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Abstract: We present an overview of a modern, efficient approach for uncoupling groundwater–surface
water flows governed by the fully evolutionary Stokes–Darcy equations. Referred to as non-iterative
partitioned methods, these algorithms treat the coupling terms explicitly and at each time level
require only one Stokes and one Darcy sub-physics solve, thus taking advantage of existing solvers
optimized for each sub-flow. This strategy often results in a time-step condition for stability.
Furthermore, small problem parameters, specifically those related to the physical characteristics of the
porous media domain, can render certain time-step conditions impractical. Despite these obstacles,
researchers have made significant progress towards efficient, stable, and accurate partitioned methods.
Herein, we provide a comprehensive survey and comparison of recent developments utilizing these
non-iterative numerical schemes.
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1. Introduction

Access to the clean freshwater is absolutely imperative for the continued survival of humankind.
As a necessity for our agricultural, industrial and domestic practices, water constitutes an integral
part of all civilizations. However, only 2.5% of the water present on Earth is freshwater, and the
majority of this amount is either frozen or inaccessible. Furthermore, 96% of accessible freshwater
comes from aquifers underground. Because of the scarcity of this resource, we must prioritize the
protection and conservation of groundwater sources. Too often, human and natural processes threaten
groundwater quality, sometimes irreversibly. For example, in hydro-fracturing, companies inject a
mixture of water with sand and chemicals at high pressure into a well to create fractures to allow for
the collection of shale gas. Companies do not recover the majority of the chemicals in this mixture and
many fear that eventually these pollutants will leave the well to contaminate the local groundwater
supply. Pesticide application in agriculture can have devastating effects on surrounding freshwater
resources due to chemical run-off into nearby rivers, lakes, and streams, and seepage deep into the soil.
Furthermore, many storage facilities for radioactive materials exist underground for both safety and
convenience. Over time, as storage containers become compromised, nuclear waste can migrate into
nearby freshwater aquifers. Even natural processes may result in contaminated freshwater, as evident
in the devastation of forests growing above coastal aquifers from salt-water intrusion.

Tracking these contaminants necessitates accurate numerical models for this coupled
flow. Scientists have thoroughly studied the individual groundwater and surface water flows
(see, for example, Pinder and Celia [1], Watson and Burnett [2], or Bear [3] for an extensive study
on subsurface flows, and Kundu, Cohan and Dowling [4] for surface water flows). As a result,
many accurate and efficient solvers for the independent flow processes exist. Modeling the interaction
of groundwater and surface water, however, presents additional difficulties as we must preserve
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the physical processes in each sub-flow while accurately describing the activity occurring along the
interface.

An attractive and practical strategy, which is the main focus of this survey paper, is to make use of
the existing solvers for separate fluid and porous media flow by investigating methods that uncouple
the flow equations in time so that the individual flow problems may be solved separately. Called
partitioned methods (also domain decomposition methods), these methods allow us to utilize, in a
black-box manner, solvers already optimized for the separate flow problems. It is important that the
partitioned methods maintain stability and accuracy along the interface where the two flows meet.
In addition, potentially small physical parameters create an additional challenge for stability. We are
concerned with methods that are efficient for the time-dependent models, in particular, the ones that
are stable over long-time intervals, since groundwater moves slowly and numerical simulations may
span long-time periods. Along these same lines, we want methods that converge within a reasonable
amount of time to be of practical use, making higher-order convergence a desirable property.

In recent years, several researchers have made substantial progress in the development of
non-iterative, partitioned methods applied to the evolutionary groundwater–surface water flow
problem. Based on an implicit discretization in time for each subproblem, these methods, however,
make use of results from previous time steps to predict the values on the interface at the current time
step, thus requiring only one solve for groundwater and one solve for surface water flow at each time
level (thus non-iterative). In this work, we will review and discuss several such methods so as to
illustrate the current status of this important problem. The modeling of coupled fluid-porous media
flow begins with the coupling of the Stokes or Navier–Stokes equations describing the flow in the fluid
region, along with the Darcy or Brinkman equations for the flow in the aquifer, or porous media region
containing the groundwater. This survey focuses on the Stokes–Darcy coupling that is suitable for
slow moving flows over large domains.

Studies on the continuum surface water-groundwater model have been performed in [5–8].
The literature on numerical analysis of methods for the coupled Stokes–Darcy problem has grown
extensively since [9,10] (see, for example, [11–13] for analysis of the steady-state problem). There exist
many effective and efficient domain decomposition techniques for decoupling the Stokes–Darcy system
in the stationary case [14–24]. To solve the fully evolutionary Stokes–Darcy problem, one approach is
monolithic discretization by an implicit scheme (see, e.g., [25,26]). These schemes can also be solved
by an iterative domain decomposition method at each time step. In general, any decoupling technique
for stationary Stokes–Darcy (many cited above) may be applied to find the solution at each time level
in the time-dependent case.

Non-iterative partitioned methods, an alternative approach, are advantageous in that they allow
uncoupling into only one (SPD) Stokes and one (SPD) Darcy system per time step. Mu and Zhu
presented the first non-iterative partitioned scheme in [27], proposing employing Backward Euler
discretization for each subproblem while treating the coupling term explicitly by Forward Euler. Layton,
Tran and Trenchea revisited this method in [28], with an improved analysis showing long-time stability.
In that work, the authors also developed and tested for efficiency a second first-order scheme, Backward
Euler–Leap Frog. Following these methods, others proposed several other implicit-explicit (IMEX)
methods of high order, such as Crank–Nicolson–Leap Frog [29], second-order backward-differentiation
with Gear’s extrapolation [30], and Adam–Moulton–Bashforth [30,31]. Although these methods use
explicit discretizations for the coupling terms, all are now known to be long-time stable and optimally
convergent uniformly in time (possibly under a small time-step constraint). With the addition of
suitable stabilization terms, it is possible to further enhance the stability property, for instance,
a stabilized Crank–Nicolson–Leap Frog, developed in [32,33], requires no time-step restriction for
the long-time stability and convergence. Another way for uncoupling groundwater–surface water
systems is using splitting schemes. Unlike the aforementioned IMEX schemes that solve for separate
sub-flows in parallel, splitting methods require sequential sub-problem solves at each time step.
In [34], the authors proposed four first and second-order splitting schemes. Theoretical and numerical
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evidence provided therein suggests that these methods are stable for larger time steps than the
first order IMEX schemes and, in particular, a good option in case of small physical parameters.
Finally, asynchronous (aka, multiple-time-step, multi-rate) partitioned methods allow for different
time steps in the two subregions, motivated by the observation that the flow in fluid region occurs
with higher velocities compared to flow in porous media region. Such methods may be more efficient,
as we may apply two different time steps to separately solve the fast and slow flows. Developed in
[35,36], these asynchronous techniques utilize the Backward Euler-Forward Euler time discretization,
with long-time stability acquired in the latter work.

We organize this paper as follows. Section 2 reviews the preliminaries of the Stokes–Darcy
equation, including interface conditions, variational formulation and semi-discrete approximations.
We briefly discuss the implicit time discretization, together with the iterative domain-decomposition
approach. Section 3 focuses on first-order partitioned methods. We will survey several different
approaches including first-order IMEX schemes and splitting schemes. We review high-order methods
in Section 4 and asynchronous partitioned techniques in Section 5. Finally, we provide some
conclusions and outlooks in Section 6.

2. The Stokes–Darcy Equation

Let the fluid region be denoted by Ω f and the porous media region by Ωp. Assume both domains
are bounded and regular. Let I represent the interface between the two domains. We assume the
time-dependent Stokes flow in Ω f and the time-dependent groundwater flow along with Darcy’s
law in Ωp. The Stokes–Darcy equation, describing the fluid velocity field u = u(x, t) and pressure
p = p(x, t) on Ω f and the porous media hydraulic head φ = φ(x, t) on Ωp, can be written as follows:

ut − ν∆u +∇p = f f ,∇ · u = 0, in Ω f ,

S0φt −∇ · (K∇φ) = fp, in Ωp,

u(x, 0) = u0, in Ω f and φ(x, 0) = φ0, in Ωp,

u(x, t) = 0, in ∂Ω f \I and φ(x, t) = 0, in ∂Ωp\I,

+ coupling conditions across I.

(1)

Here, f f denotes the body force in the fluid region, fp is the sink or source in the porous
media region, ν > 0 is the kinematic viscosity of the fluid, S0 is the specific mass storativity
coefficient and K is the hydraulic conductivity tensor, assumed to be symmetric, positive definite
with spectrum(K) ∈ [kmin, kmax].

It is worth noting that values of S0 and the smallest eigenvector kmin of K can be very small
(see Tables 1 and 2 for the values of S0 and kmin for different materials). As we shall see, this
poses a major challenge in designing partitioned methods with good stability. Indeed, partitioning
often induces time-step restrictions for long-time stability, which may become severe in the case of
small system parameters.

Table 1. Specific storage (S0) values for different materials [37,38].

Material S0 (m−1)

Plastic clay 2.6× 10−3 − 2.0× 10−2

Stiff clay 1.3× 10−3 − 2.6× 10−3

Medium hard clay 9.2× 10−4 − 1.3× 10−3

Loose sand 4.9× 10−4 − 1.0× 10−3

Dense sand 1.3× 10−4 − 2.0× 10−4

Dense sandy gravel 4.9× 10−5 − 1.0× 10−4

Rock, fissured jointed 3.3× 10−6 − 6.9× 10−5

Rock, sound less than 3.3× 10−6
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Table 2. Hydraulic conductivity (kmin) values for different materials [3].

Material kmin (m/s)

Well sorted gravel 10−1 − 100

Highly fractured rocks 10−3 − 100

Well sorted sand or sand and gravel 10−4 − 10−2

Oil reservoir rocks 10−6 − 10−4

Very fine sand, silt, loess, loam 10−8 − 10−5

Layered clay 10−8 − 10−6

Fresh sandstone, limestone, dolomite, granite 10−12 − 10−7

Fat/Unweathered clay 10−12 − 10−9

2.1. Interface Conditions

To close the coupled problem formulation, a set of conditions has to be defined on the interface.
Let n̂ f /p denote the indicated, outward pointing, unit normal vector on I. The first two coupling
conditions involve the conservation of mass and balance of forces on I:

u · n̂ f −K∇φ · n̂p = 0, on I,

p− ν n̂ f · ∇u · n̂ f = gφ on I.

In addition, we need a tangential condition on the fluid region’s velocity along the interface. In [5],
Beavers and Joseph proposed the following slip–flow condition, expressing that slip velocity along I is
proportional to the shear stresses along I

−ν τ̂i · ∇u · n̂ f = αBJ

√
νg

τ̂i · K · τ̂i
(u− up) · τ̂i, on I for any τ̂i tangent vector on I,

where αBJ is a dimensionless constant depending solely on the porous media properties and ranges
from 0.01 to 5, g is the gravitational acceleration constant, and up is the average velocity in the
porous media region. The validity of Beavers–Joseph interface condition has been supported by
abundant empirical evidence; however, one challenge in adopting this condition is that the bilinear
form in the weak formulation is not coercive. Several simplifications have been considered. In [6],
Saffman proposed a modification to the Beavers–Joseph coupling condition by dropping the porous
media averaged velocity up, based on observations that the term up · τ̂i is negligible compared to
the fluid velocity u · τ̂i. This simplified condition was mathematically justified in [39] and has been
shown satisfactory for many fluid-porous media systems. Known as Beavers–Joseph–Saffman(–Jones)
coupling condition, this is the third and final condition we use in this article:

−ν τ̂i · ∇u · n̂ f = αBJ

√
νg

τ̂i · K · τ̂i
u · τ̂i, on I for any τ̂i tangent vector on I.

For the analysis and numerical methods for Stokes–Darcy systems with Beavers–Joseph condition,
we refer to [21,26,40].

2.2. Variational Formulation and Semi-Discrete Approximations Using Finite Element Method

We denote the L2(I) norm by ‖ · ‖I and the L2(Ω f /p) norms by ‖ · ‖ f /p, respectively, and the
corresponding inner products are denoted by (·, ·) f /p. In addition, define the Hdiv(Ω f ) and H1(Ω f /p)

norms

‖u‖div, f :=
√
‖u‖2

f + ‖∇ · u‖
2
f , ‖u‖1, f /p =

√
‖u‖2

f /p + ‖∇u‖2
f /p,
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the functional spaces

X f = {v ∈
(

H1(Ω f )
)d

: v = 0 on ∂Ω f \I}, Q f = L2(Ω f ),

Xp = {ψ ∈ H1(Ωp) : ψ = 0 on ∂Ωp\I},

and the bilinear forms

a f (u, v) = (ν∇u,∇v) f + ∑
i

∫
I

αBJ

√
νg

τ̂i · K · τ̂i
(u · τ̂i)(v · τ̂i)ds,

ap(φ, ψ) = g(K∇φ,∇ψ)p, and cI(u, φ) = g
∫

I
φu · n̂ f ds.

It can be shown that a f /p(·, ·) are continuous and coercive.
A (monolithic) variational formulation of the coupled problem is to find (u, p, φ) :

[0, ∞)→ X f ×Q f × Xp satisfying the given initial conditions and, for all v ∈ X f , q ∈ Q f , ψ ∈ Xp,

(ut, v) f + a f (u, v)− (p,∇ · v) f + cI(v, φ) = (f f , v) f ,

(q,∇ · u) f = 0,

gS0(φt, ψ)p + ap(φ, ψ)− cI(u, ψ) = g( fp, ψ)p.

Note that, setting v = u, ψ = φ and adding, the coupling terms exactly cancel out in the monolithic
sum yielding the energy estimate for the coupled system.

To discretize the Stokes–Darcy problem in space by the finite element method (FEM), we select
finite element spaces

velocity: Xh
f ⊂ X f , Darcy pressure: Xh

p ⊂ Xp, Stokes pressure: Qh
f ⊂ Q f

based on a conforming FEM triangulation with maximum triangle diameter denoted by “h”. We do
not assume mesh compatibility or interdomain continuity at the interface I between the FEM meshes
in the two subdomains. The Stokes velocity-pressure FEM spaces are assumed to satisfy the usual
discrete inf-sup condition for stability of the discrete pressure (see, e.g., [41])

∃βh > 0 such that inf
qh∈Qh

f , qh 6=0
sup

vh∈Xh
f , vh 6=0

(qh,∇ · vh) f

‖∇vh‖ f ‖qh‖ f
> βh. (2)

Assume Xh
f , Xh

p, Qh
f satisfy approximation properties of piecewise polynomials on quasi-uniform

meshes of local degrees k, k, k− 1, respectively, that is,

inf
vh∈Xh

f

‖u− vh‖ f ≤ Chk+1‖u‖Hk+1(Ω f )
, ∀u ∈ Hk+1(Ω f ),

inf
vh∈Xh

f

‖∇(u− vh)‖ f ≤ Chk‖u‖Hk+1(Ω f )
, ∀u ∈ Hk+1(Ω f ),

inf
ψh∈Xh

p

‖φ− ψh‖p ≤ Chk+1‖φ‖Hk+1(Ωp)
, ∀φ ∈ Hk+1(Ωp),

inf
ψh∈Xh

p

‖∇(φ− ψh)‖p ≤ Chk‖φ‖Hk+1(Ωp)
, ∀φ ∈ Hk+1(Ωp),

inf
qh∈Qh

f

‖p− qh‖ f ≤ Chk‖p‖Hk(Ω f )
, ∀p ∈ Hk(Ω f ).
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The semi-discretization for the time-dependent Stokes–Darcy problem is as follows: find
(uh, ph, φh) : [0, ∞) → Xh

f × Qh
f × Xh

p satisfying the given initial conditions and, for all vh ∈ Xh
f ,

qh ∈ Qh
f , ψh ∈ Xh

p,

(uh,t, vh) f + a f (uh, vh)− (ph,∇ · vh) f + cI(vh, φh) = (f f , vh) f ,

(qh,∇ · uh) f = 0,

gS0(φh,t, ψh)p + ap(φh, ψh)− cI(uh, ψh) = g( fp, ψh)p.

It is worth noting that the coupling between the Stokes and the Darcy sub-problems is exactly
skew symmetric.

2.3. Fully-Discrete Approximations with Fully Implicit Temporal Schemes

Let tn := n∆t and wn := w(x, tn) for any function w(x, t). For V being a Banach space with norm
‖ · ‖V , we denote the following discrete norms

‖|w|‖L2(0,T;V) :=

(
∆t

N

∑
n=0
‖wn‖2

V

)1/2

, ‖|w|‖L∞(0,T;V) := sup
0≤n≤N

‖wn‖V ,

where N = T/∆t and T can be ∞. For fixed T > 0, the discrete norm ‖| · |‖L∞(0,T;V) is bounded by the
continuous norm ‖ · ‖L∞(0,T;V). The discrete norm ‖| · |‖L2(0,T;V), on the other hand, depends on the
time step ∆t. However, for functions smooth in time, this norm converges to the continuous norm
‖ · ‖L2(0,T;V) as ∆t→ 0. In those cases, one can reasonably assume the uniform bound of ‖| · |‖L2(0,T;V),
independent of ∆t.

The most natural time discretization for the Stokes–Darcy equation is perhaps the first-order
backward Euler scheme, which, in combination with the aforementioned finite element Galerkin
method for the spatial discretization, leads to the following fully implicit, coupled problem.

Algorithm 1 Backward Euler

Given (un
h , pn

h , φn
h ) ∈ Xh

f × Qh
f × Xh

p, find (un+1
h , pn+1

h , φn+1
h ) ∈ Xh

f × Qh
f × Xh

p such that for all vh ∈
Xh

f , qh ∈ Qh
f , ψh ∈ Xh

p,

(
un+1

h − un
h

∆t
, vh) f + a f (un+1

h , vh)− (pn+1
h ,∇ · vh) f + cI(vh, φn+1

h ) = (fn+1
f , vh) f ,

(qh,∇ · un+1
h ) f = 0,

gS0(
φn+1

h − φn
h

∆t
, ψh)p + ap(φ

n+1
h , ψh)− cI(un+1

h , ψh) = g( f n+1
p , ψh)p.

Stability and convergence analysis of this scheme were conducted in [25–27], for both
Beavers–Joseph and Beavers–Joseph-Saffman–Jones interface conditions. Higher order fully implicit
schemes, such as the Crank–Nicolson, can also be considered. In general, fully implicit methods
possess superior stability compared to IMEX or splitting temporal schemes. The major concern here is
that this approach must solve a coupled problem at each time level. Partitioning the coupled problem
at each time step is possible, but involves an iterative procedure with additional cost. In principle,
any decoupled methods developed for the stationary model can be used in iteration at each time level.

3. First Order Partitioned Schemes

An attractive alternative to fully implicit, fully coupled discretization is exploiting information
obtained in previous time steps to construct a non-iterative uncoupling scheme, which only need
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a single Stokes solve and a single Darcy solve at each time step. This approach allows the use of
legacy subproblems’ codes and obviously requires less programming effort (compared to solving
coupled Stokes–Darcy system directly) as well as less computation cost (compared to iterative domain
decomposition approach). As the interface values are obtained in an explicit manner, the main
challenge here is how to obtain optimal accuracy and good stability properties. Many non-iterative
partitioned methods have been developed in the literature recently [27–36,42], whose stability and
accuracy have been proved (over a long time or without time-step condition) and numerically tested.
Several of them maintain good performance even in the case of small parameters. The rest of this
paper represents an overview of these developments. Our discussion will be divided into three parts:
in Section 3, we survey first order schemes; in Section 4, high order schemes will be discussed; Section 5
is devoted to asynchronous partitioned methods. Unless otherwise stated, C denotes a generic positive
constant whose value may be different from place to place but which is independent of mesh size,
time step, and final time. For all the methods surveyed, approximations are needed at the first few
(one or more) time steps to begin, and we always assume these are computed to sufficient accuracy.

3.1. Backward Euler-Forward Euler

The first non-iterative uncoupling scheme is Backward Euler-Forward Euler (BEFE), proposed
by Mu and Zhu in [27] (and referred to as DBES therein). This method applies Backward Euler
discretization for the subproblems and treats the coupling terms by explicit Forward Euler:

Algorithm 2 Backward Euler-Forward Euler (BEFE)

Given (un
h , pn

h , φn
h ) ∈ Xh

f × Qh
f × Xh

p, find (un+1
h , pn+1

h , φn+1
h ) ∈ Xh

f × Qh
f × Xh

p such that for all vh ∈
Xh

f , qh ∈ Qh
f , ψh ∈ Xh

p,

(
un+1

h − un
h

∆t
, vh) f + a f (un+1

h , vh)− (pn+1
h ,∇ · vh) f + cI(vh, φn

h ) = (fn+1
f , vh) f ,

(qh,∇ · un+1
h ) f = 0,

gS0(
φn+1

h − φn
h

∆t
, ψh)p + ap(φ

n+1
h , ψh)− cI(un

h , ψh) = g( f n+1
p , ψh)p.

A stability analysis for BEFE was given in [27]. These results only apply for bounded time
intervals [0, T] with T < ∞, as the estimates include ecT multipliers and thus grow exponentially with T.
The long-time stability of BEFE was established in [28]. An important feature of this proof, also of
other long-time results coming next, is that no form of Gronwall’s inequality was used. This result can
be stated as follows.

Proposition 1 (Long-time stability of BEFE, [28]). Consider the scheme BEFE. Assume the following
time-step condition is satisfied

∆t . min{νk2
min, S0ν2kmin}.

Then, the following hold:

(i) If f f ∈ L∞(0, ∞; L2(Ω f )), fp ∈ L∞(0, ∞; L2(Ωp)), then

‖un
h‖

2
f + ‖φ

n
h‖

2
p ≤ C, ∀n ≥ 0.

(ii) If ‖|f f |‖L2(0,∞;L2(Ω f ))
and ‖| fp|‖L2(0,∞;L2(Ωp))

are uniformly bounded in ∆t, then

‖un
h‖

2
f + ‖φ

n
h‖

2
p + ∆t

n

∑
`=0

(
‖∇u`

h‖
2
f + ‖∇φ`

h‖
2
p

)
≤ C, ∀n ≥ 0.
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BEFE is first order in time. A convergence analysis of this scheme can be found in [27], with a
very recent improvement in [43].

3.2. Backward Euler–Leap Frog

Backward Euler–Leap Frog (BELF) is another IMEX scheme, first proposed in [28]. This method
is a combination of the three level implicit method with the coupling terms treated by the explicit
Leap-Frog method. Approximations are needed at the first two time steps to begin. The stability region
of the usual Leap-Frog time discretization for y′ = λy is exactly the interval of the imaginary axis
−1 ≤ Im(∆tλ) ≤ +1. Thus, LF is unstable for every problem except for ones that are exactly skew
symmetric such as the coupling herein.

The Backward Euler–Leap Frog scheme can be formulated as follows:

Algorithm 3 Backward Euler–Leap Frog (BELF)

Given (un−1
h , pn−1

h , φn−1
h ), (un

h , pn
h , φn

h ) ∈ Xh
f ×Qh

f × Xh
p, find (un+1

h , pn+1
h , φn+1

h ) ∈ Xh
f ×Qh

f × Xh
p such

that for all vh ∈ Xh
f , qh ∈ Qh

f , ψh ∈ Xh
p,

(
un+1

h − un−1
h

2∆t
, vh) f + a f (un+1

h , vh)− (pn+1
h ,∇ · vh) f + cI(vh, φn

h ) = (fn+1
f , vh) f ,

(qh,∇ · un+1
h ) f = 0,

gS0(
φn+1

h − φn−1
h

2∆t
, ψh)p + ap(φ

n+1
h , ψh)− cI(un

h , ψh) = g( f n+1
p , ψh)p.

As with any explicit scheme, BELF inherits a time-step restriction for the stability. The following
long-time stability result was established in [28].

Proposition 2 (Long-time stability of BELF, [28]). Consider the scheme BELF. Assume that the following
time-step condition is satisfied

∆t . min{
√

νkmin, S0
√

νkmin, νk2
min, S0ν2kmin};

then, BELF possesses the same stability properties as those for BEFE in Proposition 1. More precisely,

(i) If f f ∈ L∞(0, ∞; L2(Ω f )), fp ∈ L∞(0, ∞; L2(Ωp)), then

‖un
h‖

2
f + ‖φ

n
h‖

2
p ≤ C, ∀n ≥ 0.

(ii) If ‖|f f |‖L2(0,∞;L2(Ω f ))
, ‖| fp|‖L2(0,∞;L2(Ωp))

are uniformly bounded in ∆t, then

‖un
h‖

2
f + ‖φ

n
h‖

2
p + ∆t

n

∑
`=0

(
‖∇u`

h‖
2
f + ‖∇φ`

h‖
2
p

)
≤ C, ∀n ≥ 0.

It was also proved that BELF achieves the optimal convergence rate uniformly in time,
as shown below.

Proposition 3 (Error estimate of BELF, [28]). Consider the scheme BELF. Assume the following time-step
condition is satisfied

∆t . min{
√

νkmin, S0
√

νkmin, νk2
min, S0ν2kmin},
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as in Proposition 2. If the solution of the Stokes–Darcy problem (1) is long-time regular in the sense that

u ∈W2,∞(0, ∞; L2(Ω f )) ∩W1,∞(0, ∞; Hk+1(Ω f )),

φ ∈W2,∞(0, ∞; L2(Ωp)) ∩W1,∞(0, ∞; Hk+1(Ωp)),

p ∈ L∞(0, ∞; Hk(Ω f )),

then the solution of BELF satisfies the uniform in time error estimates

‖u(tn)− un
h‖

2
f + ‖φ(tn)− φn

h‖
2
p ≤ C(∆t2 + h2k), ∀n ≥ 0.

Numerical tests illustrating the theoretical stability and convergence properties of BEFE and
BELF were presented in [28]. In particular, the stability of these two methods is compared to that
of the fully implicit method in the case of small kmin for a Stokes–Darcy flow on Ω f = (0, 1)× (1, 2)
and Ωp = (0, 1)× (0, 1) with the interface I = (0, 1)× {1}. Given the source terms f f ≡ 0, fp ≡ 0,
the initial condition

u(x, y, 0) =
(

x2(y− 1)2 + y, −2
3

x(y− 1)3 + 2− π sin(πx)
)

,

p(x, y, 0) = (2− π sin(πx)) sin
(π

2
y
)

, φ(x, y, 0) = (2− π sin(πx))(1− y− cos(πy)),
(3)

set all the physical parameters (except for ν and kmin) to 1. Letting h = 1
10 , ν = 1

10 , the evolution of the
energy En = ‖un

h‖
2
f + ‖φ

n
h‖

2
p with kmin = 10−6 is shown in Figure 1. Since the true solution decays as

t→ ∞, any growth in En indicates instability. The plot reveals that while not unconditionally stable
like the fully implicit method, BEFE and BELF only require mild constraints on ∆t for their stability.
Indeed, BELF is already stable for ∆t ' 1

30 , followed by BEFE at ∆t ' 1
50 . These conditions are much

weaker than those predicted by the theory.
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Figure 1. The evolution of system energy with kmin = 10−6 for different choices of time step [28].
Copyright c© 2013 Society for Industrial and Applied Mathematics. Reprinted with permission. All
rights reserved.
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In summary, the first-order IMEX methods BEFE and BELF allow a parallel, non-iterative
uncoupling of the Stokes–Darcy system at each time step and, on the other hand, enjoy the desirable
strong stability and convergence properties. One disadvantage, as shown in their time-step restrictions,
is that they may become highly unstable when one of the parameters S0 and kmin is small. In the
next subsection, this constraint is relaxed with another type of first-order partitioned methods,
splitting schemes.

3.3. First Order Sequential Splitting Schemes

In [34], several methods for non-iterative, sub-physics uncoupling the evolutionary Stokes–Darcy
problem were proposed, using ideas from splitting methods. The estimates and tests therein
suggest that these methods are stable for larger timesteps than the IMEX based partitioned methods
BEFE and BELF, and in particular, a very good option when either kmin or S0 (but not both) is small.
Here, the Stokes and Darcy systems are uncoupled, but, unlike the aforementioned IMEX schemes,
sequentially solved.

In the first Backward Euler time-split (BEsplit1) scheme, the coupling term in the φ equation is
evaluated at the newly computed value un+1

h so we compute φn
h → un+1

h → φn+1
h .

Algorithm 4 Backward Euler time-split 1 (BEsplit1)

Given (un
h , pn

h , φn
h ) ∈ Xh

f ×Qh
f × Xh

p, find (un+1
h , pn+1

h , φn+1
h ) ∈ Xh

f ×Qh
f × Xh

p such that for all vh ∈ Xh
f ,

qh ∈ Qh
f , ψh ∈ Xh

p,

(
un+1

h − un
h

4t
, vh) f + a f (un+1

h , vh)− (pn+1
h ,∇ · vh) f + cI(vh, φn

h ) = ( f n+1
f , vh) f ,

(qh,∇ · un+1
h ) f = 0,

gS0(
φn+1

h − φn
h

4t
, ψh)p + ap(φ

n+1
h , ψh)− cI(un+1

h , ψh) = g( f n+1
p , ψh)p.

The long-time stability of this scheme can be stated as follows.

Proposition 4 (Long-time stability of BEsplit1, [34]). Consider the scheme BEsplit1. Assume the following
time-step condition is satisfied:

∆t . max{S0νkmin, S0h, S0νh, kmin}.

If ‖|f f |‖L2(0,∞;L2(Ω f ))
and ‖| fp|‖L2(0,∞;L2(Ωp))

are uniformly bounded in ∆t, then

‖un
h‖

2
f + ‖φ

n
h‖

2
p ≤ C, ∀n ≥ 0.

The second Backward Euler time-split (BEsplit2) is the previous method in the opposite order,
i.e., computing un

h → φn+1
h → un+1

h . The analysis in [34] revealed that control was needed for a term
‖un+1

h − un
h‖div. This led to the insertion of the grad-div stabilization term (∇ · (un+1

h − un
h)/∆t,∇ · vh)

acting on the time discretization of ut. This term is exactly zero for the continuous problem so it does
not increase the method’s consistency error.
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Algorithm 5 Backward Euler time-split 2 (BEsplit2)

Given (un
h , pn

h , φn
h ) ∈ Xh

f ×Qh
f × Xh

p, find (un+1
h , pn+1

h , φn+1
h ) ∈ Xh

f ×Qh
f × Xh

p such that for all vh ∈ Xh
f ,

qh ∈ Qh
f , ψh ∈ Xh

p,

gS0(
φn+1

h − φn
h

∆t
, ψh)p + ap(φ

n+1
h , ψh)− cI(un

h , ψh) = g( f n+1
p , ψh)p,

(
un+1

h − un
h

∆t
, vh) f +

(
∇·

un+1
h − un

h
∆t

,∇·vh

)
f

+ a f (un+1
h , vh)− (pn+1

h ,∇ · vh) f + cI(vh, φn+1
h ) = ( f n+1

f , vh) f ,

(qh,∇ · un+1
h ) f = 0.

The stability result of BEsplit2 is presented below.

Proposition 5 (Long-time stability of BEsplit2, [34]). Consider the scheme BEsplit2. Assume the following
time-step condition is satisfied

∆t . max{S0νkmin, S0h, kminh, kmin}.

If ‖|f f |‖L2(0,∞;L2(Ω f ))
and ‖| fp|‖L2(0,∞;L2(Ωp))

are uniformly bounded in ∆t, then

‖un
h‖

2
f + ‖φ

n
h‖

2
p + ∆t

n

∑
`=0

(
‖∇u`

h‖
2
f + ‖∇φ`

h‖
2
p

)
≤ C, ∀n ≥ 0.

Propositions 4 and 5 impose two slightly different conditions on ∆t, both of which are mild when
one of S0 and kmin is small. In those cases, BEsplit1 and BEsplit2 are preferable choices to first-order
IMEX schemes, with the small price of solving the uncoupled subproblems sequentially, instead of in
parallel. However, it is worth remarking that these methods may become unstable if both parameters
are small. Finally, BEsplit1 and BEsplit2 can be shown to be optimally convergent under the same
time-step conditions for stability. For a thorough analysis, we refer to [44].

Two other splitting methods were proposed in [34], whose details are omitted here for brevity.
SDsplit is a first order scheme, long-time stable under the condition ∆t . min {S0, kmin} h, and thus
seems less favorable than BEsplit1 and BEsplit2 in theory. CNsplit, on the other hand, is stable with
∆t .

√
S0h and a very good option in case of small kmin. This scheme is second order.

Numerical tests checking and comparing the largest time step for which the four methods are
stable over long-time intervals were also performed in [34]. Taking the initial condition as in (3),
the body sources to be 0, the system parameters (except kmin and S0) to be 1.0 and mesh size h = 1

10 ,
the authors computed the system energy EN at final time T = 10 with different time-step sizes. Since
the true solution decays as t → ∞, large EN indicates instability. The performance of presented
splitting methods was plotted for three cases: (i) O(1) kmin and small S0, (ii) small kmin and O(1) S0,
and (iii) small kmin and small S0 (see Figures 2 and 3). These plots show that for small parameter kmin

or S0, BEsplit1 and BEsplit2 are stable for large time steps. The performance of SDsplit is close to those
of BEsplit1 and BEsplit2, suggesting that its theoretical condition was not optimized. These three first
order splitting methods display superior stability to IMEX methods in our previous tests. The second
order CNsplit in general requires a much smaller time step, but still possesses strong stability in the
case of small kmin and large S0.
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(a) (b)

Figure 2. A comparison of EN computed using different choices of time step for different splitting
methods with (a) O(1) kmin and ’extremely small’ S0, i.e., kmin = 1 and S0 = 10−12, and (b) with
’extremely small’ kmin and O(1) S0, i.e., kmin = 10−12 and S0 = 1, [34].

(a) (b)

Figure 3. A comparison of EN computed using different choices of time step for different splitting
methods with ’moderately small’ kmin and ’moderately small’ S0. (a): kmin = 10−3 and S0 = 10−3.
(b): kmin = 10−4 and S0 = 10−4, [34].

4. High Order Partitioned Schemes

In this section, we review recent developments in high-order partitioned schemes for uncoupling
the Stokes–Darcy system. Thus far, most of the proposed methods are of IMEX type (except for
CNsplit, which was mentioned above). The IMEX schemes we will discuss in detail here
include Crank–Nicolson–Leap Frog [29,32,33], second-order backward-differentiation with Gear’s
extrapolation [30], and Adam-Moulton-Bashforth [30,31].

4.1. Crank–Nicolson–Leap Frog

The Crank–Nicolson–Leap Frog (CNLF) method is a second-order scheme that employs
the implicit Crank–Nicolson discretization of subdomain terms and treats the interface terms
explicitly with Leap Frog. CNLF was developed for uncoupling systems of evolutionary equations
in [45–47]. This method was first applied to uncouple Stokes–Darcy system in [29].
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CNLF is a three-level method. The first terms, (u0
h, p0

h, φ0
h), arise from the initial conditions of the

problem. To obtain (u1
h, p1

h, φ1
h), one must use another numerical method. Note that approximations in

this first step will affect the overall convergence rate of the method, and as usual, we assume them to
be sufficiently accurate. This scheme can be stated as follows:

Algorithm 6 Crank–Nicolson–Leap Frog (CNLF)

Given (un−1
h , pn−1

h , φn−1
h ), (un

h , pn
h , φn

h ) ∈ Xh
f ×Qh

f × Xh
p, find (un+1

h , pn+1
h , φn+1

h ) ∈ Xh
f ×Qh

f × Xh
p such

that for all vh ∈ Xh
f , qh ∈ Qh

f , ψh ∈ Xh
p,

(
un+1

h − un−1
h

2∆t
, vh

)
f

+ a f

(
un+1

h + un−1
h

2
, vh

)
−
(

pn+1
h + pk−1

h
2

,∇ · vh

)
f

+ cI(vh, φn
h ) = (fn

f , vh) f ,

(
qh,∇ ·

(
un+1

h + un−1
h

2

))
f

= 0,

gS0

(
φn+1

h − φn−1
h

2∆t
, ψh

)
p

+ ap

(
φn+1

h + φn−1
h

2
, ψh

)
− cI(un

h , ψh) = g( f n
p , ψh)p.

CNLF provably possesses a strong stability and convergence properties, as shown in [29] and
presented below. Specifically, the time-step condition for CNLF does not depend on kmin, making this
method a very good choice for fluid-porous media systems with small kmin.

Proposition 6 (Long-time stability of CNLF, [29]). Consider the scheme CNLF. Assume the following
time-step condition is satisfied:

∆t . max{min{h2, S0}, min{h, S0h}}.

If ‖|f f |‖L2(0,∞;L2(Ω f ))
and ‖| fp|‖L2(0,∞;L2(Ωp))

are uniformly bounded in ∆t, then

‖un
h‖

2
f + ‖φ

n
h‖

2
p ≤ C, ∀n ≥ 0.

Proposition 7 (Error estimate of CNLF, [29]). Consider the scheme CNLF. Assume the following time-step
condition is satisfied:

∆t . max{min{h2, S0}, min{h, S0h}},

as in Proposition 6. If the solution of the Stokes–Darcy problem (1) is regular in the sense that

u ∈ H1(0, ∞; Hk+1(Ω f )) ∩ L∞(0, ∞; Hk+1(Ω f )) ∩ H3(0, ∞; H1(Ω f )),

φ ∈ H1(0, ∞; Hk+1(Ωp)) ∩ L∞(0, ∞; Hk+1(Ωp)) ∩ H3(0, ∞; H1(Ωp)),

p ∈ L2(0, ∞; Hk(Ω f )),

and the discrete norms of u, p and φ in L2(0, ∞; Hk+1(Ω f )), L2(0, ∞; Hs+1(Ω f )), and L2(0, ∞; Hk+1(Ωp))

are uniformly bounded in ∆t, then

‖u(tn)− un
h‖

2
f + ‖φ(tn)− φn

h‖
2
p ≤ C(∆t4 + h2k), ∀n ≥ 0.

While independent of kmin, the conditional stability of CNLF may still be restrictive when faced
with small S0. To tackle this difficulty, the authors of [32,33] proposed a strategy to improve the
stability property of CNLF by adding appropriate stabilization terms to both the Stokes as well as the
groundwater flow equation.
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Algorithm 7 Stabilized Crank–Nicolson–Leap Frog (CNLFstab)

Given (un−1
h , pn−1

h , φn−1
h ), (un

h , pn
h , φn

h ) ∈ Xh
f ×Qh

f × Xh
p, find (un+1

h , pn+1
h , φn+1

h ) ∈ Xh
f ×Qh

f × Xh
p such

that for all vh ∈ Xh
f , qh ∈ Qh

f , ψh ∈ Xh
p,(

un+1
h − un−1

h
2∆t

, vh

)
f

+

(
∇ ·

(
un+1

h − un−1
h

2∆t

)
,∇ · vh

)
f

+ a f

(
un+1

h + un−1
h

2
, vh

)

−
(

pn+1
h + pk−1

h
2

,∇ · vh

)
f

+ cI(vh, φn
h ) = (fn

f , vh) f ,

(
qh,∇ · un+1

h

)
f
= 0,

gS0

(
φn+1

h − φn−1
h

2∆t
, ψh

)
p

+ ap

(
φn+1

h + φn−1
h

2
, ψh

)
− cI(un

h , ψh)

+ ∆tg2C2
f ,p

{
(φk+1

h − φk−1
h , ψh)p + (∇(φk+1

h − φk−1
h ),∇ψh)p

}
= g( f n

p , ψh)p.

The resulting numerical scheme, denoted CNLFstab, is unconditionally, uniformly in time stable,
as well as second-order convergent. More specifically, it was shown in [33] that the added stabilization
terms,

(
∇ ·

(
un+1

h − un−1
h

2∆t

)
,∇ · vh

)
f

,

and ∆tg2C2
f ,p

{
(φk+1

h − φk−1
h , ψh)p + (∇(φk+1

h − φk−1
h ),∇ψh)p

}
,

eliminate the time-step restriction without affecting the second-order accuracy of the method. Indeed,
among all the methods we have discussed so far, CNLFstab exhibits the best stability and convergence
properties. Here, C f ,p is a constant satisfying

|cI(u, φ)| ≤ gC f ,p‖u‖div, f ‖φ‖1,p.

In the special case of a flat interface I, with Ω f and Ωp being arbitrary domains, C f ,p equals 1 (see [48,
Lemmas 3.1 and 3.2]).

We make the above discussion rigorous with the following results.

Proposition 8 (Long-time, unconditional stability of CNLFstab, [33]). Consider the scheme CNLFstab.
If ‖|f f |‖L2(0,∞;L2(Ω f ))

and ‖| fp|‖L2(0,∞;L2(Ωp))
are uniformly bounded in ∆t, then

‖un
h‖

2
div, f + ‖φ

n
h‖

2
p ≤ C, ∀n ≥ 0.

Proposition 9 (Error estimate of CNLFstab, [33]). Consider the scheme CNLFstab. Assume u, p and φ

satisfy the same regularity condition as in Proposition 7, then the solution of CNLFstab satisfies the unconditional,
uniform in time error estimate

‖u(tn)− un
h‖

2
div, f + ‖φ(tn)− φn

h‖
2
p ≤ C(∆t4 + h2k), ∀n ≥ 0.

The stability and convergence properties of CNLF and CNLFstab were illustrated and compared
via numerical tests in [33,44]. Set the body sources to be 0, the system parameters (except kmin
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and S0) to be 1.0 and mesh size h = 1
10 , the authors computed the system energy EN at final time

T = 10 with different time-step sizes. Since the true solution decays as t → ∞, large EN indicates
instability. The performance of CNLF and CNLFstab was plotted for four cases: (i) small kmin and
small S0, (ii) small S0, (iii) small kmin, and (iv) kmin = S0 = 1.0. These plots show that, in all situations,
CNLFstab is stable for large time steps, regardless of the size of kmin and S0. This is a vast improvement
over CNLF, which, for ∆t ≤ 1/80, was only stable when kmin = S0 = 1.0, and unstable in all other
cases (see Figure 4).

(a) (b)

Figure 4. Final system energy EN versus time-step size for (a) CNLF, and (b) CNLFstab, [44].

4.2. Second-Order Backward-Differentiation Formula with Gear’s Extrapolation

In [30], the authors introduced a second-order scheme, which discretizes in time via a second-order
backward-differentiation formula (BDF2), and treats the interface term via a second-order explicit
Gear’s extrapolation formula.

Algorithm 8 Second-order backward-differentiation (BDF2)

Given (un−1
h , pn−1

h , φn−1
h ), (un

h , pn
h , φn

h ) ∈ Xh
f ×Qh

f × Xh
p, find (un+1

h , pn+1
h , φn+1

h ) ∈ Xh
f ×Qh

f × Xh
p such

that for all vh ∈ Xh
f , qh ∈ Qh

f , ψh ∈ Xh
p,(

3un+1
h − 4un

h + un−1
h

2∆t
, vh

)
f

+ a f

(
un+1

h , vh

)
−
(

pn+1
h ,∇ · vh

)
f
+ cI(vh, 2φn

h − φn−1
h ) = (fn+1

f , vh) f ,

(
qh,∇ · un+1

h

)
f
= 0,

gS0

(
3φn+1

h − 4φn
h + φn−1

h
2∆t

, ψh

)
p

+ ap

(
φn+1

h , ψh

)
− cI(2un

h − un−1
h , ψh)

+ γp(φ
n+1
h − 2φn

h + φn−1
h , ψh)I = g( f n+1

p , ψh)p.

BDF2 provably possesses a strong stability and convergence properties, as stated below.
Specifically, an inspection of the analysis argument in [30] shows that the time-step condition for
BDF2 does not depend on S0, making this method a very good choice for fluid-porous media systems
with small S0 (and moderate kmin).

Proposition 10 (Long-time stability of BDF2, [30]). Consider the scheme BDF2. Assume the following
time-step restriction is satisfied:

∆t . min{ν3, k3
min}.
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If f f ∈ L∞(0, ∞; L2(Ω f )), fp ∈ L∞(0, ∞; L2(Ωp)), then

‖un
h‖

2
f + ‖φ

n
h‖

2
p ≤ C, ∀n ≥ 0.

We note that the solution of BDF2 was also proved to be long-time stable in H1 norm,
i.e., ‖∇un

h‖
2
f + ‖∇φn

h‖
2
p ≤ C, ∀n ≥ 0, in [30], with a more restrictive time-step condition. A strong

convergence property of BDF2 is stated below.

Proposition 11 (Error estimates of BDF2, [30]). Consider the scheme BDF2. Assume ∆t is sufficiently small
(independent of mesh size and final time). If the solution of the Stokes–Darcy problem (1) is long-time regular in
the sense that

u ∈W3,∞(0, ∞; H1(Ω f )) ∩W2,∞(0, ∞; Hk+1(Ω f )),

φ ∈W3,∞(0, ∞; H1(Ωp)) ∩W2,∞(0, ∞; Hk+1(Ωp)),

then the solution of BDF2 satisfies the uniform in time error estimates

‖u(tn)− un
h‖

2
f + ‖φ(tn)− φn

h‖
2
p ≤ C(∆t4 + h2(k+1)), ∀n ≥ 0,

‖∇(u(tn)− un
h)‖

2
f + ‖∇(φ(tn)− φn

h )‖
2
p + ‖p(tn)− pn

h‖
2
f ≤ C(∆t2 + h2k), ∀n ≥ 0.

This result showed not only the error estimate of the velocity with respect to the L2 norm, but
also with respect to the H1 norm, as well as the error estimate of the pressure. The two latter estimates
are not second order in time; however, these were also observed in the numerical experiments [30].
Finally, the authors suggested that the stabilization terms

γ f ((un+1
h − 2un

h + un−1
h ) · n̂ f , vh · n̂ f )I and γp(φ

n+1
h − 2φn

h + φn−1
h , ψh)I

may be added to the Stokes and Darcy solves correspondingly, with parameters γ f , γp ≥ 0. While the
analysis does not take advantage of the stabilization term, the numerical experiments demonstrate
the benefit of this strategy in the sense that the presence of the stabilization term relaxes the
time-step restriction.

4.3. Adam–Moulton–Bashforth

The second-order Adam–Moulton–Bashforth method (AMB2), studied in [30], combines the
second-order implicit Adams–Moulton treatment of the symmetric terms and the second-order explicit
Adams–Bashforth treatment of the interface term.
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Algorithm 9 Second-order Adam–Moulton–Bashforth method (AMB2)

Given (un−1
h , pn−1

h , φn−1
h ), (un

h , pn
h , φn

h ) ∈ Xh
f ×Qh

f × Xh
p, find (un+1

h , pn+1
h , φn+1

h ) ∈ Xh
f ×Qh

f × Xh
p such

that for all vh ∈ Xh
f , qh ∈ Qh

f , ψh ∈ Xh
p,(

un+1
h − un

h
∆t

, vh

)
f

+ a f

(
αun+1

h + (
3
2
− 2α)un

h + (α− 1
2
)un−1

h , vh

)

−
(

αpn+1
h + (

3
2
− 2α)pn

h + (α− 1
2
)pn−1

h ,∇ · vh

)
f
+ cI

(
vh,

3
2

φn
h −

1
2

φn−1
h

)
= (fn+1/2

f , vh) f ,(
qh,∇ ·

(
αun+1

h + (
3
2
− 2α)un

h + (α− 1
2
)un−1

h

))
f
= 0,

gS0

(
φn+1

h − φn
h

∆t
, ψh

)
p

+ ap

(
αφn+1

h + (
3
2
− 2α)φn

h + (α− 1
2
)φn−1

h , ψh

)

− cI

(
3
2

un
h −

1
2

un−1
h , ψh

)
= g( f n+1/2

p , ψh)p.

The third-order Adams–Moulton–Bashforth method (AMB3), studied in [31], is a combination
of the third-order explicit Adams–Bashforth treatment for the coupling term and the third-order
Adams–Moulton method for the remaining terms. To the best of our knowledge, this has been the only
third order IMEX scheme that was applied to uncouple the Stokes–Darcy equation so far.

Algorithm 10 Third-order Adam–Moulton–Bashforth method (AMB3)

Given (un−3
h , pn−3

h , φn−3
h ), . . . , (un

h , pn
h , φn

h ) ∈ Xh
f × Qh

f × Xh
p, find (un+1

h , pn+1
h , φn+1

h ) ∈ Xh
f × Qh

f × Xh
p

satisfying for all vh ∈ Xh
f , qh ∈ Qh

f , ψh ∈ Xh
p:(

un+1
h − un

h
∆t

, vh

)
f

+ a f

(
2
3

un+1
h +

5
12

un−1
h − 1

12
un−3

h , vh

)
−
(

2
3

pn+1
h +

5
12

pn−1
h − 1

12
pn−3

h ,∇ · vh

)
f

+ cI

(
vh,

23
12

φn
h −

4
3

φn−1
h +

5
12

φn−2
h

)
=

(
2
3

fn+1
f +

5
12

fn−1
f − 1

12
fn−3

f , vh

)
f

,(
qh,∇ ·

(
2
3

un+1
h +

5
12

un−1
h − 1

12
un−3

h

))
f
= 0,

gS0

(
φn+1

h − φn
h

∆t
, ψh

)
p

+ ap

(
2
3

φn+1
h +

5
12

φn−1
h − 1

12
φn−3

h , ψh

)

− cI

(
23
12

un
h −

4
3

un−1
h +

5
12

un−2
h , ψh

)
= g

(
2
3

f n+1
p +

5
12

f n−1
p − 1

12
f n−3
p , ψh

)
p

.

These methods proved to be long-time stable under small time-step restrictions. The explicit
dependence of these conditions on the system parameters can be elaborated from [30,31] as follows.

Proposition 12 (Long-time stability of AMB2 and AMB3, [30,31]). Consider the schemes AMB2
and AMB3. Assume the time-step restrictions

∆t . min{ν3, k3
min} (in case of AMB2), and ∆t . min{ν, kmin} (in case of AMB3).
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If f f ∈ L∞(0, ∞; L2(Ω f )), fp ∈ L∞(0, ∞; L2(Ωp)), then

‖un
h‖

2
f + ‖φ

n
h‖

2
p ≤ C, ∀n ≥ 0.

Similar to CNLF and BDF2, appropriate stabilization terms can be added for both
algorithms AMB2 and AMB3, which were numerically shown to significantly relax the time-step
constraint (see [30,31]).

5. Asynchronous Schemes

In surface water–groundwater models, the flow in fluid regions is often associated with higher
velocities, compared to flow in porous media region. In such cases, it may be desirable to apply
an asynchronous scheme (aka, multiple-time-step scheme, multi-rate scheme), which computes
fast solutions using a small time step and consider a larger time step for slow solutions. The first
partitioned scheme that allows different time steps in the fluid and porous region for the nonstationary
Stokes–Darcy problem was probably proposed and analyzed in [35]. In that work, the decoupling is
based on lagging the interfacial coupling terms following the BEFE method; thus, we will refer to the
scheme as asynchronous BEFE or BEFE-as1. Let ∆s be the (small) time-step size in the fluid region Ω f
and ∆t be the (large) time-step size in the porous region Ωp such that ∆t = r∆s. In addition, define
nk := kr and let N = T/∆s, the number of small time step, and M = T/∆t = N/r, the number of
large time step. The algorithm in [35] reads as follows.

Algorithm 11 Asynchronous Backward Euler-Forward Euler 1 (BEFE-as1)

For k = 0 to T
∆t − 1, do the following:

1. Find (un+1
h , pn+1

h ) ∈ Xh
f ×Qh

f with n = nk, . . . , nk+1 − 1 satisfying for all vh ∈ Xh
f , qh ∈ Qh

f :

(
un+1

h − un
h

∆s
, vh) f + a f (un+1

h , vh)− (pn+1
h ,∇ · vh) f + cI(vh, φ

nk
h ) = (fn+1

f , vh) f ,

(qh,∇ · un+1
h ) f = 0.

2. Set Unk := 1
r ∑

nk+1−1
i=nk

ui
h.

3. Find φnk+1 ∈ Xh
p such that for all ψh ∈ Xh

p:

gS0(
φ

nk+1
h − φ

nk
h

∆t
, ψh)p + ap(φ

nk+1
h , ψh)− cI(Unk , ψh) = g( f nk+1

p , ψh)p.

4. Set k := k + 1.

The stability of BEFE-as1 was proved in [35] over a bounded interval. In particular, one has
the following:

Proposition 13 (Stability of BEFE-as1). Consider the scheme BEFE-as1. Let T > 0 be any fixed time. Assume
the following condition on the small time step

∆s .
√

S0νkmin.

If ‖|f f |‖L2(0,T;L2(Ω f ))
and ‖| fp|‖L2(0,T;L2(Ωp))

are uniformly bounded in ∆t, then, for all 1 ≤ k ≤ M − 1,
0 ≤ i ≤ r, there holds

‖unk+i
h ‖2

f + ‖φ
nk
h ‖

2
p + ∆s

nk+i

∑
`=0
‖∇u`

h‖ f + ∆t
k

∑
j=0
‖∇φ

nj
h ‖p ≤ CecT
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The study on multi-rate schemes continues with [36], in which the second asynchronous strategy
based on BEFE was proposed. This method in computing the hydraulic head φ, instead of using free
flow velocity averaged over multiple previous steps as in BEFE-as1, only uses the free flow velocity
value at the immediately previous time level. As such, the long-time stability was acquired, with the
time-step restriction depending not only on the model parameters, but also including the ratio between
the time steps applied in the free flow and porous medium domains. A remarkable property of this
method is that it conserves mass across the interface, which does not seem possible with BEFE-as1.
To be precise, we state the method as follows.

Algorithm 12 Asynchronous Backward Euler-Forward Euler 2 (BEFE-as2)

For k = 0 to T
∆t − 1, follow the same procedure as in BEFE-as1, except for Step 2, where it is replaced

by:

2. set Unk := unk+1
h .

The stability results of BEFE-as2 can be established as follows.

Proposition 14 (Long-time stability of BEFE-as2, [36]). Consider the scheme BEFE-as2. Assume following
condition on the time-step condition is satisfied:

∆s . min
{

kmin

ν(r− 1)2 ,
S0νkmin

r

}
.

If ‖|f f |‖L2(0,∞;L2(Ω f ))
and ‖| fp|‖L2(0,∞;L2(Ωp))

are uniformly bounded in ∆t, then

‖unk
h ‖

2
f + ‖φ

nk
h ‖

2
p ≤ C, ∀k ≥ 0.

For the error analysis and numerical experiments illustrating the convergence rate and mass
conservation, we refer to [36].

6. Conclusions

In solving the coupled Stokes–Darcy equations, the non-iterative partitioned approach is an
attractive alternative to fully implicit, monolithic discretization (combining with either direct coupled
problem solve or iterative domain decomposition methods). First, these uncoupling schemes allow
the use of legacy sub-problems’ codes, in which the spatial mesh, time step and numerical method
may be optimized according to each subprocess. Second, this approach, by exploiting the interface
information obtained in previous time steps, only needs a single Stokes solve and a single Darcy
solve per time level (some splitting methods may require a couple solves), and is therefore very cost
effective. Since the coupling terms are treated in an explicit manner, obtaining optimal accuracy and
good stability properties is a major concern with these methods. In recent years, many proposed
partitioned schemes have surpassed this challenge, with proven long-time stability and optimal
convergence properties. Further improvements in efficiency include high-order discretizations,
stabilization strategies, and asynchronous schemes. Table 3 summarizes and compares the stability
and convergence properties for all numerical schemes surveyed herein. There are, however, several
important questions that remain open, in our point of view.

1. For the long-time stability, most of the current methods require time-step conditions sensitive
to the sizes of system parameters. These conditions may become restrictive for the fluid-porous
media coupling with small parameters, particularly S0 and kmin. See Table 3 for the stability
dependence on problem parameters of all methods discussed here. While there are a few
methods achieving some successes in this case, e.g., CNLFstab, in our opinion, long-time stable
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and accurate schemes in case of small parameters, in particular, when both S0 and kmin are small,
are worth further study.

2. Most of the existing methods have not accounted for the dependence of the time step on the
domain size. This is an important problem, especially for domains with large aspect ratios.

3. To our knowledge, there are no adaptations of the asynchronous approach beyond first-order
schemes. High order asynchronous methods are desirable and the next logical step.

4. The primary motivation for modeling the fully evolutionary Stokes–Darcy flow is transport
contaminant tracking, a major concern in several modern environmental problems. However,
the problem of coupling numerical methods for the time-dependent Stokes–Darcy equation,
in particular non-iterative partitioned methods discussed herein, with the transport equation to
simulate the path of chemicals is largely open.

Table 3. A compilation of the surveyed partitioned methods, grouped by temporal convergence,
with stability restrictions presented to highlight potential sensitivity to key problem parameters.

First-Order in Time

Method Type Stability Condition

BEFE parallel ∆t . min
{

νk2
min, S0ν2kmin

}
BELF parallel ∆t . min

{√
νkmin, S0

√
νkmin, νk2

min, S0ν2kmin
}

BEsplit1 sequential ∆t . max {S0νkmin, S0h, S0νh, kmin}
BEsplit2 sequential ∆t . max {S0νkmin, S0h, kminh, kmin}
SDsplit sequential ∆t . min {S0ν, kmin} h

BEFE-as1 asynchronous ∆s .
√

S0νkmin, ∆t = r∆s

BEFE-as2 asynchronous ∆s . min
{

kmin

ν(r− 1)2 ,
S0νkmin

r

}
, ∆t = r∆s

Second-Order in Time

Method Type Stability Condition

CNLF parallel ∆t . max
{

min{h2, S0}, min{h, S0h}
}

CNLFstab parallel none
CNsplit sequential ∆t .

√
S0h

BDF2 parallel ∆t . min
{

ν3, k3
min
}

AMB2 parallel ∆t . min
{

ν3, k3
min
}

Third-Order in Time

Method Type Stability Condition

AMB3 parallel ∆t . min {ν, kmin}
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