of
particle release is t0 = 0. All space and time quantities presented in this study are in viscous wall units.
The bottom wall of the channel is considered to be at y = −300 and the top wall at y = 300. The mean
puff position does not change significantly with the Pr, as expected.
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Figure 1. Mean streamwise position (in viscous wall units) of particles released instantaneously from a
point source at the center of a turbulent flow channel. The slope of the lines changes from representing
the maximum mean fluid velocity at small times to representing the bulk fluid velocity in the channel
at longer times.

While the first order statistics of the puff location are not expected to change with Pr, the second
order statistics can be a better measure to show the Pr effects on the puff motion, especially at small
times since the scalar marker release. In Figure 2 we present the second order statistics of the puff
motion in the three spatial directions as a function of the time elapsed from the release of the puff.
The variance of the distribution of the location of the markers in each cloud and at each time is
calculated as follows:

σX =
(
X− X

)2 1/2
,σY =

(
Y−Y

)2 1/2
and σZ =

(
Z− Z

)2 1/2
(1)

where the overbar designates average over all the markers in the flow field, and X, Y, and Z are the
locations of markers in the x, y, and z directions.
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Figure 2. Standard deviation of the scalar marker location in the (a) streamwise direction, x; (b) wall 
normal direction, y; and (c) the spanwise direction z. 
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Figure 2. Standard deviation of the scalar marker location in the (a) streamwise direction, x; (b) wall
normal direction, y; and (c) the spanwise direction z.
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2.2. Shape of Puff and Differences from Puffs Released in Isotropic Turbulence

The shape of the puffs in anisotropic turbulence is expected to be changing in the three dimensions,
starting from a spherical shape and changing to a spheroid as a function of time and Pr. In isotropic
turbulence, the flow and molecular effects would result in spherical puffs irrespective of Pr. Figure 3 is
a depiction of the marker puff at time t = 2000 after the puff release. It is seen that the puff extends
longer in the x direction at higher Pr, in agreement with Figure 2a.
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A measure of the departure of the puff shape from the spherical shape is the asphericity (As),
which can be used to quantify the deformation of a puff from a spherically symmetric geometry [42,43].
Asphericity of a body varies from 0 to 1 (As = 0 for a perfectly spherical cloud; As = 0.25 for a
two-dimensional circle without width, a disc; and As = 1 for an infinite cylinder) [44]. The values of As

were calculated from the moment of inertia tensor (T) of each puff [44],

As =

(
R2

1 − R2
2
)2

+
(

R2
2 − R2

3
)2

+
(

R2
3 − R2

1
)2

2R4
g

(2)

Tij =
∑N

m=1
(
Sim − SCM

i
)(

Sjm − SCM
j

)
N

(3)

where N is the total number of markers in the puff, R2
1, R2

2, and R2
3 are the three eigenvalues of the

tensor T (i.e., the three principal radii of gyration squared for all Nmarkers), Sim is the position of
marker m in the i-th Cartesian dimension (i denotes x, y, or z), and SCM

i is the center of mass of the N
markers in coordinate i. The puff asphericity can be seen in Figure 4 for the puff cases simulated herein.
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Figure 4. Asphericity of puff shapes as a function of time and Pr. At times less than 50, the value of
asphericity is less than 0.2, but increases at larger times.

3. Discussion

For a puff released at the channel center, one would expect that the mean puff velocity (the slope
of the lines in Figure 1) would be very close to the mean flow velocity at the channel center (which is
19.15 in the simulation) at small times after the particle release. As the time elapses, the puff of markers
should disperse in the vertical and spanwise directions and would eventually extend to cover the
channel width. From that point and on, the mean puff velocity would be very close to the bulk velocity
of the fluid in the channel. In Figure 1, it is seen that the slope of the mean streamwise position of the
puff is dX

dt = 19.1 for times less than t = 500, and the slope of the line changes to dX
dt = 16.7 as times

t > 1500. The change in slope, occurring between time t = 500 and t =1000, is the same for all cases of
Pr. The average Y and Z positions (not shown here) remain Y = 0 and Z= 0, since the turbulent channel
flow is symmetric around the center plane regarding the statistics of the flow. There is no reason for
the markers in the puff to move on average toward the top or toward the bottom of the channel.

Scalar dispersion is dominated by molecular effects at very small times and then by turbulent
effects at longer times. In the particular case of flow in a channel examined here, the cloud of markers
that comprise a puff will eventually distribute uniformly across the channel. It is expected that at
long times, the standard deviation of the particle location in the y direction will be that of a uniform
distribution in the y direction. The value of σY increases and it is expected to tend to the constant value
of (6002/12)1/2 = 173.2 for all Pr, (which is the standard deviation for a uniform distribution between
the values −300 and 300). It takes somewhat longer for higher Pr markers to get to this predicted value
because at small times, there is a molecular diffusion effect. While the marker cloud extends in the
normal direction, markers start to enter the log layer and then the viscous wall region closer to the
channel walls. When this occurs, the effects of the Pr become more important and manifest themselves
in the values of σX . When high Pr markers enter the near wall region, the molecular motion is rather
limited, and it is more difficult for them to jump out of that region with molecular means (contrary to
low Pr markers that can jump out of the near wall region because of turbulent velocity fluctuations
and also because of molecular motion). In this respect, higher Pr markers stay longer in the viscous
wall region, where the mean streamwise velocity is smaller than the bulk fluid velocity, and the high
Pr clouds tend to extend longer in the x direction. This is seen in Figure 2a by observing the slope of
the σX line that increases for high Pr puffs. The existence of slower moving markers is also seen in
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Figure 3, where the individual markers trailing at the edge of the puffs for Pr = 100 and Pr = 15,000
are seen.

Regarding the puff shape, all of the puffs started as sphere-like at very small times, but changed
their shape at larger times (see Figure 4). Intermediate and high Pr puffs (Pr ≥ 6) have almost the same
asphericity as time elapses, but the low Pr puff exhibits differences at times up to t = 400. The reason for
these differences, and the reason that the Pr = 0.1 puff is shaped almost like a sphere for a longer time,
is the high molecular diffusion of this puff relative to the others. Due to the random Brownian motion,
the markers are initially like particles within the volume of a balloon that expands with time. At larger
times, the markers start to enter the logarithmic region and the viscous wall region, and the puff starts
to elongate, departing from the spherical, balloon-like shape. Recent results about the asphericity and
the puff shape of passive particles released in isotropic, homogeneous turbulence [45], indicate that
the marker puffs start as spherical and quickly deform into elongated structures, showing a maximum
value of asphericity of about 0.7 within 13 Kolmogorov time scales. Beyond that point, the puffs tend
to slowly return to a more spherical shape with asphericity values close to 0.2 at longer dispersion
times, longer than the eddy turnover time scale. This is a notable difference with the present case,
where the deformation of the shape of the puff is not reversible.

In prior work about the dispersion of a puff released at the wall of a turbulent flow channel, it has
been found that there are three zones of puff development, depending on the physical mechanism that
dominates dispersion [46]. Zone I is dominated by molecular diffusion effects, Zone II is a transition
zone where both molecular and convection effects are important, and Zone III is the zone where
turbulent convection is dominant. The time that it takes for a puff to transition between these zones
depends on the Pr. For example, Pr = 0.1 puffs were found to exit Zone I at about t = 20, while Pr = 2400
puffs would exit this zone at t = 200. In the present case, where the puffs are released in the center of
the channel, there appear to be only two Zones of puff development. Zones I and II (where molecular
effects can be important) are very short for Pr ≥ 6. When the beginning of Zone III is identified as the
time period in which the asphericity becomes larger than 0.1, the transition to turbulent convection
dominance does not take more than t = 5. Only for Pr = 0.1, the asphericity stays below 0.1 for times up
to t = 150. A prior study for dispersion from the center of a channel flow also indicated that Pr effects
are more important for low Pr dispersion (Pr on the order of one and lower) [47]. However, that study
was for a Reτ = 150 channel, where the convective effects are less prominent than in the current study,
and it was limited to dispersion up to time t = 125.

4. Materials and Methods

The velocity field for a Newtonian and incompressible fluid is calculated using a DNS of fully
developed turbulent flow in a plane channel. The dimensions of the computational box in the
x (streamwise), y (wall-normal) and z (spanwise) directions are 16 πh × 2 h × 2 πh with a half
channel height (h) of 300. The flow is driven by a constant mean pressure gradient. For the present
problem, the simulation is conducted on a 1024 × 129 × 256 mesh in the x, y, z directions, respectively,
with uniform spacing in the x and z, while Chebyshev polynomial collocation points are used in
the wall normal direction. The DNS algorithm is based on the pseudospectral method published
in [10,48]. The integrity of this method has been verified with comparisons to experiments at an equal
Re [49]. The Reynolds number, Re, defined with the centerline mean velocity and half channel height,
h, is 5760, corresponding to a Re defined based on the hydraulic radius of ~23,000 (this is the equivalent
Re for flow in a pipe). The friction Reynolds number is Reτ = h = 300. The variables presented are
dimensionless with the use of the friction velocity, u*, and the kinematic viscosity of the fluid, ν, namely,
the viscous wall units. The friction velocity is given as u* = (τw/ρ)1/2, where τw is the shear stress at
the wall and ρ is the fluid density. The assumptions of no slip and no penetration are used as boundary
conditions on the wall, and the heat production by viscous dissipation is assumed to be negligible.
The time step was 0.1 in viscous wall units, and the iterations were carried out for 20,000 time steps for
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stationary channel flow in order to simulate 2000 viscous time units of flow after a puff is released.
Briefly, the DNS solves the rotational form of the dimensionless Navier-Stokes equations,

∂
→
U

∂t
=
→
U ×

→
Ω−∇ζ+ 1

h

→
ix +∇2

→
U (4)

where
→
U is the velocity vector,

→
Ω is the vorticity vector, and

→
ix is the unit vector in x direction. The

continuity equation also applies,

∇·
→
U = 0 (5)

and
ζ = p′ +

1
2

→
U·
→
U (6)

where the term p′ is the fluctuating component of the pressure in viscous wall units. The velocity is
expanded in truncated Fourier series in the x and z directions, and a truncated Chebyshev polynomial
series in the y direction. The boundary conditions in the x and z directions are periodic with periodicity
length the size of the computational channel in each one of these directions. The Navier-Stokes
equations are integrated in time using the pseudospectral fractional step method originally developed
by Orszag and Kells [50] and the added correction suggested by Marcus [51] to correct with the
pressure at the channel walls.

The trajectories of heat or mass markers released from a line parallel to the z axis at the center of
the channel are calculated in the flow field created by the DNS. The total number of markers is 10,000
for each case of Pr, for a total of 50,000 markers. Since the flow is homogeneous in the z direction,
it is not statistically important where on the line the markers are released, so in order to reduce the
possible effects of releasing the markers in an idiosyncratic flow structure, the markers were released
uniformly spaced on the line source. However, in order to obtain the statistics of the cloud location
in the z direction, the z coordinate of each particle was determined after subtracting the z coordinate
at the marker point of release. The flow field used for the Lagrangian scalar tracking of the markers
is the same for all Pr cases, so that the effects of the Pr can be observed rather than the effects of the
flow. The tracking of the passive scalar markers was based on the Kontomaris et al. [52] algorithm.
The motion of the scalar markers is decomposed into a convection part and a molecular diffusion
part. The convective part can be calculated from the fluid velocity at the particle position, so that the

Lagrangian velocity at time t of a marker released at location
→
Xo is assumed to be the same as the

Eulerian velocity at that particle’s location at the beginning of the convective step, i.e.,
→
V(
→
Xo, t) =

→
U[
→
X(
→
Xo, t), t]. The equation of particle motion then is

→
V(
→
Xo, t) =

∂
→
V(
→
Xo, t)
∂t

(7)

The effect of molecular diffusion is simulated by adding a random movement on the particle
motion at the end of each convective step. A similar method was used in simulating the random
diffusion part of Lagrangian trajectories in [52]. This random motion is a random jump that takes
values from a Gaussian distribution with zero mean and standard deviation σ =

√
2∆t/Pr, where ∆t

is the time step of the simulation in viscous wall units, (∆t = 0.1). The particle velocity is found by
using a mixed Lagrangian-Chebyshev interpolation between the Eulerian velocity field values at the
surrounding mesh points. The particle position integration in time is approximated with a second
order Adams-Bashforth scheme [53].

As previously mentioned, Lagrangian methods require a large number of scalar markers to
simulate turbulent transport. In this study, 10,000 scalar markers were released on a single line source.
The question of whether one needs to increase the number of markers for higher accuracy is explored
by comparing results in this study with second order statistics from another numerical experiment,
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which was conducted with 100,000 markers and Pr = 6 being released at several line sources along the
streamwise direction. While the mean marker position did not show any differences in the streamwise
direction (as expected), the second order statistics exhibit some differences. The standard deviation
of the scalar marker location in the streamwise and wall normal direction of Pr = 6, with 10,000 and
100,000 markers, is plotted in Figure 5. It is seen that using 100,000 markers results in about 3.5%
difference in σx at t = 2000 and about 4.4% difference for σy at t = 500 (the differences disappear at long
times for σy). However, these small differences in the second order statistics are not large enough to
change the qualitative findings of the present study or to change significantly the quantitative findings
about the asphericity of the particle clouds. Other simulations with a higher number of particles could
benefit the accuracy of the quantitative findings herein.
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5. Conclusions

A Lagrangian method to explore the dispersion of passive scalars in turbulent flow is described.
The advantages of using this numerical method to model heat or mass transfer is that one can use
a single velocity field obtained by running a DNS once to model the dispersion of scalars of several
different Pr. In addition, very high and very low Pr cases can be modeled. Another advantage of
the Lagrangian numerical approach is that the physical mechanism of turbulent dispersion can be
revealed in a rather natural way. The dispersion of scalars of different Pr from the channel center
showed that the resulting cloud of markers moves differently than puffs released from the channel wall
and differently than puffs that result from an instantaneous release in an isotropic turbulent velocity
field because of the relative importance of molecular diffusion in the marker dispersion in each one of
these cases. Finally, puffs for Pr larger than 6 appear to behave the same way, while the Pr = 0.1 puff,
where the effects of molecular diffusion are relatively stronger, exhibits different behavior.
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