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Abstract: Here, we investigate weakly nonlinear hydrothermal two-dimensional convective flow in
a horizontal aquifer layer with horizontal isothermal and rigid boundaries. We treat such a layer
as a porous medium, where Darcy’s law holds, subjected to the conditions that the porous layer’s
permeability and the thermal conductivity are variable in the vertical direction. This analysis is
restricted to the case that the subsequent hydraulic resistivity and diffusivity have a small rate of
change with respect to the vertical variable. Applying the weakly nonlinear approach, we derive
various order systems and express their solutions. The solutions for convective flow quantities such
as vertical velocity and the temperature that arise as the Rayleigh number exceeds its critical value
are computed and presented in graphical form.
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1. Introduction

A porous medium is a material that consists of a solid matrix with an interconnected void, and
it is characterized by its porosity. Mathematical treatment and research on convection in porous
media have been presented in many research articles. Darcy’s law for porous media is the momentum
equation, which is analogous to the Navier–Stokes equation. Heat transfer through a porous medium
is a very common phenomenon. The natural tendency of fluid to expand when heated causes a density
inversion to occur, if the heating is strong enough and a circulatory motion follows, termed convection.
Convection in the fluid layer is a well-studied phenomenon, and it occurs in many natural settings:
in the atmosphere, in the Earth’s mantle and in many industrial applications including solidification
and heating. Convective flows in a horizontal dendritic layer during alloy solidification are known to
produce chimneys in the final form of the alloy.

The problem of thermal convection in an aquifer layer that occurs in many application areas,
notably in environmental sciences and, in particular, in ground water flow [1,2], is fundamentally
a problem within the category of convective flow in a porous medium. The effect of the aquifer
nonhomogeneity on the onset of thermal convection, as well as on heat transfer through the aquifer
has been analyzed [3]. Many cases of convection through aquifers involve horizontal layers, which are
non-homogeneous with variable permeability and thermal conductivity.

Riahi [4] studied convection when the boundaries have finite thermal conductivities. Vafai [5]
investigated wall effects due to variable porosity. Riahi [6] used a perturbation approach for
three-dimensional convection involving nonuniform temperature. He considered the case of
a continuous finite bandwidth of modes [7]. An aquifer model was presented by Fowler [8].
Many studies have been presented by various authors [9–15] to investigate convection in porous
media. The effect of variable permeability in porous media was analyzed analytically and numerically
by Rees and Pop [16]. Convection in cavities with conducting boundaries was carried out by
Rees and Tyvand [17]. The eigenvalue problem for cavities of various shapes was solved by them
numerically. Rees and Barletta [18] described a linear stability analysis of a sloping porous layer with
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isoflux boundaries. Rees et al. [19,20] studied the effect of x-dependent variation in permeability.
Bhatta et al. [21–23] studied weakly nonlinear convective flows in mushy layers with and without
the magnetic effect and permeable mush-liquid interface. Rees and Barletta [24] analyzed the
three-dimensional stability of a finite-amplitude convection in a porous layer heated from below.

The present paper studies the problem of nonlinear thermal convection in a horizontal aquifer
layer with horizontal rigid and isothermal boundaries, and the aquifer layer is assumed to have variable
permeability and thermal conductivity. The analysis is based on the weakly nonlinear theory [4] for
the particular case of convection in a porous medium with rigid and isothermal boundaries and is
extended here to porous layers with variable permeability and thermal diffusivity. We restrict our
analysis to the non-dimensional form of the governing equations in a porous layer subjected to Darcy’s
law, and such a non-dimensional form of the governing system introduces three non-dimensional
parameters, which are the Rayleigh number, hydraulic resistivity, which is the ratio of the viscosity to
permeability, and non-dimensional thermal diffusivity, which is the ratio of diffusivity to a reference
diffusivity at the lower boundary [3]. The last two parameters are assumed to vary in the vertical
direction, and the magnitude of the vertical rate of change of each of these two parameters is to be
kept small.

We have found some interesting results, and in particular, we found that variations in the
hydraulic resistivity or thermal diffusivity introduces asymmetry with respect to the mid-plane in
the vertical profiles for the convective flow quantities. For the case where the vertical rate of change
of either hydraulic resistivity or thermal diffusivity increases in the upward direction, then the flow
appears to be stabilizing, while the flow is destabilizing if such a vertical rate of change decreases in
the upward direction.

2. Governing Systems and Solutions

The non-dimensional system can be expressed as:

∇.
−→U = 0 (1)

ξ
−→U − RT k̂ +∇P = 0 (2)

γ
∂T
∂t

+
−→U · ∇T = ∇ · (ζ∇T ) (3)

Here,
−→U , T , P ,R, k̂, t, z, ξ, γ and ζ respectively represent the velocity, temperature, pressure,

Rayleigh number, unit vector in the upward vertical direction, time, vertical coordinate, hydraulic
resistivity, coefficient and diffusivity parameter. The coefficient γ is given by Rubin [3].

γ =
ψρCw + ρsCs(1− ψ)

ρCw

where ψ is the porosity, ρ is the fluid density, Cs, Cw are the specific heat of the solid and fluid,
respectively, and ρs denotes the density of the solid fraction.

For small δ (δ� 1), we write:

ξ = 1 + δξ1

(
z +

1
2

)
(4)

ζ = 1 + δζ1

(
z +

1
2

)
(5)

Here, ξ1 and ζ1 are constants.
The boundary conditions are:
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T = 1, W = 0 at z = − 1
2 (6)

T = 0, W = 0 at z = 1
2 (7)

where W is the vertical component of
−→U .

2.1. Basic State Solutions

These are steady state and horizontally-independent solutions, expressing:

Tb = Tb0 + δTb1,
−→U =

−→
0 , R = R00 + δR01 (8)

To zeroth order in δ, we have,Tb = Tb(z),
d2Tb0
dz2 = 0. Thus, we have Tb0(z) = c0z + c1 and using

the boundary conditions, c0 = −1, c1 = 1/2, which yield:

Tb0(z) =
1
2
− z (9)

Furthermore d2Tb1
dz2 = ζ1 yielding us:

Tb1(z) =
ζ1

2

(
z2 − 1

4

)
(10)

Writing: (−→U , T , P
)
=
(−→

0 , Tb, Pb

)
+
(−→U , θ, P

)
(11)

and using (11) in (1)–(3), boundary Conditions (6) and (7) and defining θ = (T − Tb) R, we obtain
the following:

∇.
−→U = 0 (12)

ξ
−→U − θk̂ +∇P = 0 (13)

γ
∂θ

∂t
+
−→U · ∇θ + RW

dTb
dz

= ∇ · (ζ∇θ) (14)

with boundary conditions:

θ = W = 0 at z = ± 1
2 (15)

We simplify (12)–(14) using the general representation:

−→U =
−→
B φ +

−→
E ψ (16)

with:

−→
B = ∇×∇× k̂,

−→
E = ∇× k̂ (17)

We have W = −42φ where42 = ∂2

∂x2 +
∂2

∂y2 .

Taking the vertical component of the curl of (13), it can be shown that∇× k̂ ψ · −→U must vanish, which
yields

−→
E ψ = 0. Taking the vertical component of the double curl of (13) and the use of (16) and (17) give:
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42

(
ξ∇2φ + δξ1

∂φ

∂z
+ θ

)
= 0 (18)

ζ∇2θ + δξ1
∂θ

∂z
+ R

dTb
dz

(42φ) =
−→
B φ · ∇θ + γ

∂θ

∂t
(19)

θ = φ = 0 at z = ±1
2

(20)

Now, writing:

(
θ

φ

)
= ε

(
θ10 + δθ11 + ....
φ10 + δφ11 + ....

)
+ ε2

(
θ20 + δθ21 + ....
φ20 + δφ21 + ....

)

+ε3

(
θ30 + θ31 + ....

φ30 + δφ31 + ....

)
+ ....... (21)

R = (R00 + δR01 + ....) + ε (R10 + δR11 + ....) + ε2 (R20 + δR21 + ....) + ...... (22)

where ε is defined as the amplitude of convection, which is small here.

2.2. Linear Problem (Order ε1δ0 and ε1δ1 )

2.2.1. Zeroth Order

To zeroth order in δ (to order ε1δ0, steady case), we have:

42

(
∇2φ10 + θ10

)
= 0 (23)

∇2θ10 − R00 (42φ10) = 0 (24)

θ10 = φ10 = 0 at z = ±1
2

(25)

Solutions are given by:

θ10 =
√

2
(

π2 + α2
)

H(x, y) cos πz , φ10 =
√

2 H(x, y) cos πz (26)

where:

H(x, y) =
N

∑
n=−N

cnhn =
N

∑
n=−N

cnei ~Kn ·~r (27)

and:

42hn = −α2hn,
N

∑
n=−N

cnc∗n = 1, c∗n = c−n, ~Kn · k̂ = 0, ~K−n = −~Kn,
∣∣∣~Kn

∣∣∣ = α (28)

Furthermore, we have:

R00 =

(
π2 + α2)2

α2 , R00c = 4π2, αc = π (29)

2.2.2. Order of εδ

The system in this case is given by:
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42

[
∇2φ11 + ξ1

{
∂φ10

∂z
+

(
z +

1
2

)
∇2φ10

}
+ θ11

]
= 0 (30)

∇2θ11 + ζ1

{
∂θ10

∂z
+

(
z +

1
2

)
∇2θ10

}
− R00 (42φ11)

+R00ζ1z (42φ10)− R01 (42φ10) = 0 (31)

with boundary conditions:

θ11 = φ11 = 0 at z = ±1
2

(32)

Multiplying (30) by φ10 and (31) by − θ10
R00

, then we add them and average over the whole layer;
and finally, applying (32), we obtain:

−α2
〈

ξ1φ10

{
∂φ10

∂z
−
(

z +
1
2

)(
π2 + α2

)
φ10

}〉
− 1

4π2

〈
θ10

[
ζ1

{
∂θ10

∂z
+

(
z +

1
2

)
∇2θ10 + R00z (42φ10)

}
− R01 (42φ10)

]〉
= 0 (33)

Here, we define < .. > as the total horizontal and vertical average of the aquifer layer.
Since: 〈

cos2 πz
〉
=

1
2

, 〈cos πz sin πz〉 = 0,
∫ 1

2

− 1
2

z cos2 πz dz = 0,

we get:

−α2
(
−π2ξ1

)
− 1

4π2

(
2π2

) [
π2R01 − 2ζ1π4

]
= 0

which yields:

R01 = 2π2 (ξ1 + ζ1) (34)

Using (29) and (34), we find the critical Rayleigh number Rc at the onset of motion to be:

Rc = 4π2 + 2π2 (ξ1 + ζ1) δ + O(δ2) (35)

It is seen from Rc that its value is reduced for negative values of ξ1 and ζ1, while the value of Rc

increases for positive values of these two parameters.
Now, from (30) and (31), we can obtain:

42

[
∇2φ11 + θ11

]
= −
√

2 π4ξ1(2z + 1) cos πz H(x, y)−
√

2 π3ξ1 sin πz H(x, y)

= −
√

2 π3ξ1 [π(2z + 1) cos πz + sin πz] H(x, y) (36)

∇2θ11 − R00 (42φ11) = 4
√

2π4ζ1z cos πz H(x, y)−
√

2 R01π2 cos πz H(x, y)

+2
√

2π4ζ1(2z + 1) cos πz H(x, y) + 2
√

2 π3ζ1 sin πz H(x, y) (37)

=
√

2 π2
[
2πζ1 sin πz + 4π2ζ1z cos πz− R01 cos πz + 2π2ζ1(2z + 1) cos πz

]
H(x, y)

Let: [
φ11

θ11

]
=

[
φ̂11(z)
θ̂11(z)

]
H(x, y) (38)
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Then, we have: (
d2

dz2 − π2
)

φ̂11 + θ̂11 =
√

2 πξ1 [π(2z + 1) cos πz + sin πz] (39)(
d2

dz2 − π2
)

θ̂11 + 4π4φ̂11 =
√

2 π2 [2πζ1 sin πz

+
{

8π2ζ1z− R01 + 2π2ζ1

}
cos πz

]
(40)

with

θ̂11 = φ̂11 = 0 at z = ±1
2

(41)

To find the particular solution to (39) and (40), we take
(

d2

dz2 − π2
)

of (39) and use (40) to eliminate

θ̂11, which gives us:

(
d2

dz2 − π2
)2

φ̂11 − 4π4φ̂11 = −
√

2 π2 [2ζ1π sin πz

+
{

8π2ζ1z− R01 + 2π2ζ1

}
cos πz

]
+

−2
√

2 π3ξ1 [π cos πz + 3 sin πz + πz cos πz] (42)

Assuming:

φ̂11 = a1z2 sin πz + a2z sin πz + a3z cos πz (43)

We have:

d2φ̂11

dz2 = a1

(
2 sin πz + 4πz cos πz− π2z2 sin πz

)
+a2

(
2π cos πz− π2z sin πz

)
− a3

(
2π sin πz + π2z cos πz

)
(44)

and:

d4φ̂11

dz4 = π2a1

(
−12 sin πz− 8πz cos πz + π2z2 sin πz

)
+π3a2 (−4 cos πz + πz sin πz)

+π3a3 (4 sin πz + πz cos πz)

Using the above in (42) and by setting both sides equal and setting similar coefficients to be equal,
we obtain the following:

Coefficients of z2 sin πz yield:

π4a1 − 2π2
(
−π2a1

)
+ π4a1 − 4π4a1 = 4π4a1 − 4π4a1 = 0

From the coefficients of z sin πz, we obtain:

π4a2 − 2π2
(
−π2a2

)
+ π4a2 − 4π4a2 = 0
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The coefficients of z cos πz yield:

a1

(
−8π3

)
+ a3π4 − 2π2

(
4πa1 − π2a3

)
+ π4a3 − 4π4a3 = −2

√
2π4 (4ζ1 + ξ1)

=⇒ a1 =
π

4
√

2
(4ζ1 + ξ1) (45)

The coefficients of sin πz yield:

a1

(
−12π2

)
+ 4a3π3 − 2π2 (2a1 − 2a3π) = −2

√
2π3 (ζ1 + 3ξ1)

=⇒ −2a1 + πa3 = − π

2
√

2
(ζ1 + 3ξ1) (46)

The coefficients of cos πz yield:

a2

(
−4π3

)
− 2π2 (2a2π) =

√
2π2

(
R01 − 2π2ζ1 − 2π2ξ1

)
=⇒ a2 =

1
4
√

2π

{
2π2 (ζ1 + ξ1)− R01

}
= 0 (47)

Furthermore, we have:

a3 =
1
π

[
2a1 −

π

2
√

2
(ζ1 + 3ξ1)

]
=

1
2
√

2
(3ζ1 − 2ξ1) (48)

We use (43) and (45)–(47) in (39) to find the particular solution for θ̂11.

θ̂11 = −
(

d2

dz2 − π2
)

φ̂11 +
√

2 πξ1 [π(2z + 1) cos πz + sin πz]

= a1

(
−2 sin πz− 4πz cos πz + π2z2 sin πz

)
+a3

(
2π sin πz + π2z cos πz

)
+ a1π2z2 sin πz

+a3π2z cos πz +
√

2πξ1 [(2z + 1) cos πz + sin πz]

= b1z2 sin πz + b2z sin πz + b3z cos πz + b4 sin πz + b5 cos πz (49)

where:

b1 = 2π2a1, b2 = 0, b3 = −4πa1 + 2π2a3 + 2
√

2π2ξ1

b4 = −2a1 + 2πa3 +
√

2πξ1, b5 =
√

2π2ξ1 (50)

Now, we obtain a complementary solution. Designating dφ̂11
dz = S1, dθ̂11

dz = S2, we can write:

dφ̂11

dz
= S1,

dθ̂11

dz
= S2,

dS1

dz
= π2φ̂11 − θ̂11,

dS2

dz
= π2θ̂11 − 4π4φ̂11 (51)

and using matrix algebra, (51) can be written in matrix form as:

X ′ = AX where A =


0 0 1 0
0 0 0 1

π2 −1 0 0
−4π4 π2 0 0

 , X =


φ̂11

θ̂11

S1

S2

 (52)
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The solution to this homogeneous system is given by:

X = K eλz (53)

Here, λ and K can be obtained from:

det ( A− λI ) = 0 and ( A− λI )K = 0

respectively. Now, det ( A− λI ) = 0 yields:

λ4 − 2π2λ2 − 3π4 = 0

⇒ λ2 = −π2, 3π2

Thus, we have four eigenvalues as:

λ1 = iπ, λ2 = −iπ, λ3 =
√

3π, λ4 = −
√

3π (54)

Let Ki =
[

k1i; k2i; k3i; k4i

]T
be the eigenvector corresponding to eigenvalue λi,

i = 1, ..., 4. We have:

( A− λi I )Ki = 0 =⇒


−λik1i + k3i = 0
−λik2i + k4i = 0

π2k1i − k2i − λik3i = 0
−4π4k1i + π2k2i − λik4i = 0

(55)

Solving this system, we obtain:

k1i = 1, k2i =
4π4

π2 − λ2
i

, k3i = λi, k4i =
4π4λi

π2 − λ2
i

(56)

and we find four solutions:[
φ̂11

θ̂11

]
=

4

∑
i=1

CiK1ieλiz +

[
a1

b1

]
z2 sin πz +

[
a2

b2

]
z sin πz

+

[
a3

b3

]
z cos πz +

[
0
b4

]
sin πz +

[
0
b5

]
cos πz

where the arbitrary constants Ci i = 1, ..., 4 can be determined by using the four boundary conditions
θ̂11 = φ̂11 = 0 at z = ± 1

2 .

3. Nonlinear Problem

3.1. Order of ε2δ0

In this case, we have:

42

(
∇2φ20 + θ20

)
= 0 (57)

∇2θ20 − R00 (42φ20)− R10 (42φ10) =
−→
B φ10 · ∇θ10 (58)

θ20 = φ20 = 0 at z = ±1
2

(59)
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We consider special solutions φ10n, θ10n of the linear system at order ε1δ0:[
φ10n
θ10n

]
=

[
φ̂10(z)
θ̂10(z)

]
hn(x, y) (60)

where:

φ̂10(z) =
√

2 cos πz, θ̂10(z) = 2
√

2π2 cos πz (61)

Multiplying (57) by φ10n and (58) by −R−1
00 θ10n, adding them and averaging over the whole layer

and, finally, applying (32), we obtain:

R10 = −

〈
θ10n

(−→
B φ10 · ∇θ10

)〉
〈θ10n (42φ10)〉

= 0 (62)

Multiplying (62) by Cn and taking the summation ∑N
n=−N , we find:

R10 = −1
2

〈
θ2

10∇ · ~u10
〉

〈θ10n (42φ10)〉
(63)

Equations (57)–(59) give the solutions for φ20 and θ20 :

φ20 =
N

∑
l,p=−N

F
(

z, φ̂lp

)
ClCphlhp + G(z), (64)

θ20 = −D2G(z)−
N

∑
l,p=−N

[
D2 − 2π2

(
1 + φ̂lp

)]
F
(

zφ̂lp

)
ClCphlhp (65)

where:

φ̂lp =
~Kl · ~Kl

π2 , D ≡ d
dz

(66)

G(z) =
π

4
sin πz, F

(
z, φ̂lp

)
=

π

4

(
1 + φ̂lp

)
sin 2πz[

2 +
(

1 + φ̂lp

)
+ 1

2

(
1 + φ̂lp

)2
] (67)

For the two-dimensional case, (64)–(67) become (since N = 1, Cl = Cp = 1/
√

2, h1 = eiπx,
h−1 = e−iπx, l = ±1, p = ±1):

φ20 = π
4
(
1 + cos 2αx

3
)

sin 2πz (68)

θ20 = π3 sin 2πz− π
6

[
d2

dz2 − 4π2
]

sin 2πz
2 cos 2αx

= π3 (1 + 2 cos 2αx
3

)
sin 2πz (69)

3.2. Order of ε2δ1

In this case, we have:

42

(
∇2φ21 + θ21

)
= 0 (70)

∇2θ21 − R00 (42φ21) = R11 (42φ10) +
−→
B φ11 · ∇θ10 +

−→
B φ10 · ∇θ11 (71)

θ21 = φ21 = 0 at z = ±1
2

(72)
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Multiplying (70) by φ10n and (71) by −R−1
00 θ10n, adding them and averaging over the whole layer,

we obtain:

R11 = −

〈
θ10n

(−→
B φ11 · ∇θ10 +

−→
B φ10 · ∇θ11

)〉
〈θ10n (42φ10)〉

(73)

where:

−→
B φ · ∇θ ≡ ∂2φ

∂x∂z
∂θ

∂x
+

∂2φ

∂y∂z
∂θ

∂y
− (42φ)

∂θ

∂z

≡ u
∂θ

∂x
+ v

∂θ

∂y
+ w

∂θ

∂z
(74)

For two-dimensional flow, R11 = 0. The present work presents the two-dimensional case, but
we have provided the formulation for a general three-dimensional study so that it can be useful for
future extension.

Next, the solvability condition at order ε3 yields:

−R20 〈θ∗10n (42φ10)〉 =
[〈

θ∗10n

(−→
B φ10 · ∇θ20 +

−→
B φ20 · ∇θ10

)〉]
(75)

Furthermore, the heat flux (heat transported by convection) can be estimated as follows:

Heat Flux = Hc = 〈wθ〉 ≈ α2 (R− R00 − δR01)

〈
φ̂10 θ̂10

〉
R20

(76)

For the two-dimensional case:

Hc = 2
(

R− 4π2 − δR01

)
, R20 = π4 (77)

Using (34) in (77), we find that for the given value of R, the heat flux is higher for negative values
of ξ1 and ζ1, while the heat flux is lower for positive values of these parameters.

4. Results

4.1. One-Dimensional Results for the Vertical Dependence of Linear Solutions:

In all our computations, the values of δ and ε used are 0.8 and 0.1, respectively. We have chosen
0.8 as the value of δ, even though it is assumed mathematically that δ � 1, in order to make the
effects due to variable hydraulic resistivity and diffusivity more visible in the graphs of the figures.
Similar types of graphical considerations are made in other research areas. For example, Anderson and
Worster [25] studied thin mushy layers with thickness δ� 1, but in their graphical representations,
they chose δ = 0.5 in order to show more visibly the effect of δ in their results.

The zeroth order solutions W10(z) and θ10(z) are displayed below in Figure 1.
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Figure 1. Zeroth order solutions W10(z).

It can be seen from this figure that vertical profiles of the linear flow quantities to zeroth order in
δ, which are independent of ξ1 and ζ1, are symmetric with respect to mid-plane at z = 0. The following
graph in Figure 2 displays W11(z), whereas Figure 3 displays θ11(z) for different ξ1 keeping ζ1 fixed
for positive values of ξ1 and ζ1.
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Figure 2. Solutions W11(z) for positive ξ1.
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Figure 3. Solutions θ11(z) for positive ξ1.

It can be seen from Figures 2 and 3 that vertical profiles for flow quantities to first order in δ,
which are dependent on ξ1 and ζ1, have lost their symmetry with respect to mid-plane flow and are
stabilizing for ξ1 > 0. The following graph in Figure 4 displays W11(z), whereas Figure 5 displays
θ11(z) for different values of ξ1 keeping ζ1 fixed for negative values of ξ1 and ζ1.
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Figure 4. Solutions W11(z) for negative ξ1.
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Figure 5. Solutions θ11(z) for negative ξ1.

A similar asymmetry property holds here for Figures 4 and 5. Figures 6 and 7 present the linear
solutions ε (W10(z) + δW11(z)) and ε (θ10(z) + δθ11(z)) with ξ1 = 0.4 and ζ1 = 0.5.

It can be seen from Figures 6 and 7 that the vertical profiles of linear flow quantities up to order
δ2 are slightly asymmetric due to the order δ quantities. Similar asymmetry is evident in Figures 8
and 9. Figures 8 and 9 present the linear solutions ε (W10(z) + δW11(z)) and ε (θ10(z) + δθ11(z)) with
ξ1 = −0.5 and ζ1 = −0.4.
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Figure 6. Linear 1D solution for W, i.e., ε (W10(z) + δW11(z)).
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Figure 7. Linear 1D solution for θ, i.e., ε (θ10(z) + δθ11(z)).
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Figure 8. Linear 1D solution for W, i.e., ε (W10(z) + δW11(z)).
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Figure 9. Linear 1D solution for θ i.e., ε (θ10(z) + δθ11(z)).
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It can be seen from the presented linear results for the vertical dependence of the vertical velocity
that for positive values of the vertical rate of change of the aquifer parameters (hydraulic resistivity and
diffusivity), the magnitude of the vertical velocity decreases, which can imply flow stability, while an
instability of the flow can result if such a vertical rate of change of the aquifer parameters is negative.

4.2. Two-Dimensional Results for W10(x.z), θ10(x, z), W11(x, z), θ11(x, z), W20(x, z) :

The two-dimensional zeroth order solution for W10(x, z) is shown in Figure 10, whereas Figure 11
displays the result for zeroth order solutions θ10(x, z).

2D Solution: Contribution from W
10

(x,z)
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0.3

0.4

0.5

z

Figure 10. Solution for W10(x, z).

2D Solution: Contribution from 
10

(x,z)
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0.4

0.5
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Figure 11. Solution for θ10(x, z).

Two-dimensional views of flow quantities to zeroth order in δ show periodic behavior with
period 2in the horizontal direction for a given z, while symmetric behavior in the vertical for a given x.
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All the following results (Figures 12 and 13) are for the parameters ξ1 = 0.4 and ζ1 = 0.5. Figure 12
presents the 2D linear solution ε(W10(x, z) + δW11(x, z)).

Linear Solution in 2D: W(x,z) for 
1
=0.4, 

1
=0.5

0 0.5 1 1.5 2 2.5 3

x
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-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

z

Figure 12. Linear 2D solution for W, i.e., ε (W10(x, z) + δW11(x, z)).

The linear solution ε(θ10(x, z) + δθ11(x, z)) is shown in Figure 13.
The results presented by these two figures show the same periodicity as in Figures 10 and 11,

but with asymmetric behavior in the vertical for a given x. Similar behavior is evident in the next
two Figures 14 and 15.

All the following results (Figures 14 and 15) are for the parameters ξ1 = −0.5 and ζ1 = −0.4.
Figure 14 presents the 2D linear solution ε (W10(x, z) + δW11(x, z)).

Linear Solution in 2D: (x,z) for 
1
=0.4, 

1
=0.5

0 0.5 1 1.5 2 2.5 3
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0.2

0.3

0.4

0.5

z

Figure 13. Linear 2D solution for θ, i.e., ε (θ10(x, z) + δθ11(x, z)).
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Linear Solution in 2D: W(x,z) for 
1
= - 0.5, 

1
= - 0.4
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Figure 14. Linear 2D solution for W, i.e., ε (W10(x, z) + δW11(x, z)).

The linear solution ε (θ10(x, z) + δθ11(x, z)) is shown in Figure 15.
Figure 16 presents the nonlinear solutions ε (W10(x, z) + δW11(x, z) + εW20(x, z)) with two sets

of ξ1 = 0.4 and ζ1 = 0.5.
The two-dimensional profile of the nonlinear vertical velocity shows the same periodicity in the

x-direction, and the vertical velocity shows slightly asymmetric behavior in the vertical direction for a
given x value.

Linear Solution in 2D: (x,z) for 
1
= - 0.5, 

1
= - 0.4
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0.4

0.5

z

Figure 15. Linear 2D solution for θ, i.e., ε (θ10(x, z) + δθ11(x, z)).
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Nonlinear Solution in 2D: W(x,z) for 
1
=0.4, 

1
=0.5
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Figure 16. Nonlinear 2D solution for W, i.e., ε (W10(x, z) + δW11(x, z) + εW20(x, z)).

5. Conclusions

We investigated the problem of weakly nonlinear two-dimensional convective flow in a horizontal
aquifer layer with horizontal isothermal and rigid boundaries. As in the application of such problems in
the case of groundwater flow, we treated such a layer as a porous layer, where Darcy’s law holds, subject
to the conditions that that the porous layer’s permeability and the thermal conductivity are variable in
the vertical direction. The vertical axis is chosen positive in the upward direction anti-parallel to the
force of gravity. In addition, our present study is restricted to the case that the subsequent hydraulic
resistivity and diffusivity have small rates of change with respect to the vertical variable. We applied
a weakly nonlinear approach, assuming a motionless and at most vertically-variable basic state and
calculated the solutions for convective flow quantities such as vertical velocity and the temperature
that arise as the Rayleigh number R exceeds its critical value Rc.

We found that for the case where the vertical rate of either hydraulic resistivity or diffusivity is
positive, then the convective flow is stabilizing, while the flow is destabilizing when the vertical rate
of such quantities is negative. The results for the flow velocity indicated that asymmetry is projected
due to variations of the hydraulic resistivity or thermal diffusivity. Our results also demonstrate the
presence of a non-homogeneous effect in the aquifer layer, which is known to exist due to variations in
permeability and/or thermal diffusivity. The heat transported by convection increases if the vertical
rate of change of either hydraulic resistivity or thermal diffusivity decreases as z increases, while
the heat flux due to convection decreases if the vertical rate of change of such quantities increases as
z increases.

It should be noted that the present investigation of the aquifer layer was restricted, in particular,
to the two-dimensional flow case. However, the present aquifer layer problem with small variations
in thermal conductivity or permeability indicated possible flow structure in the form of hexagons,
which will be left as one of our future subjects of investigations. In the case of multilayer porous media,
we can explore in the future the possibility of the existence of stable hexagonal cells.
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