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Abstract: Geostrophic turbulent eddies play a crucial role in the oceans, mixing properties such as
heat, salt, and geochemical tracers. A useful reduced model for geostrophic turbulence is barotropic
(2D) turbulence. The focus of this study is on 2D β-plane turbulence with quadratic drag, which,
although arguably the most realistic barotropic model of ocean turbulence, has remained unexplored
thus far. We first review and test classical scaling arguments for the eddy diffusivity in three regimes:
the strong friction limit, the weak friction/strong β limit, and a transition regime. We then develop
a generalized theory by parameterizing the nonlinear eddy–eddy interactions as a stochastic process,
which leads to an analytical solution for the eddy diffusivity spectrum, whose integral yields a “bulk”
diffusivity. The theory successfully predicts the smooth transition of diffusivity across the three
regimes, and echoes with the recent argument that eddy phase propagation relative to the mean flow
suppresses the eddy diffusivity. Moreover, the generalized theory reduces to the classical scaling
arguments in both the strong friction and strong β limits, which has not been clear from the previous
work on diffusivity suppression by flow-relative phase propagation.

Keywords: barotropic turbulence; mixing length theory; eddy parameterization; eddy diffusivity;
mixing suppression

1. Introduction

Geostrophic turbulent eddies are crucial in geophysical fluids for the transport and mixing of
properties. However, in the earth’s oceans, they cannot be fully resolved by current global climate
models, due to their relatively small size [1]. Therefore, their representation has to rely on adequate
eddy parameterization schemes [2–4]. A common practice to parameterize sub-grid scale turbulence
is to employ a diffusive closure, which assumes that unresolved eddy fluxes can be related to the
large scale mean gradient via an eddy diffusivity. The eddy parameterization problem then comes
down to expressing the eddy diffusivity based on resolvable large scale quantities. This paper aims to
improve parameterizations for the eddy diffusivity by studying 2D turbulence as a reduced model for
geostrophic turbulence.

2D turbulence is characterized by an inverse energy cascade. Once kinetic energy (KE) is created
by forcing at small scales, it will be transferred to larger scales via nonlinear eddy–eddy interactions,
which will become increasingly slow as the scale increases. If large scale friction is present, a steady
state can be achieved when the nonlinear interaction becomes as slow as the energy dissipation rate by
friction, and the cascade will be arrested at the so-called halting scale, where most of the energy will be
found [5].

The simplest case to study this phenomenon is f -plane turbulence with linear drag and forcing [6,7].
However, the f -plane approximation (i.e., the assumption of constant background vorticity) excludes
dynamics that are crucial to large-scale geophysical fluids, such as the formation of Rossby waves. This
limitation is overcome by the use of a β-plane approximation, which accounts for the importance
of the planetary vorticity gradient. Including β significantly complicates the problem by adding
a non-dimensional parameter. Moreover, the introduction of β can lead to anisotropy, where eddy
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kinetic energy (EKE) is channeled into zonal modes, creating strong zonal flows or jets [6,8–10] and
suppressing meridional mixing.

While a linear drag is mathematically convenient, turbulent dissipation in the ocean’s bottom
boundary layer is arguably better described by a quadratic drag [7,11]. In fact, presently a quadratic
drag is prevalently implemented in numerical ocean models [12–14]. An important distinction lies in
the dimensions: while a linear drag coefficient r provides a time scale (the inverse of the damping rate),
a quadratic drag coefficient CD has a dimension of inverse length in a barotropic model. (The effective
quadratic drag coefficient for a barotropic flow is related to the standard non-dimensional C∗D as
CD = C∗D/H, where H is the depth of the flow.) As pointed out by [7], the quadratic drag coefficient
by itself provides the halting scale in f -plane turbulence, which differs significantly from the linear
drag case. The more realistic case of β-plane turbulence with quadratic drag has remained unexplored
thus far and will be the focus of this work.

The two limit cases where either friction or β dominates can likely be understood from the existing
work. Assuming that β is unimportant in the strong friction limit, the conclusions drawn from f -plane
turbulence are expected to hold, such that the problem reduces to that studied by [7]. In this case, the
halting scale solely depends on CD. The turbulent flow in this regime is fully isotropic, which implies
the dominance of EKE over zonal mean KE, enabling the use of total KE as a good approximation
to EKE. Total KE in turn can readily be estimated from a balance between forcing and frictional
dissipation. Finally, the eddy diffusivity can be formulated based on mixing length theory [15].
Alternatively, the scaling relationship for the eddy diffusivity can be derived directly from dimensional
considerations, if we assume that β does not enter. In the strong β limit, on the other hand, we may
assume that friction only affects the zonal jets such that a characteristic turbulent eddy velocity can be
determined dimensionally based only on the energy cascade rate and β. Meanwhile, a characteristic
length scale is given by the so-called β scale, which again follows directly from dimensional arguments,
and is interpreted as the largest scale that is reached by the isotropic KE cascade. The product of the
thus obtained velocity and length scales provides a scaling for the eddy diffusivity, which has been
found to provide a useful approximation in simulations with large β and weak linear friction [6,9].

The regime where both friction and β matter (a transition regime) remains poorly understood,
despite its relevance to Earth’s ocean. Jansen et al. [14] investigate the diffusivity for baroclinic
turbulence in such an ocean-like transition regime and find that mixing is significantly suppressed by
the presence of β, even as the total KE remains dominated by the eddies.

A separate line of recent work has attempted to derive an expression for the eddy diffusivity
analytically by linearizing the equation of motion for a single wavenumber, κ, representing the energy
containing scale ([16], hereafter FN10; [17], hereafter NGFP; [18]; [19], hereafter KA14; [20], hereafter
SY14). The resulting expression highlights the importance of mixing suppression by the relative
propagation of eddies to the mean flow (hereafter “propagation-suppression argument”). Focusing
on idealized barotropic flows, SY14 points out that it is in fact the intrinsic Rossby wave phase speed,
arising from the meridional gradient of vorticity, that suppresses the eddy diffusivity. While all theories
thus point towards the suppression of mixing for large β, it is not obvious how exactly the expression of
FN10/NGFP/SY14 relates to the classical β-plane turbulence scaling arguments. We will show below
that this connection can only be recovered by noting that mixing in reality is not necessarily dominated
by the most energetic eddies. Adopting the linearization technique used in FN10, we have developed
a generalized theory for the full diffusivity spectrum in barotropic turbulence, whose integral yields
a “bulk” diffusivity that agrees with simulations across all three regimes. This generalized theory is
shown to reduce to the classical scaling relations for barotropic turbulence in the limit cases of strong β

and strong friction.
The idea of considering the full spectrum for the diffusivity is not new. Holloway and

Kristmannsson ([21], hereafter HK84) consider the full spectrum of eddy tracer flux for β-plane
2D turbulence. Their result highlights the importance of β in affecting the eddy flux spectrum both
by creating anisotropy and by introducing a competition between turbulence and wave propagation,
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which yields a suppression factor similar to that discussed by FN10. While providing great insight into
how Rossby wave propagation acts to suppress the eddy diffusivity, HK84 do not give a predictive
expression for the eddy diffusivity, as the results depend on unknown nonlinear transfer timescales
as well as an anisotropy parameter. Chen et al. [22] propose a related way to estimate the eddy
diffusivity taking into account the multi-scale nature of eddy and mean flow velocities. However, their
formulation requires detailed knowledge of the flow field, and therefore remains a highly diagnostic
theory. Our work aims to provide a prognostic expression for the eddy diffusivity based solely on
external parameters.

This study has four main goals: (1) document the results of a numerical exploration of barotropic
turbulence on a β-plane with quadratic drag; (2) test previously proposed scaling arguments for
the eddy diffusivity in the friction regime [7], in the β regime [9], and in the transition regime [14];
(3) develop a generalized theory for the eddy diffusivity based on the propagation-suppression
argument of FN10; and (4) clarify the connection between the propagation-suppression theory and the
classical scaling arguments for the eddy diffusivity in β-plane turbulence.

This paper is organized as follows. Section 2 introduces the equations of motion and the numerical
model used to solve them. Section 3 discusses and tests the classical scaling arguments for 2D
turbulence and mixing. In Section 4, we derive a generalized theory for the eddy diffusivity, building
on the propagation-suppression argument of FN10. Section 5 discusses the connections between the
generalized theory and classical scaling arguments, and Section 6 provides conclusions.

2. Equations of Motion and Numerical Model

We want to study the turbulent flow on a β-plane, described by the barotropic vorticity equation

∂q
∂t

+ J(ψ, q) + β
∂ψ

∂x
= F− CD

[
∂(|u|v)

∂x
− ∂(|u|u)

∂y

]
(1)

where q = ∇2ψ is the vorticity, ψ is the stream function, J(ψ, q) ≡ ∂xψ∂yq− ∂yψ∂xq is the Jacobian
operator, β is the background vorticity gradient, F is a small scale forcing that crudely represents the
generation of eddies by baroclinic instability, CD is a quadratic drag coefficient, and u ≡ (u, v) =

(−∂yψ, ∂xψ) is the velocity. A spectral filter (not explicitly included in Equation (1)) removes enstrophy
near the grid scale (see Appendix A).

To study turbulent transport, we consider a passive tracer advected by the turbulent flow, which
stirs up a constant meridional gradient g:

∂c
∂t

+ J(ψ, c) + g
∂ψ

∂x
= 0 (2)

where c is tracer concentration. Grid-scale variance is again removed using the same spectral filter as
for vorticity. The eddy diffusivity D is computed as

D = −〈v
′c′〉
g

(3)

where the overbar denotes a time mean and angle brackets indicate a domain average.
The numerical model used to solve Equations (1) and (2) uses a pseudo-spectral barotropic solver

in a doubly-periodic domain with size 2π × 2π and a real space resolution of 512× 512 grid points.
The forcing is located at total wavenumber 140 or 80 (differing between simulations), and is formulated
as a Markovian forcing, following [23]. Details of forcing, filter, and integration scheme are documented
in Appendix A. The model is integrated from a state of rest until a statistical equilibrium is reached.
The quantities β, CD, and the forcing amplitude are varied across a wide range of experiments.
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3. General Results and Scaling Arguments

In this section, we discuss scaling arguments for the eddy diffusivity based on classical β-plane
turbulence theory. We first discuss the qualitative role of β in affecting the inverse energy cascade and
turbulent mixing. Then, the scaling relations for mixing scale, eddy velocity, and eddy diffusivity are
reviewed, and tested against a series of numerical simulations. Notice that our discussion does not
explicitly distinguish between “stirring” and “mixing”, but assumes that down-gradient eddy fluxes
(which may more adequately be considered a result of “stirring”) generally lead to irreversible mixing
at the micro-scale [24,25].

The characteristic scales for quantities appearing in Equation (1) are

|u| ∼ u ∼ v ∼ U, x ∼ y ∼ L, q ∼ U
L

, ψ ∼ UL, Fψ ∼ ε (4)

where the last term ε is the energy cascade rate that describes how fast KE is created by F at small
scales and then inversely cascaded upscale (see Appendix A for more details). Ignoring the size of the
domain, and the forcing scale, the only external parameters in this system are CD, β, and ε. Noting that
we have two independent dimensions (length and time), Buckingham π theorem implies the existence
of one non-dimensional number, which we call µ:

µ ≡ ε−1/5β3/5C−1
D (5)

µ describes the importance of β relative to CD and is the only factor controlling the transition between
different regimes. We shall point out that we have carefully chosen the range of parameters in our
simulations such that the energy containing scale and the scales most relevant for eddy fluxes are
significantly larger than the forcing scale, but smaller than the domain size, such that neither should
interfere much with the scaling expressions presented hereafter.

3.1. General Results

We start by looking at three typical simulations from the three regimes discussed in the
introduction (Figure 1). The three rows in Figure 1 show simulations with µ = 14.3, 98.8, and 782.9,
which puts them into the friction, transition, and β regime, respectively. In addition to KE, we show
spectra of eddy diffusivity, defined as the ratio of the eddy tracer flux cross spectrum to the background
mean gradient of the passive tracer, g:

D(κ) ≡ ∑
k2+l2=κ2

D(k, l), where D(k, l) = −
Re
(

v̂k,l · ĉ∗k,l

)
g

(6)

where the hat denotes Fourier transforms, ∗ denotes the complex conjugate, and (k, l, κ) are zonal,
meridional, and total wavenumbers, respectively. The summation amounts to a (discretized)
integration in wavenumber space along circles with fixed total wavenumber. The diffusivity spectrum
shows at which scale most of the eddy transport occurs. In the following, we will refer to this scale as
the “mixing scale”, κml . Quantitatively, we define the mixing scale based on the inverse centroid of the
diagnosed diffusivity spectrum:

κms ≡
∫ ∞

0 D(κ)dκ∫ ∞
0

D(κ)
κ dκ

(7)

where the inverse centroid is chosen over the centroid because it better captures the peak of
the spectrum.
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Figure 1. (a) total and eddy kinetic energy spectra and eddy diffusivity spectrum as functions of total
wavenumber κ in three simulations, with the same ε and CD but varied β. (b) snapshots of stream
function in the three corresponding simulations, where yellow and blue color denotes positive and
negative values, respectively.

Figure 1 contains rich information about the flow and eddy transport in each regime. The flow
in the upper panel is in the friction regime so the energy spectrum is similar to f -plane turbulence,
with a relatively smooth energy peak and nearly complete overlap between EKE and total KE, as the
flow is highly isotropic (see also right panels). The mixing scale is larger than the energy containing
scale by roughly a factor of 2, due to the dependence of the diffusivity on the KE spectrum and on
the wavenumber itself, as previously suggested by HK84. Mixing length theory [15] suggests that the
diffusivity spectrum can be estimated as

Dml(κ) ∼ E(κ)1/2κ−3/2 (8)

where the subscript “ml” stands for “mixing length” theory. Equation (8) shows that a shift of the
peak in the eddy diffusivity spectrum, as compared to the EKE spectrum, results directly from the
inverse wavenumber dependency of the eddy diffusivity (given a smooth peak in the spectrum).
A quantitative test and modification of this argument will be discussed in Section 4.

As µ increases, the flow enters the transition regime (middle panel). In this case, β starts to
suppress mixing, as reflected by the reduction in the eddy diffusivity at large scales. Nevertheless,
EKE remains the primary component of total KE, as can be seen from the similarity between the EKE
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and total KE spectrum in the left panel, as well as by noting that the flow field shown in the right panel
remains largely isotropic.

Finally, in the β regime, the flow properties change significantly due to the dominant importance
of β. The EKE spectrum significantly deviates from the total KE spectrum near the energy containing
scale and at larger scales, reflecting the channeling of KE into zonal jets. This is also illustrated in the
right panel, which clearly shows alternating zonal jets. Moreover, the eddy diffusivity is substantially
reduced, and the peak in the diffusivity spectrum is now at smaller scales than the peak of the EKE
spectrum, consistent with the results of HK84.

3.2. Regime-Based Diffusivity Scaling Expressions

In this section, scaling relations for the eddy velocity, mixing scale, and eddy diffusivity are
presented using both physical and dimensional arguments. The results from the scaling relations are
compared to the numerical simulations.

3.2.1. Friction Regime

The friction regime emerges at small µ, where β can be neglected, and the flow essentially behaves
like f -plane turbulence. In this case, the mixing scale is expected to scale with the energy containing
scale (although it is typically slightly larger), which, in turn, is given directly by the quadratic drag
coefficient CD, as documented in [7]:

L ∼ 1
CD

, κ f rc ∼
1
L
∼ CD (9)

κ f rc is shown in Figure 2a, which compares the diagnosed mixing scale with various scales from the
scaling arguments. Notice that the scaling arguments only predict the slope of the various lines in
Figure 2. Non-dimensional factors have been chose to match the data, and absorbed into the definition
of κ f rc and U f rc (see below). The frictional scaling adequately predicts a flattening of the dependence
of the mixing scale on µ at small µ. However, total independence of µ (and thus β) is arguably never
obtained over the considered parameter range.
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Figure 2. Testing the scaling expressions for the mixing scale and eddy velocity (defined here as the
domain-averaged root mean square eddy velocity). The non-dimensional mixing scale (a) and eddy
velocity (b) are plotted as a function of the non-dimensional parameter µ. Various scaling relations are
indicated with colored lines (see legend and text). Vertical black dashed lines indicate the boundaries
between different regimes.
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The characteristic eddy velocity is determined based on the EKE budget, which in the friction
regime is well approximated by the total KE budget. The KE budget can be derived by multiplying
Equation (1) by −ψ and integrating over the whole domain:

∂EKE
∂t
≈ ∂KE

∂t
= −

∫
ψ

∂q
∂t

dA = −
∫

ψFdA + CD

∫
ψ

[
∂(|u|v)

∂x
− ∂(|u|u)

∂y

]
dA (10)

In steady state, the time derivative term in Equation (10) drops out, and using Equation (4) we
find a scaling relationship between the energy cascade rate, the bottom drag, and the eddy velocity as

U f rc ∼ (
ε

CD
)1/3 (11)

which is shown in Figure 2b. U f rc provides an accurate prediction of eddy velocity in the friction
regime. Combing Equations (9) and (11), we recover the scaling expression for the eddy diffusivity in
the friction regime by [7]:

D f rc ∼
U f rc

κ f rc
∼ ε1/3

C4/3
D

(12)

Notice that Equation (12) can also be derived based on purely dimensional analysis: since β is
assumed to be negligible in the friction regime, it shall not appear in the scaling for the eddy diffusivity,
in which case the only dimensionally feasible way to express D f rc is Equation (12).

The scaling relation predicted by Equation (12) is shown in Figure 3 (red solid line), where eddy
diffusivities have been non-dimensionalized using CD and ε. The non-dimensional expression for the
predicted eddy diffusivity in the friction regime then becomes

D̃ f rc ∼ 1 = µ0 (13)

which captures the distribution of the eddy diffusivity in the friction regime reasonably well. A slight
overestimation of the diffusivity near the right boundary of the friction regime arises from the
overestimate of the mixing scale as shown in Figure 2a. Notice again that the scaling relationship only
predicts the slope of the lines in Figure 3, while absolute values were chosen to match the simulations.
Also notice that the non-dimensional parameter, µ, captures most, but not all of the spread among
different simulations. The remaining spread between simulations is likely explained by the role of the
forcing scale and domain size, whose relevance cannot be completely eliminated due to numerical
constraints on the resolution and domain size.

3.2.2. β Regime

If µ is very large, the flow enters the β regime. While friction necessarily remains important
to dissipate KE, it has been argued that the bulk of the dissipation occurs in zonal jets, while the
properties of the turbulent eddy field become independent of friction [9]. If CD shall not appear in the
scaling expression, the only dimensionally feasible way to express a length scale is

L ∼ ε1/5β−3/5, κβ ∼
1
L
∼ ε−1/5β3/5 (14)

which is called the β scale. κβ is generally interpreted as the crossover scale between isotropic and
anisotropic (wave-)turbulence. For scales smaller than the β scale, the β effect remains negligible and
the flow is isotropic. For scales larger than the β scale, however, the Rossby wave frequency becomes
higher than the eddy turnover rate (defined as the ratio of the eddy velocity to eddy scale), leading to
anisotropic flows, where wave-like disturbances co-exist with zonal jets [6,9,26]. Since linear waves
and jets are not expected to contribute significantly to mixing, κβ provides an obvious candidate for
the mixing scale.
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The idea that the β scale provides the mixing scale in β-plane turbulence has been documented
and tested in previous studies [6,9], albeit using a linear rather than a quadratic drag. If eddy properties
indeed become independent of friction, we may expect the results to apply similarly in the case of
quadratic drag, which is confirmed by our simulations. As shown in Figure 2a, κβ provides an accurate
prediction for the mixing scale in the β regime.

The characteristic eddy velocity at the β scale can be determined from the Kolmogorov –5/3
spectrum (hereafter “Kolmogorov spectrum”), which applies in the inertial range of isotropic
turbulence and thus at scales up to κβ:

E(κ) = Kε2/3κ−5/3 (15)

where K = 8 is the non-dimensional Kolmogorov constant. Uβ can therefore be estimated as

Uβ ∼
√

E(κβ)κβ ∼ ε2/5β−1/5 (16)

Notice that Uβ is not necessarily the full root mean square eddy velocity but rather the
characteristic velocity at κβ, where energy is thought to be converted into both waves (that do not
contribute to mixing, but do contribute to EKE) and jets (that do not contribute to either mixing or
EKE). Nevertheless, Equation (16) qualitatively predicts the reduction of EKE at large β (as shown by
the dash-dotted green line in Figure 2b).

Combining Equations (14) and (16), we obtain a relationship for the eddy diffusivity as:

Dβ ∼
Uβ

κβ
∼ ε3/5

β4/5 (17)

Again, Equation (17) can also be retrieved directly from dimensional considerations by assuming
that Dβ is independent of CD, but the derivation presented above highlights that the suppression
of eddy diffusivity in the β regime arises from the role of β in suppressing mixing at wavenumbers
smaller than κβ.

Using the non-dimensional formulation, Dβ becomes:

D̃β ∼ ε4/15β−4/5C4/3
D = µ−4/3 (18)

which successfully captures the distribution of the eddy diffusivity (green dash-dotted line in Figure 3).
Notice that our non-dimensional parameter, µ, can be related to the friction and β scale as

µ ≡ ε−1/5β3/5C−1
D ∼

κβ

κ f rc
(19)

which makes its physical meaning clearer: while a small µ suggests the inverse cascade is arrested
at κ f rc, a large µ indicates the termination of the isotropic cascade at κβ. However, notice that the
absolute value of µ has to be handled with care when identifying regime transitions, as the relevant
non-dimensional factors can easily be O(10) or larger. In particular, we note that the frictional halting
scale is in fact well approximated as κ f rc = 40CD (roughly consistent with the results of [7]).
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friction regime

transition regime

 regime
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Figure 3. Diagnosed and predicted eddy diffusivity based on scaling arguments. The x-axis is the
non-dimensional parameter µ, the y-axis shows the non-dimensionalized eddy diffusivity. Black
crosses are the diagnosed diffusivity from numerical simulations; colored lines denote the predicted
eddy diffusivity for the three regimes; vertical black dashed lines indicate the boundaries between
different regimes.

3.2.3. Transition Regime

The most realistic scenario for Earth’s ocean is one where both friction and β are important —
a transition regime between the strong β and strong friction limits. Analyzing idealized simulations
of baroclinic turbulence in a parameter regime thought to be crudely representative of the Southern
Ocean, Jansen et al. [14] find that EKE remains controlled by bottom friction, similar to the friction
regime, while mixing is nevertheless suppressed significantly by the presence of β. The notion that
EKE remains controlled by bottom friction throughout most of the transition regime is supported by
the results in Figure 2b, which shows that the diagnosed eddy velocity is well approximated by U f rc
throughout most of the transition regime. The important role that β plays in suppressing eddy fluxes
in the transition regime is also qualitatively consistent with the results in Figures 2a and 3.

Quantitatively, Ref. [14] suggests that a useful estimate of the eddy diffusivity is given by the
product of the root mean square eddy velocity and the Rhines scale:

κR ∼
√

β

U
≈
√

β

U f rc
(20)

which yields:

Dtr ∼
U f rc

κR
∼ ε1/2

β1/2C1/2
D

(21)

The non-dimensional form of Dtr is again shown in Figure 3:

D̃tr ∼ ε1/6β−1/2C5/6
D = µ−5/6 (22)

Equation (22) captures the first order distribution of the eddy diffusivity in the transition regime.
Nevertheless, notice that the eddy diffusivity in the transition regime is actually smoothly distributed
along a curve, rather than following a straight line, indicating the limitations of using a single
power-law scaling relation to represent the eddy diffusivity in this regime.
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4. A Generalized Theory for the Eddy Diffusivity

The scaling arguments above are a useful starting point but fail to capture the smooth transition of
diffusivity between regimes, thus relying on a somewhat arbitrary specification of regime boundaries.
The scaling argument is particularly unsatisfying in the (oceanographically relevant) transition regime
where the eddy diffusivity does not follow a power law (Figure 3). This motivates us to develop a more
general expression for the diffusivity, which captures the behavior across all regimes.

In this section, we adopt the linearization method in FN10 to derive a generalized expression for
the eddy diffusivity in barotropic turbulence and compare it with the scaling arguments discussed
above. In addition to providing a generalized expression for the eddy diffusivity, the result helps to
reconcile the propagation–suppression argument of FN10 with the classical scaling arguments for the
eddy diffusivity in the friction and β regimes.

4.1. A Stochastic Model for Nonlinear Eddy–Eddy Interactions

In FN10, the authors obtain an analytical solution for eddy diffusivity in a surface
quasi-geostrophic model for a single wavenumber, which is interpreted as the energy containing
scale. Their method is to linearize the nonlinear eddy–eddy interaction as a combination of a stochastic
white noise forcing and a linear damping process. Here, we want to use this parameterization not only
for a single wavenumber but at every wavenumber pair (k, l). In spectral space, the Jacobian term
thus becomes

Ĵ(ψ, q) = −Q
√

γ · r1(t) + γq̂ (23)

where the hat denotes the Fourier transform, Q is the amplitude of the stochastic forcing and has the
same dimensions as q̂, γ is a linear damping rate that describes the decorrelation due to nonlinear
eddy–eddy interactions, and r1(t) is a white noise process. Q and γ in general can also be functions
of k and l. Physically, the forcing term represents how enstrophy is transferred into the respective
wavenumber by nonlinear eddy–eddy interactions, while the damping represents transfer to other
wavenumbers. The factor

√
γ in the forcing term in Equation (23) is included such that Q gives the

amplitude of the generated vorticity perturbation.
Similarly, we parameterize the Jacobian term in Equation (2) as

Ĵ(ψ, c) = −C
√

η · r2(t) + ηĉ (24)

where C is the forcing amplitude, η is the tracer’s linear damping rate, and r2(t) is again a white noise
process, assumed to be independent of r1(t). η may or may not be the same as γ (see also discussions
in HK84 and SY14). Notice that FN10 does not consider forcing and damping in the tracer equation,
arguably consistent with the assumption that stirring is dominated by a single most energetic wave.

With these parameterizations, Equations (1) and (2) can be formulated in spectral space as

∂q̂
∂t

+ ikβψ̂ = Q
√

γ · r1(t)− γq̂ (25)

∂ĉ
∂t

+ ikgψ̂ = C
√

η · r2(t)− ηĉ (26)

The forcing term F̂ that appears originally on the right-hand side of Equation (25) has been
dropped as we are here only interested in scales larger than the forcing scale. The quadratic drag
term is also ignored because its amplitude turns out to be negligible at scales near or smaller than the
mixing scale.

Solving Equation (25) yields the stream function (see also Appendix B):

ψ̂(t) = −
Q
√

γ

κ2

∫ ∞

0
r1(t− t1) exp[(

ikβ

κ2 − γ)t1]dt1 (27)
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The EKE at wavenumber (k, l) can then be computed as (see Appendix C)

E(k, l) =
1
2
|κψ̂|2 =

Q2

4κ2 (28)

Using Equations (2) and (27), we can solve for the tracer concentration:

ĉ(t) = C
∫ ∞

0
r2(t− t2)e−ηt2dt2 +

ikgQ
√

γ

κ2

∫ ∞

0

∫ ∞

0
r1(t− t3− t4) exp

[
(

ikβ

κ2 − γ)t4 − ηt3

]
dt3dt4 (29)

Together with Equation (27), the mean meridional eddy tracer flux at wavenumber (k, l) can be
computed as (see Appendix C)

Re
(
v̂ · ĉ∗

)
= − k2Q2g

2κ4 · (γ + η)

(γ + η)2 + k2β2

κ4

(30)

Consequently, the eddy diffusivity spectrum at wavenumber (k, l) can be written as

Dk,l ≡ −
Re
(
v̂ · ĉ∗

)
g

=
2k2

κ2 ·
1

1 + k2β2

κ4 · 1
(γ+η)2

· E(k, l)
γ + η

(31)

Equation (31) is similar to Equation (20) in HK84 (after dividing their equation by the meridional
tracer gradient).

The last factor on the right-hand side of Equation (31), E(k, l)/(γ + η), gives the “unsuppressed”
eddy diffusivity spectrum, with the decorrelation rate given by the combined nonlinear eddy damping
rate of the vorticity and tracer variance. The first factor, 2k2/κ2, accounts for the anisotropy of
turbulence. The suppression is given by the central factor, which describes the reduction of the
effective decorrelation timescale below the nonlinear eddy damping timescale (γ + η)−1, due to the
effect of the intrinsic Rossby wave frequency ω = kβ/κ2 (see also [18]). Equation (31) shows that eddy
phase propagation relative to the mean flow (which controls the wave frequency) will suppress the
diffusivity, as pointed out by HK84, FN10, NGFP, and SY14.

In its present form, Equation (31) requires knowledge of the full two-dimensional EKE spectrum,
which makes it not very useful for practical purposes. As a first step to simplify the expression to
a more useful relationship, we want to reduce it to an equation for the one-dimensional diffusivity
spectrum D(κ):

D(κ) =
1

1 + β2

2κ2(γ+η)2

· E(κ)
γ + η

(32)

where we have made the simplifying substitution that k2/κ2 = 1/2, following FN10. This formally
implies the assumption that the EKE is located along the diagonals with |k| = |l| in wavenumber
space, which is not realistic. A somewhat more realistic assumption would be to assume that EKE
is isotropic in wavenumber space, a case that has been discussed by HK84 and SY14. However, in
practice, we find that the difference between the solutions arising from the two assumptions is small.
We therefore proceed with the assumption of FN10, which simplifies the algebra considerably.

4.2. Relating Eddy Diffusivity to the Eddy Kinetic Energy (EKE) Spectrum

Following FN10, the nonlinear eddy damping rate γ can be interpreted as the eddy turnover rate,
which scales as

γ ∼ E(κ)1/2κ3/2 (33)
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We will similarly assume that η scales with the eddy turnover rate, which allows us to combine
the two as

γ + η = c1E(κ)1/2κ3/2 (34)

where c1 is a non-dimensional constant of proportionality. We here simply set c1 = 1, which provides
a reasonably good fit to the results of the numerical simulations in the strong friction limit, where the
suppression factor is less important. However, since this is not a priori clear, we will include the
parameter c1 in all following equations for generality.

Substituting Equation (34) into Equation (32) gives

Dd(κ) =
1
c1
· E(κ)1/2κ−3/2

1 + β2

2c2
1E(κ)κ5

≡ 1

1 + β2

2c2
1E(κ)κ5

· Dml(κ) (35)

where the superscript d indicates that the diagnosed EKE spectrum, E(κ), is used.
Figure 4 shows Dd(κ) for the same three simulations as previously discussed in Figure 1.

The generalized theory provides a useful prediction for the diffusivity spectrum, giving a considerably
better fit than the unsuppressed mixing length theory, Dml(κ), in the transition and (especially) β

regime. However, Dd(κ) still overestimates the eddy diffusivity in the β regime, i.e., when µ is large.
The reasons for this overestimation remain unclear to the authors. The role of the anisotropy does

not appear to explain the misfit: no significant improvement is found when using the equation for
the full 2D diffusivity spectrum D(k, l) with the diagnosed 2D EKE spectrum (not shown). Another
potential candidate is the vorticity gradient associated with the jets. However, over the parameter
regime considered here, this gradient remains relatively small compared to β, suggesting that this
effect is unlikely to explain the observed discrepancy. Another possible cause for discrepancy lies in
the spatial inhomogeneity. As pointed out by Nakamura [25], significant variations in the meridional
gradient of zonal mean vorticity can create large differences between the arithmetic and the harmonic
meridional mean of the diffusivity, with the latter arguably being more relevant. However, this is only
able to explain up to about 20% of the difference between the diagnosed and predicted diffusivity,
hence leaving it as a minor factor.

We speculate that one possible explanation for the misfit is that the nonlinear decorrelation rate
γ itself needs to be altered as the eddies become more wave-like. Additionally, the meridional shear
of the zonal velocity, created by the formation of jets, may suppress the eddy diffusivity when µ

is large: we find that the shear at the flanks of the jets is comparable to the eddy turnover rate γ

(not shown). Unfortunately, we did not find a way to quantitatively incorporate these factors into our
theory, without making the model overly complicated. SY14 include the suppression of mixing by
a constant background shear in their linearized model, but even with the simplifying assumption of
a given constant background shear, the expressions become highly involved.

In practice, we find that an improved fit can be obtained by including an empirical factor, c2 = 5.5,
in front of the β2 term in Equation (31), which is shown by the dashed curves in Figure 4. c2 has been
chosen to provide a reasonable fit to the magnitude of the diffusivity in the β regime. Equation (35)
then becomes

Dd′(κ) =
1
c1
· E(κ)1/2κ−3/2

1 + c2β2

2c2
1E(κ)κ5

(36)

It is worth noting that FN10, albeit not explicitly discussing this issue, effectively include a similar
factor to enhance the suppression effect in their Equation (21) (From footnote 2 in FN10 and the text
below their Equation (17), one gets d2 = 4α2d2

1, where their d1 and d2 are proportional to our c−1
1 and

c2/c2
1, respectively. α here represents the ratio of the eddy phase speed to the surface current velocity.

In the Southern Ocean, we generally find 0 < α < 1, which leads to d2 < 4d2
1. However, combining

their Equations (19) and (21), one retrieves d1 = 0.32 and d2 = 4, implying that d2, which governs
the strength of the suppression, is chosen much larger than what is suggested by the theory. The
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adopted values for d1 and d2 therefore reflect the same need to enhance the suppression effect, which
in the current work is achieved by introducing the empirical factor c2.) Throughout the rest of this
manuscript, we will include this empirical factor, but for readability we will drop the prime sign in
the diffusivity.

10-6

10-4

D
(

)

(a) friction regime

diagnosed

D
ml

( )

Dd( )

Dd( ) w/ c
2

Dp( ) w/ c
2

10-7

10-6

10-5

10-4

10-3

D
(

)

(b) transition regime

100 101 102

total wavenumber 

10-7

10-6

10-5

10-4

D
(

)

(c)  regime

Figure 4. Diagnosed and predicted eddy diffusivity spectra for the same three simulations as in Figure 1
(see legend and text for an explanation of the different theoretical spectra). Notice that the prediction
Dp(κ) assumes no energy (and thus no eddy transport) at wavenumbers below the frictional halting
scale κ f rc.
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For practical purposes, we may be more interested in the total “bulk” diffusivity, as opposed to
the full diffusivity spectrum. The bulk diffusivity can be obtained by integrating Equation (35):

Dd =
∫ ∞

0
Dd(κ)dκ =

1
c1

∫ ∞

0

E(κ)1/2κ−3/2

1 + c2β2

2c2
1E(κ)κ5

dκ (37)

Equation (37) is compared against the numerical simulations in Figure 5: Dd successfully
reproduces the eddy diffusivity across all regimes, although it somewhat underestimates the diffusivity
in the transition regime. As a comparison, the prediction made by mixing length theory without the
suppression factor (Dml) is also plotted in Figure 5, which strongly underestimates the suppression of
the eddy diffusivity as µ becomes large.

101 102
10-4

10-3

10-2

generalized theory using diagnosed EKE spectrum

diagnosed

Dd  w/ c
2

D
sw

 w/ c
2

D
ml

Figure 5. As Figure 3, but showing the generalized theory for the eddy diffusivity using the diagnosed
eddy kinetic energy (EKE) spectrum (Dd), the “unsuppressed” mixing length theory(Dml), as well as
the single wavenumber theory based on FN10/NGFP (Dsw). The vertical black dashed lines are the
same regime boundaries as in Figures 2 and 3.

While providing a single bulk diffusivity, the prediction in Equation (37) is based on the entire
energy spectrum, which is the key aspect that distinguishes it from the approach of FN10/NGFP/KA14,
who focus on a single wavenumber representing the scale of the most energetic eddies. To demonstrate
the difference quantitatively, we compare our results to those obtained by evaluating Equation (31)
for a single wavenumber taken as the diagnosed energy containing scale κ0. κ0 is computed based on
the inverse centroid of the diagnosed EKE spectrum, similar to the way the mixing scale is calculated
(see Equation (7)):

κ0 ≡
∫ ∞

0 E(κ)dκ∫ ∞
0

E(κ)
κ dκ

(38)
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E(κ) is replaced by the diagnosed total EKE, and γ + η = c1
√

κ2EKE. Consistent with FN10 and KA14,
we still assume |k| = |l|. Including again the empirical factor c2, we obtain

Dsw =
1
c1
· 1

1 + c2β2

2c2
1κ4EKE

· EKE1/2

κ
(39)

where the subscript “sw” denotes the “single wavenumber” approximation. The results from
Equation (39) are also shown in Figure 5. The single wavenumber theory captures the distribution
of the diffusivity in the friction and transition regimes reasonably well. However, Dsw significantly
underestimates the diffusivity when µ gets large. This misfit can readily be understood by noting
that mixing is no longer dominated by the energy containing scale at large µ (see, e.g., the bottom
row of Figure 1). As the eddy diffusivity becomes strongly suppressed at the energy containing scale,
smaller-scale eddies, which are ignored in the single wavenumber approximation, maintain the bulk
of the mixing.

Figure 5 may also explain some of the discrepancy between the theory and observations found in
KA14. Figure 6 in KA14 suggests that the theory accurately predicts the eddy diffusivity only in the
Southern Ocean; at most other latitudes, the diffusivity is systematically underestimated. Meanwhile,
FN10 only focus on a sector in the Southern Ocean. It is plausible that the Southern Ocean falls within
a regime where the single wavenumber theory remains appropriate. In less energetic regions and at
lower latitudes, µ instead may be larger, causing the single wavenumber theory to overestimate the
mixing suppression.

4.3. Towards a Predictive Theory

Despite its success, Dd is not able to predict the diffusivity without the knowledge of E(κ).
We seek to close this problem by assuming that E(κ) can be approximated by the Kolmogorov spectrum
(Equation (15)) for κ ' κ f rc, while dropping rapidly to zero for κ < κ f rc. Generally, we may not expect
the Kolmogorov spectrum to extend all the way to κ f rc when β is large. However, since mixing at large
scales is strongly suppressed in this limit, the results are expected to depend only weakly on the choice
of the cut-off wavenumber. For the sake of simplicity, we therefore refrain from introducing another
halting scale for the energy spectrum. Combining Equations (15) and (35), we get:

Dp(κ) =

√
K

c1
· ε1/3κ−7/3

1 + 1
2Kc2

1
· c2β2

ε2/3κ10/3

(40)

where the superscript p indicates the use of the prognostic relation for E(κ). Equation (40) is assumed
to hold for κ ' κ f rc, while Dp(κ) = 0 is assumed for κ < κ f rc.

Dp(κ) is included in Figure 4, where it is denoted by red curves. Generally speaking, it is able
to capture the basic features of the diffusivity spectra, albeit with some caveats. First, Dp is unable
to predict the detailed shape of the spectrum near the mixing scale, which is unsurprising as the
Kolmogorov spectrum is not applicable outside of the inertial range. Second, as µ becomes large, Dp

overestimates the diffusivity at scales larger than the mixing scale. This ”over-reaching” to large scales
results directly from the use of the Kolmogorov spectrum all the way to κ f rc.

The bulk diffusivity can again be computed by integrating Dp(κ):

Dp ≈
∫ ∞

κ f rc

Dp(κ)dκ =

√
K

c1

∫ ∞

κ f rc

ε1/3κ−7/3

1 + 1
2Kc2

1
· c2β2

ε2/3κ10/3

dκ (41)
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The non-dimensional form of Dp plotted in Figure 6 is:

D̃p =

√
K

c1

∫ ∞

c0

κ̃−7/3

1 + c2
2Kc2

1
· ( µ

κ̃ )
10/3

dκ̃ (42)

where c0 ≡ κ f rc/CD = 40 and κ̃ ≡ κ/CD. c0 was chosen so as to provide a good fit to both the
diagnosed eddy diffusivity (Figure 6) and the mixing scale (Figure 2) in the limit of strong friction.

101 102

10-3

10-2

generalized theory using predicted EKE spectrum

diagnosed diffusivity

Dp  w/ c
2

scaling argument for friction regime

scaling argument for  regime

Figure 6. As Figure 5 but showing the closed generalized theory using the Kolmogorov spectrum to
predict the eddy kinetic energy (EKE) spectrum. The scaling arguments for the friction and β regimes
are also plotted in colored dashed lines.

D̃p is shown in Figure 6 and successfully reproduces the smooth transition of the diffusivity across
regimes. The diffusivity is slightly overestimated in the transition regime, which is contrary to the
result in Figure 5. The overestimate in the transition regime appears to be a result of the overestimate
of the large-scale EKE by the Kolmogorov spectrum, and is thus not unexpected. One could attempt to
include the effect of β in the formulation of the energy spectrum, but this would introduce at least one
additional free parameter. Considering the overall success of Equation (41), the benefit of such further
complications is questionable.

5. Connecting the Generalized Theory to Scaling Arguments

In this section, we will discuss the relationship between the generalized theory for the eddy
diffusivity, discussed in Section 4, and the scaling arguments discussed in Section 3. In particular, it
will be shown that the generalized theory reduces to the scaling arguments in the limits of strong
friction and strong β.

In the strong friction limit, µ is small, so that the second term in the denominator of the integrand
in Equation (42) can be neglected, and we obtain the same scaling as Equation (12):

lim
µ→0

D ≈ 3
√

K
4c1c4/3

0

· ε1/3

C4/3
D

∝ D f rc (43)
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In this limit, the suppression has no effect, and the EKE spectrum (by assumption) peaks at κ f rc.
As a result, the generalized theory reduces to the mixing length theory.

On the other hand, when µ is large, the scaling relation in the β regime is most easily retrieved by
normalizing κ such that κ̊ ≡ κε1/5β−3/5 ∝ κ/κβ, in which case Equation (41) becomes

Dp =

√
Kε3/5

c1β4/5

∫ ∞

c0/µ

κ̊−7/3

1 + c2
2Kc2

1κ̊10/3

dκ̊ (44)

Taking the limit of large µ, we arrive at

lim
µ→∞

D =

√
Kε3/5

c1β4/5

∫ ∞

0

dκ̊

κ̊7/3 + c2
2Kc2

1κ̊

∝
ε3/5

β4/5 ∝ Dβ (45)

The physical connection between the two theories in this limit can be seen by noting that the
integrand of Equation (45) (or the dimensional form in Equation (41) for that matter) maximizes when
the two terms in the denominator become equal, which yields

κ̊ = (
c2

2Kc2
1
)3/10 ≈ 0.73 (46)

That is, the major contributions to the eddy diffusivity come from the eddies near the β scale,
while mixing is strongly suppressed at larger scales. In fact, the physical reasoning is essentially the
same as in the classical scaling theory, highlighting the importance of the wave-turbulence crossover
wavenumber, below which the Rossby wave frequency exceeds the eddy turnover rate, thus rendering
mixing inefficient.

The two limits have been included in Figure 6 as the colored straight lines at both ends of the
generalized theory. Taking the limits of the generalized theory therefore provides an alternative way
to determine the non-dimensional constants in the scaling arguments for the friction and β regimes,
relating them back to the Kolmogorov constant K, the non-dimensional factor c0 in the frictional halting
scale, the decorrelation constant c1 (here taken to be 1), and (unfortunately) our empirical factor c2.
Notice that the connection between the generalized theory and the scaling argument in the transition
regime instead is not obvious, as the generalized theory predicts a smooth transition from the friction
to the β limit, rather than an independent intermediate power law regime.

6. Conclusions

This work set out to investigate the eddy diffusivity in barotropic turbulence on a β-plane with
quadratic drag. Specifically, we use a series of numerical simulations to test previously proposed scaling
arguments for the eddy diffusivity in the friction regime, in the β regime, and in the transition regime.
We then develop a generalized theory for the eddy diffusivity based on the propagation-suppression
argument proposed by FN10. Finally, we show that the scaling arguments and the generalized theory
are connected in the two limits of strong friction and strong β.

The scaling arguments, which for the first time are applied to β-plane turbulence with quadratic
drag, identify three regimes depending on the relative importance of CD and β. The scaling relations
for the characteristic eddy velocity, mixing scale, and eddy diffusivity are formulated for each regime.
In the strong friction limit, the role of β can be neglected, and the eddy velocity is determined from
a balance between the forcing and the energy dissipation by quadratic drag, while the mixing scale
is set by the frictional halting scale. In the strong β limit, on the other hand, it is the drag that is
not important such that both the turbulent eddy velocity and mixing scale follow from dimensional
arguments. In a transitional regime, both drag and β are important: while the eddy velocity remains
controlled by bottom drag, the mixing scale and diffusivity are significantly reduced by the presence of
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β. The scaling arguments are tested against diagnosed diffusivities from high-resolution eddy-resolving
numerical simulations, and found to successfully predict the eddy diffusivity in the respective regimes.

The generalized theory is motivated by an argument about the suppression of mixing by
flow-relative eddy propagation, proposed by FN10. Their approach is here extended to the full
diffusivity spectrum. The integral of the diffusivity spectrum then yields a bulk diffusivity, which
generally differs from the single-wavenumber theory proposed by FN10, who only apply the argument
to the energy containing wavenumber. Assuming that the nonlinear decorrelation rate is identical
to the eddy turnover rate, and that the EKE spectrum can be approximated by the Kolmogorov
spectrum, we obtain a prognostic equation for the eddy diffusivity that is verified against the numerical
simulations, and adequately captures the smooth transition across all parameter regimes.

The generalized theory highlights the importance of considering the entire energy spectrum.
At least in the context of barotropic turbulence, the single-wavenumber approximation used by
FN10 and KA14 breaks down once the suppression becomes sufficiently strong, at which point eddy
transport is no longer dominated by the energy containing scale. An estimate of the suppressed
diffusivity considering only the energy containing scale is then likely to overestimate the suppression
effect and thus underestimate the eddy diffusivity.

This work helps to clarify the connection between classical scaling theories for β-plane turbulence
and the recently proposed propagation–suppression argument. Classical β-plane turbulence theory
shows that β will suppress the eddy diffusivity via decreasing turbulent eddy velocity and mixing
scale. Turbulent EKE is reduced due to the channeling of energy into Rossby waves and zonal jets.
Similarly, the mixing scale is reduced by the transition from isotropic turbulence to waves and jets at
the β scale. Since the inverse energy cascade nevertheless proceeds to larger scales, this transition leads
to the divergence between the energy containing scale and mixing scale. Meanwhile, the generalized
diffusivity theory highlights the propagation of eddies relative to the mean flow as responsible for the
suppression of the diffusivity. Noting that the flow-relative phase propagation is related to the intrinsic
Rossby wave phase speed, it is readily seen that the flow-relative suppression argument similarly
predicts strong suppression of eddy transport at scales beyond the wave-turbulence crossover scale.
Indeed, the generalized theory is shown to reduce to the classical scaling arguments in the strong
friction and strong β limits.

The presented work can provide a foundation for the development of eddy parameterizations in
numerical ocean models. We have shown that the mixing suppression formulation has the potential
to predict eddy diffusivity over a wide range of parameters, as long as the entire energy spectrum is
considered. To apply the closure to meso-scale eddy fluxes in Earth’s ocean, we need to predict the
energy spectrum, as well as the wave dispersion relationship, which is complicated by the effects of
a baroclinic background flow and bottom topography [27–29]. However, it is evident that flow-relative
propagation of waves and eddies strongly affects mixing in the ocean (e.g., KA14). Improvements in
the representation of eddy transport in coarse resolution ocean circulation models will therefore rely
crucially on an adequate incorporation of these propagation effects.
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Appendix A. Details of the Numerical Model

The expression for the forcing term used in our numerical model in spectral space is

F̂n+1 = cF̂n + A · eiθ̂n+1√
1− c2 (A1)

where superscript n denotes the timestep, c = 0.99 is the correlation coefficient, A is the forcing
amplitude and is varied from case to case, i is the imaginary unit, and θ̂ is a random phase, which is
independent for each wavenumber and timestep. The forcing is centered at wavenumber 80 or 140
(differing between simulations), with the width of the “forcing window” being four wavenumbers,
i.e., κ f − 2 ≤ κ ≤ κ f + 2. The inverse cascade rate ε is diagnosed in the simulations based on the total
frictional dissipation rate. Unlike the total energy generation rate, the frictional dissipation remains
a good approximation of the inverse energy cascade flux, even when energy dissipation by the grid
scale filter is non-negligible.

The time integration is performed using a 3rd-order Adams–Bashforth scheme:

q̂n+1 = T
[

q̂n +
δt
12

(23 ˙̂qn − 16 ˙̂qn−1 + 5 ˙̂qn−2)

]
(A2)

where δt is the timestep and dotted quantities are time derivatives at the corresponding timesteps.
The filter T removes enstrophy and tracer variance at small scales in Equations (1) and (2),

respectively, and takes the form

T =

{
exp[−b · (κ − κc)p] if κ > κc

1 if κ ≤ κc
(A3)

where b = 18 governs the strength of the damping, κc = 187 is a cut-off wavenumber, and p = 7
governs the sharpness of the spectral filter. The model is not de-aliased as it was found that de-aliasing
has no significant effect on our results.

Appendix B. Solving the Linearized Stochastic Model

In this appendix, we will sketch the derivation of Equations (27) and (29). In spectral space,
we have q̂ = −κ2ψ̂; therefore, Equation (25) becomes

∂q̂
∂t

+ (− ikβ

κ2 + γ)q̂ = Q
√

γ · r1(t) (A4)

Equation (A4) has the general form

dP(t)
dt

+ A · P(t) = R(t) (A5)

which (assuming that the equation has been integrated long enough for the initial conditions to be
“forgotten”) has the solution

P(t) =
∫ ∞

0
R(t− τ)e−Aτdτ (A6)

Plugging in the appropriate constants for A and B yields

q̂(t) = Q
√

γ
∫ ∞

0
r1(t− t1) exp[(

ikβ

κ2 − γ)t1]dt1 (A7)

and we retrieve Equation (27).
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Substituting the result for ψ̂ into Equation (26) and rearranging yields

∂ĉ
∂t

+ η · ĉ = C · r2(t) +
ikgQ

√
κ

κ2

∫ ∞

0
r1(t− t1) exp

[
(

ikβ

κ2 − γ)t1

]
dt1 (A8)

which again takes the form of Equation (A5). Using again the general solution in Equation (A6), we get
Equation (29).

Appendix C. Computing EKE and Eddy Tracer Flux

In this section, we sketch the derivations of Equations (28) and (30). For EKE,

E(k, l) =
1
2
|κψ̂|2

=
Q2γ

2κ2

∫ ∞

0

∫ ∞

0
δ(t1 − t2) exp

[
(

ikβ

κ2 − γ)t1 − (
ikβ

κ2 + γ)t2

]
dt1dt2

=
Q2

4κ2 (A9)

where we have used that r1(t− t1) · r∗1(t− t2) = δ(t1 − t2).
For the eddy tracer flux, we have

v̂ · ĉ∗ = − k2Q2gγ

κ4

∫ ∞

0

∫ ∞

0

∫ ∞

0
δ(t3 + t4 − t1) exp

[
(

ikβ

κ2 − γ)t1 − ηt3 − (
ikβ

κ2 + γ)t4

]
dt1dt3dt4

= − k2Q2g
2κ4 · 1

− ikβ

κ2 + γ + η
(A10)

where we have used r1(t− t1) · r∗2(t− t2) = 0 because r1(t) and r2(t) are assumed independent.
The real part of Equation (A10) yields Equation (30).
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