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Abstract: After remarking on non-equilibrium thermodynamics with internal variables, this paper
highlights the importance of these variables to the study of biological systems. Internal variables
can provide a more detailed description of biological processes that occur inside cells, tissues and
organs. In order to introduce a fractional model on a visco-inelastic medium based on Kluitenberg’s
non-equilibrium thermodynamics, the origin of the complex dynamic modulus is shown by means
of linear response theory. This research recalls our previous work to develop an ultrasound wave
technique that allows us to investigate biological systems, and introduces the fractional visco-inelastic
model and relative generalized relaxation time, to show that it is possible to obtain the Cole–Cole
model in a particular case.
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1. Introduction

The study of the matter around us can be addressed by considering it to be composed of an
extremely large number of elements; with the smallest elementary particles of matter having the
same properties as the material itself. Elemental particles obey the laws of classical mechanics,
and knowledge of the positions and velocities of all the relevant particles at a specific moment may
allow us also to predict their evolution. However, it is impossible to assign a specific position and
velocity to all particles, because they are numerous. Only “average” observations can be made,
which will then lead to the forecast of average effects due to the evolution observed and will obey
probability laws as to which form should be determined. This approach is part of that discipline going
under the name of classic statistical mechanics (or classical statistical physics). Statistical mechanics is
characterized by a basic determinism, with respect to which probabilism is not substantial but depends
on the (technical) impossibility of observing individual effects. In other words, statistical mechanics is
deterministic and is accompanied by probabilistic predictions only due to our incapacity in respect of
individual determinations. It is understood, therefore, that average observations greatly simplify the
mathematical problem of formulating equations when it comes to an extraordinarily large number of
instances. In addition, quantities that are not defined in the microcosm (such as entropy) are introduced,
but they only make sense on a macroscopic scale [1,2]. It is possible, by contrast with this point of
view, to develop a continuous vision of the material that seems contradictory to the molecular one,
so that matter is considered as a continuous mathematics. It should be noted that for some hypotheses,
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the two points of view can coexist if the macroscopic quantities introduced in the continuous vision
are identified with the stabilizing averages of the corresponding molecular quantities. This means
that the statistical averages of molecular actions are considered macroscopic magnitudes. In this
light, statistical averages are calculated regardless of the structure of matter. As in the continuous
mathematics, volume elements are introduced, meaning infinitesimal volumes, in order to apply the
algorithms of mathematical analysis. However, volume elements, while being treated by infinitesimal
calculus, when viewed in a model must be large enough to be able to follow the macroscopic changes
due to the molecular mechanisms being studied [1]. Obviously, such molecular mechanisms are
not directly observable, so they are referred to as internal or hidden processes, and the associated
variables take the name of internal or hidden variables. Thus, to apply the theory of continuity, it is
supposed that in an experiment the matter contained in a volume element reaches a balance in times of
relaxation time order. The axiom regarding local equilibrium is thus formulated: “for a sufficiently small
deviation from equilibrium, a system can be divided into tiny (physical) volume elements, each of which can be
regarded as a small homogeneous equilibrium system” [1]. Moreover, from a macroscopic point of view,
the length and time scale of these sub-systems are infinitesimally small, but from a molecular point
of view they are still large. These observations confer a deterministic significance upon the average
number of molecules because there are enough molecules in the sub-system. It is on this axiom that the
thermodynamics of non-equilibrium is based. Of course, here we will not formulate the principles and
will not describe the developments of non-equilibrium thermodynamics, but it is helpful to remember
that it was systematically developed towards the middle of the last century by De Groot and Mazur [2].
Subsequently, other authors have dealt with these issues, some remaining faithful to basic ideas,
others developing points of view discordant with the authors mentioned. Following the De Groot and
Mazur school, a remarkable step forward was made by Kluitenberg, who introduced and developed
non-equilibrium thermodynamics with internal variables, the theory to which we will refer [2–7]. This
theory has been developed both in the mechanical continuous and electrodynamic fields. Theoretical
results have been obtained that can be considered rheological determinants in the study of relaxation
phenomena in any order, considering a finite number of elementary phenomena occurring in between.
A theory has also been developed on the propagation of longitudinal, transverse and electromagnetic
elastic waves (ultrasound) with internal variables. The introduction of the internal variable concept by
Kluitenberg makes this theory particularly suitable for the study of biological phenomena in which
the variables to be considered are multiple and the system is always out of equilibrium. Further
development of this theory has been carried out by Farsaci et al. [8–15] who have determined a way to
correlate the functions that appear in theory with experimentally measurable functions; in particular,
with complex dynamic modules (loss and storage) measured in mechanical and dielectric relaxation
phenomena. This allowed the experimental (indirect) evaluation of all the rheological functions of the
theory and those related to the dielectric polarization phenomena as well as entropy production [16,17].
Such a result is very important as it allows the application of theory to visco-elastic and dielectric
study (considered as such). In the latter case, it takes into account the electrical conduction phenomena
that often occur. A special mention should be given to the applicability of these developments in
the biological field. As we shall see later, this theory is particularly suitable to the study of several
pathologies such as tumor evolution and disease prevention, as well as the development of new
diagnostic techniques. The aim of this paper is twofold:

(i) To formulate a fractional model for dynamic complex modules in visco-inelastic media of order
one, based on Kluitenberg’s theory;

(ii) To show how this model can be applied to investigate biological and pathological tissues by
using an ultrasound longitudinal wave as a probe.

For this purpose, it is first important to discuss some aspects of Kluitenberg’s thermodynamic
theory and clarify our point of view in order to deal with a complete, theoretical and experimental
study of the problems associated with rheological relaxation phenomena. Moreover, we introduce a
short description of linear response theory (LRT) in which complex dynamic modules, of which we will
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formulate a fractional model, are defined [18]. The fractional model we are introducing may be of great
use in the study of biological systems, in a theoretical context. Indeed, in recent decades the theoretical
approach to the study of biological and non-biological phenomena has grown. Therefore, this research
for an analytical expression of a complex dynamic module summarizes the system’s rheological
properties in a way that can be transferred to any model (Zener, Voigt, Mazwell ...) by providing
information on the relaxation phenomena of the system studied [19]. It also provides analytical
knowledge of all the rheological functions of the theory, especially the analytical determination of
entropy production. Lastly, supposing that the system is perturbed by a longitudinal elastic wave
(ultrasound), we determine the analytical expression of the wave vector in function of the fractional
complex module previously obtained. The study of wave fluctuations (pressure waves, ultrasounds)
at wave frequency variations provides a powerful method of investigation, especially in the biological
field [20]. From a theoretical point of view, it is considered an elastic wave propagating in the
medium in question. Therefore, it is possible to calculate the coefficients that appear in the rheological
equation as a function of attenuation and phase velocity, by considering the indefinite equations of
the continuous means, the symmetry properties of the tensors of stresses and deformations, and by
introducing approximations on the predominant elastic behavior of the means at the appropriate
frequencies. This process allows for a double experimental study, since the results obtained from the
experimental data of direct measurements of phase velocity and wave attenuation (MATEC) can be
compared to those obtained by measuring the dynamic modules L1 and L2, all of which are obviously
frequency functions.

2. Methods

2.1. Remarks on Non-Equilibrium Thermodynamics with Internal Variables

The irreversibility of natural phenomena is the main reason for the difficulties arising in state
thermodynamic models. Nevertheless, this condition is described well by the entropy function that
is one of the more important concepts in physics [1]. Knowledge of the change of entropy allows
us to separate physical processes into two classes: reversible and irreversible. The first is connected
with no changes in entropy, while in the second entropy changes occur [1]. So entropy may be
considered a measure of the irreversibility of a process and, moreover, is related to an increase of
disorder for an isolated system. The branch of physics that studies these subjects is non-equilibrium
thermodynamics (NET) [1,2]. Another problem for state thermodynamic models is the non-linearity of
phenomena. However, although almost all physical phenomena show non-linearity, in many cases
linear approximation is a good compromise as it gives results in accordance with the phenomena.
On the other hand, there are mathematical difficulties in dealing with non-linearities that cannot be
overcome analytically, but only by means of numerical methods. In line with our research on the study
of some biological phenomena by means of techniques developed in the context of NET, in this paper
we will refer to a linear approximation since this proved to be successful in the study of biological
phenomena [13–15,21,22]. As mentioned above, entropy plays a fundamental role in the whole NET.
Generally, the entropy S is considered as function of n extensive variables Xi (i = 1, 2, ..., n) [1,2]

s = s(X1, X2, . . . , Xn), (1)

By introducing generalized forces:

Fk =
∂s

∂Xk
, (2)

called affinities, and related “fluxes”:

Jk =
dXk
dt

(3)
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the entropy production can be written:

ds
dt

= ∑
k

Fk Jk = ∑
k

∂s
∂Xk

dXk
dt

(4)

Generally, the functional dependence between fluxes and affinities can be very complex and
assumes a non-linear form. Here we admit, supported by a large number of phenomena, that these
relations are linear:

Ji = ∑
k

MikFk (5)

where Mik are called phenomenological coefficients and it can be shown that they satisfy some
symmetry relations [1,2]. Following Kluitenberg’s theory, we will introduce a particular form of
relation (5) in following sections. Here, we will make clear why we consider Kluitenberg’s theory
particularly suitable for the study of biological phenomena. Apart from the non-equilibrium status
of biological phenomena, there are reasons that make the theory with internal variables fit for this
purpose. These are related to the connection that can arise between internal variables and processes
which occur inside biological tissues not being caused by external perturbation but only by internal
phenomena. We do not go into the details of the theory, which can be found at ref. [3,7], but we focus
our attention on internal variables. Moreover, no use is made of spring-dashpot models. The heat
dissipation functions for ordinary viscous fluids and for Maxwell, Kelvin (Voigt), Poynting–Thomson,
Jeffreys, Prandtl–Reuss, Bingham, Saint Venant, and Hooke media may be regarded as degeneracy
of the more general expression that is derived [3,7]. Generally, the set of variables—strain tensor,
internal energy, specific volume, entropy and temperature, for example—are sufficient to characterize
the state of a thermoelastic medium or fluid. But, if more complicated phenomena occur as a chemical
reaction, anelastic or plastic strain, dielectric and magnetic relaxation, the aforementioned set of
variables is incomplete. For instance, if we consider a fluid mixture of n-chemical components, each
with a concentration C(K) (K = 1, 2, ..., n), the local thermodynamic state is completely specified by
internal energy u, the volume v and the additional scalar (macroscopic) thermodynamic variables C(K)

(K = 1, 2, ..., n) [2]. Thus the entropy s is assumed:

s = s(u, v, C(1), C(2),.... C(n)) (6)

In hematology there are several examples of this kind: the ratio albumin–globulin, leukocytosis,
leukemia, leukopenia. A generalization of Equation (6) can be taken into account by considering a
medium for which the entropy depends on the internal energy, the tensor of total strain, and some
tensorial variables Ωik. We shall assume that Ωik is a macroscopic quantity which we need in order to
give a complete description of the state of the medium. Without specifying the physical nature of Ωik
(we shall call it a hidden tensorial variable), we assume that it influences the mechanical properties of
the medium and that it is a symmetrical tensor field. Hence we assume that [3,7]:

s = s(u, εik, Ωik) (7)

where Ωik is the tensor of total strain. A further generalization from the aforementioned ideas is the
assumption that there are several microscopic phenomena which influence the mechanical properties of
the medium under consideration. Besides, the thermodynamic state of the medium may be described
by the internal energy, total strain and “n” macroscopic internal variables. This also includes the
possibility of scalar internal variables. So Equation (7) assumes the form:

s = s
(

u, εik, Ω(1)
ik , Ω(2)

ik , . . . Ω(n)
ik

)
(8)

Before proceeding to describe the theory, we must recall our definition:
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We define the entropy, the variables on which the entropy depends, the quantities which are
obtained by partial differentiation of the entropy (such as the temperature) and the functions of these
quantities (such as free energy) as thermodynamic variables. Thermodynamic variables on which
entropy depends and from which substantial time derivatives occur in the first law of thermodynamics
may be called external thermodynamic variables, because the values of these parameters can be
prescribed by external influences. Additional variables on which the entropy depends, and from which
substantial time derivatives do not occur, may be called internal thermodynamic variables.

It can be shown [7] that the strain tensor can be split in two parts ε
(0)
ik , which we call the elastic

part, and ε
(1)
ik , the inelastic part, respectively. So we have:

εik = ε
(0)
ik + ε

(1)
ik (9)

Moreover it can be shown that the change of both ε
(0)
ik and ε

(1)
ik contributes to entropy production

and, therefore, they represent two irreversible processes. The inelastic deformation can be due to
several internal processes that occur simultaneously. Let us suppose that there occur “n” different
types of microscopic phenomena giving rise to inelastic strain, and let us further assume that:

ε
(i)
ik =

n

∑
h=1

ε
(h)
ik (10)

where ε
(h)
ik is the contribution to the inelastic strain of the h-th microscopic phenomenon. It can be

shown [7] that the expression (8) specializes as:

s = s
(

u, εik, ε
(1)
ik , ε

(2)
ik , . . . ε

(n)
ik

)
(11)

where we assume that partial inelastic strain tensors ε
(h)
ik (h = 1, 2, . . . , n) are related to n different

microscopic phenomena. From expression (11) it is seen that ε
(h)
ik (h = 1, 2, . . . , n) plays the role of

internal variables. Just the expression (11) allows the possibility of studying particular processes that
occur, for example, in cancer tissues, since we can correlate every partially inelastic strain to a tumor
cell [15]. The rheological properties of these tissues are altered and those mechanical changes are
revealed as emergent properties at a macroscopic level. This is the case for leukocytosis, which is an
abnormal increase in the number of white blood cells; leukemia which is a neoplastic proliferation of
hematopoietic stem cells; or leukopenia, which is an abnormal reduction of circulating white blood
cells, especially granulocytes. In these cases, the rheological properties of the blood change, and in
particular this can change the partial inelastic strain associated to each anomalous phenomena (disease).
Obviously, it is very difficult to investigate these pathologies by considering directly partial inelastic
strain, because a direct measure of them is very hard. However, from a rheological point of view, these
diseases may be investigated by means of ultrasound waves, as we shall show in the next sections for
a particular case. Here, we will show a “technique” for approaching this type of investigation [23–25].

2.2. Rheological Differential Equation

We assume that only one microscopic phenomenon occurs inside the medium. So the Equation (11)
becomes:

s = s
(

u, εik, ε
(1)
ik

)
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From which the usual equations lead:
1
T =

∂s
(

u,εik ,ε(1)ik

)
∂u

τ
(eq)
ik = −Tρ

∂s
(

u,εik ,ε(1)ik

)
εik

τ
(1)
ik = T

∂s
(

u,εik ,ε(1)ik

)
∂ε

(1)
ik

where T is the temperature; ρ the mass density; τ
(eq)
ik is equilibrium stress tensor; and τ

(1)
ik is affinity

stress tensor. The viscous stress tensor τ
(vi)
ik can be introduced:

τ
(vi)
ik =τik − τ

(eq)
ik (12)

here, τik is the stress tensor that occurs in indefinite equations. Now, assuming that the inelastic strain
derives from only one microscopic phenomenon, it is possible to introduce this contribution as the
internal degree of freedom in the Gibbs’ relation. This assumption and the first law of thermodynamics
allow an explicit form of entropy production. By considering the scalar part τ of the stress tensor and
the scalar part ε of the strain tensor, one has for the entropy production [7]:

σ(s) =
1
T

[
τ(vi) dε(0)

dt
+
(

τ(vi) + τ(1)
)dε(1)

dt

]
(13)

From the expression thus obtained, taking into account the usual procedure of non-equilibrium
thermodynamics and assuming that the cross effect among viscous flow and inelastic flow are neglected,
the following phenomenological equations can be obtained [7]:

τ(vi) = η
(0,0)
v

dε

dt
(14)

dε(1)

dt
= η

(1,1)
v τ(1) (15)

where η
(0,0)
v , η

(1,1)
v are phenomenological coefficients, and we shall assume that they are constant in

time. The coefficient η
(0,0)
v (volume viscosity), which has the dimension of a viscosity, is connected

to irreversible processes related to the change of ε, while η
(1,1)
v , which has the dimension of a fluidity,

is related to change of ε(1) and the corresponding intensive variable τ(1). However, Equations (14)
and (15) are connected with irreversible changes of the strain. These, together with linear state
Equations [7]:

τ(eq) = b(0,0)
(

ε− ε(1)
)
= b(0,0)ε(0) (16)

τ(1) = b(0,0)ε− b(1,1)ε(1) (17)

lead to the so-called relaxation equation for trace τ of the stress tensor and trace ε of the strain tensor:

dτ

dt
+ R(τ)

0 τ = R(ε)
0 ε + R(ε)

1
dε

dt
+ R(ε)

2
d2ε

dt2 (18)

where:
R(τ)

0 = b(1,1)η
(1,1)
v = 1/σ R(ε)

1 = b(0,0) + b(1,1)η
(1,1)
v η

(0,0)
v

R(ε)
0 = b(0,0)

(
b(1,1) − b(0,0)

)
η
(1,1)
v R(ε)

2 = η
(0,0)
v

(19)

In which b(0,0) and b(1,1) are the state coefficients related to the elasticity and inelasticity phenomena,
respectively. The importance of the phenomenological and state coefficients is that they characterize
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the medium specifying the amount of the type of phenomena correlate for each of them. It is
important to observe that their constancy is related to the time for each type of perturbation that
acts on the medium. However, they vary with the change of the perturbation. For example, if the
perturbation is of a harmonic type with frequency ω, then the coefficients will depend on ω which can
be considered as parameter in the functional dependence of the coefficients. In this case we shall call
a(0,0), a(1,1), η

(0,0)
v , η

(1,1)
v dynamical coefficients.

It can be proved that for a fluid (such as blood) it is reasonable to assume that ρ is constant for
each element so as to verify the basic axioms on local and instantaneous equilibrium [1]. Thus, we
assume that the mass density ρ is constant. It is seen from Equation (17) that sudden change in ε(1) is
impossible, while from Equation (16) it follows that sudden change in ε(0) is possible.

2.3. Remarks on Linear Response Theory

Here we will recall how to define the Complex Dynamic Modulus, because the introduction of its
fractional form is the principal ambition of this work. Since we are studying relaxation phenomena,
we assume as perturbation of the system an extensive variable f (t) (cause) and the relative intensive
variable g(t) as response (effect). For a linear system, it can be shown that the following convolution
relation is valid [19]:

g(t) = f (t)⊗ h(t) (20)

where:

f (t)⊗ h(t) =
+∞∫
−∞

f (t1)h(t− t1)dt1 (21)

From Equation (12), and taking in account convolution theorem, it follows:

FT{g(t)} = FT{ f (t)}FT{h(t)} (22)

where the symbol FT{. . .} is the Fourier transform. We have:

FT{g(t)} = G(ω) =

+∞∫
−∞

e−iωtg(t)dt; FT{ f (t)} = F(ω) =

+∞∫
−∞

e−iωt f (t)dt (23)

FT{h(t)} = H(ω) =

+∞∫
−∞

e−iωth(t)dt

where H(ω) is the transfer function. From relations (20)–(23) one has:

H(ω) =
G(ω)

F(ω)
(24)

and therefore:

h(t) = FT−1{H(ω)} = FT−1
{

G(ω)

F(ω)

}
(25)

where FT−1{. . .} is the inverse Fourier transform. If we take into account the hypotheses for which
the relaxation Equation (18) is valid, and we consider a harmonic deformation as input [18]:

ε(t) = ε0eiωt (26)
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where ε0 is the amplitude of the oscillation and ω its angular frequency, it can be shown that to a
harmonic input corresponds a harmonic output of the same frequency, but with different amplitude
and phase, which depend on the angular frequency of input. Therefore, the output will be [18]:

τ(t) = τ0(ω)ei(ωt+δ(ω)) (27)

where δ(ω) is a phase lag. By applying Equations (20)–(25) to this case, one has:

L∗(ω) =
τ0(ω)

ε0
eiδ(ω) (28)

and the complex quantity is introduced:

L∗(ω) = L1(ω) + iL2(ω) (29)

with the real and imaginary parts given by:

L1 =
τ0(ω)

ε0
cos δ(ω) (30)

L2 =
τ0(ω)

ε0
sin δ(ω) (31)

These functions are very important for studying the aforementioned relaxation phenomena.
In a physical contest, L1 and L2 are called storage modulus and loss modulus, respectively [17], and it
is possible to show that they are related to not-dissipative phenomena and dissipative phenomena,
respectively. Moreover, these two quantities are experimentally measurable as functions of angular
frequency of input.

2.4. Ultrasound Wave Approach: Summary of Previous Results

Here, we summarise our previous results showing where we can apply the fractional model,
which we will obtain in the next section, and how important it is for determine an analytical expression
of all thermodynamic functions. In previous papers [21], by assuming that a longitudinal wave{

u1 = Aei(kx−ωt)

u2 = u3 = 0
(32)

perturb a medium (blood), where u(u1,u2,u3) is a vector displacement which propagates in the direction
of x-axis; A the amplitude of the wave; and K = K1 + iK2 is the complex wave number, where K1 is

K1 =
ω

vs
(33)

in which vs is the phase velocity and K2 is attenuation. So, taking into account Kluitenberg’s theory
and the characteristic of longitudinal waves, we obtain the following expression for phenomenological
and state coefficients as functions of the wave vector K(ω) and for entropy production [21]:

b(0,0) = 3ρω

[
2K1K2

σ + ω
(
K2

1 − k2
2
)(

K2
1 + k2

2
)2

]
− L2R

ωσ

b((1,1)) =

[
3ρω

(
2K1K2

σ + ω
(
K2

1 − k2
2
))
− R(ε)

0
(K2

1+k2
2)

2

σ

]2

1
σ

(
ω2 + 1

σ2

)[
6ρωK1K2 − L2R

ω

(
K2

1 + k2
2
)2
]

(34)
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η
(1,1)
v =

1
σ

(
ω2 + 1

σ2

)[
6ρωK1K2 − L2R

ω

(
K2

1 + k2
2
)2
]

[
3ρω

(
2K1K2

σ + ω
(
K2

1 − k2
2
))
− R(ε)

0
(K2

1+k2
2)

2

σ

]2

η
(0,0)
v =

L2R
ω

σ(s) =
A2

3T
e−2k2x

{(
η
(0,0)
s ω2k2

1 + η
(1,1)
s k2

2Γ2
)

cos2 β +
(

η
(1,1)
s Γ2k2

1 + η
(0,0)
s k2

2ω2
)

sin2 β

−2k1k2 sin β cos β
(

η
(0,0)
s ω2 − η

(1,1)
s Γ2

)} (35)

where σ is the relaxation time and L2R the relaxed value of L2 [19] and

β = k1x−ωt and Γ = b(0,0) − b(1,1)
(

1− L1

b(0,0)

)
.

Moreover, the following expression is for rheological (internal variables) functions [22]:

ε = RK sin(ωt + δ) (36)

τ = λ sin(ωt + ζ) (37)

τ(vi) = η
(0,0)
v

dε

dt
= η

(0,0)
v RKω cos(ωt + δ) (38)

τ(eq) = τ − τ(vi) = λ sin(ωt + ζ)− η
(0,0)
v RKω cos(ωt + δ) (39)

ε(0) =
1

b(0,0)

[
λ sin(ωt + ζ)− η

(0,0)
v RKω cos(ωt + δ)

]
(40)

ε(1) = ε− ε(0) = RK sin(ωt + δ)− 1
b(0,0)

[
λ sin(ωt + ζ)− η

(0,0)
v RKω cos(ωt + δ)

]
(41)

τ(1) =
1

η
(1,1)
v

[
RKω cos(ωt + δ)− 1

b(0,0)

[
λω cos(ωt + ζ) + η

(0,0)
v RKω2 sin(ωt + δ)

]]
(42)

where:
u1 = Ae−k2x cos(k1x−ωt) (43)

u2 = u3 = 0

R = −1
3

Ae−k2x K =
√

m2 + n2 =
√

k2
1 + k2

1 m = (k2 sin k1x− k1 cos k1x)
(44)

n = (k1 sin k1x + k2 cos k1x) δ = arctan
n
m

(45)

α1 = RK
(

R(ε)
0 −ω2R(ε)

2

)
β1 = RKR(ε)

1 ω α = α1 cos δ− β1 sin δ (46)

β = α1 sin δ + β1 cos δ P =
ασ + βωσ2

1 + ω2σ2 Q =
βσ− αωσ2

1 + ω2σ2 ς = arctan
Q
P

(47)

It is very important in our approach to take into account the well known relations between the
complex wave vector K and the complex longitudinal dynamic modulus L* (see Equations (30) and (31)):

K1 = ω

√√√√ρ
(√

L2
1 + L2

2 + L1

)
2
(

L2
1 + L2

2
) K2 = ω

√√√√ρ
(√

L2
1 + L2

2 − L1

)
2
(

L2
1 + L2

2
) (48)

L1 =
ρω2(K2

1 − k2
2
)

(K2
1 + k2

2)
2 L2 =

2ρωK1K2

(K2
1 + k2

2)
2 (49)
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since we will formulate a fractional model for the modulus L*. These relations allow us to obtain an
analytical expression of the aforementioned coefficients and rheological functions, as we will see in the
next section.

3. Results

After this review, we are able to introduce our new point of view on the fractional approach.

Fractional Visco-Inelastic Model

Fractional calculus can be considered a further approach, together with NET with internal
variables, to the study of biological systems. We do not describe this calculus, for which we point to
references [20,26]. However, we observe that fractional calculus extends the number of phenomena
that occur inside a complex biological system, since it is able to investigate a larger space–time scale on
which a model can be formulated. From a physical point of view, to formulate a fractional model it
is necessary to introduce a fractional differential equation that has a number of parameters. Several
models have been formulated (Cole–Cole, Cole–Davidson, etc.) with a certain number of parameters,
but they are based on an adaptive empirical approach. Our point of view is different, because it
is based on thermodynamic considerations. In fact, it is a fractional reformulation of Kluitenberg’s
theory with internal variables. Obviously, two fractional differential equations related to distinct
models differ only in terms of the parameters which appear if the fractional order derivative is the
same. The parameters which appear in the proposed fractional differential equation are not just of
the fractional derivative, since there are other multiplicative functions with a well known physical
meaning in the context of visco-inelastic Kluitenberg characterization of the media.

Clearly, a model with a minimum number of parameters is undoubtedly better. Here, we
introduce a fractional visco-inelastic model with two fractional parameters. The coefficients appearing
as multiplicative factors in the fractional differential equation can be evaluated by also using a method
described in a previous article [8]. In accordance with NET, we enunciate a fractional differential
equation for a visco-inelastic medium of order one (approximation with only one relaxation time) in
agreement with Kluitenberg’s theory:

τ +

(
1
k0

)β dβτ

dtβ
=

(
h0

k0

)
ε + h1

(
1
k0

)β dβε

dtβ
+ h2k0

(
1
k0

)α dαε

dtβ
(50)

0 < β ≤ α ≤ 1

hi = R(ε)
(i) (i = 0, 1, 2) k0 = R(τ)

(0) =
1
σ

where we indicate with hi and k0 expressions (19) which are related to the phenomenological and state
coefficients by equations.

Equation (50) is different from the usual fractional differential equations because the coefficients
which appear have a particular meaning in the NET. They can be expressed as a frequency spectrum,
as shown by Equations (34) and (19). We will also see that they can be expressed by means of the
fractional expression of L*.

Now, considering ε = ε0eiωt as the extensive variable (cause) and τ = τ0ei(ωt+δ) as the intensive
one (effect), Equation (50) becomes:

τ0F
{

ei(ωt+δ)
}[

1 + (iωσ)β
]
= ε0F

{
eiωt
}[

h0σ + h1(iωσ)β + h2
1
σ
(iωσ)α

]
where the following important relation between the Fourier transform F{. . .} and fractional derivative
dρ

dtρ has been used [26]:

F
{

dρm(t)
dtρ

}
= (iω)ρF{m(t)}
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It is easy to show that the complex dynamic modulus (28) is:

L∗ =
F
{

τ0ei(ωt+ϕ)
}

F
{

ε0eiωt
} =

[
h0σ + h1(iωσ)β + h2

1
σ (iωσ)α

]
1 + (iωσ)β

(51)

where we define
s = σβ (52)

as the generalized relaxation time. This reduces to classical relaxation time if β = 1.
By separating the real and imaginary part of Equation (51), one has:

L1 =
h0σ + (ωσ)β cos β π

2 (h1 + hoσ) + h2ωασα−1 cos α π
2 + h1(ωσ)2β + h2ωα+βσα+β−1 cos

[
(α + β)π

2
]

1 + 2(ωσ)β cos β π
2 + (ωσ)2β

(53)

L2 =
(ωσ)β sin β π

2 (h1 − hoσ) + h2ωασα−1 sin α π
2 + h2ωα+βσα+β−1 cos

[
(α− β)π

2
]

1 + 2(ωσ)β cos β π
2 + (ωσ)2β

(54)

Here four parameters, h0, h1, h2, and σ, appear (which have a particular meaning in Kluitenberg’s
theory) as well as α, β. These can be determined by fitting the experimental data. This can be done,
but it is possible to attempt a fit, the first time, with only the three parameters α, β and σ and take
into account, incrementally, the other parameters if the first three are not sufficient for a good fit.
If, for example, we obtain a good fit with three parameters α, β and σ, we can evaluate the expressions
of h0, h1, h2 obtained by using a method described in a previous paper [8].

If, after the fit, we substitute Equation (53) for Equation (48) and the expression obtained in
Equations (34)–(47), we obtain an analytical form of these functions. Indeed, here we assume
experimental knowledge of L1 and L2; this is the case in which we perturb the medium with a
harmonic strain (26). But we will utilize Equations (53) in a different way. In fact, by perturbing the
medium with a harmonic ultrasound longitudinal wave (32) and measuring the complex wave vector
K, by means of the well known Equation (49), it is possible to obtain L1 and L2 and fit these values by
means of Equations (53) and repeat the aforementioned procedure. Finally, it is easy to show that from
Equation (51) the well known Cole–Cole expression can be deduced in a particular case:

L∗ =
LR + LU(iωσ)β

1 + (iωσ)β

If we put h0σ = LR, h1 = LU and h2 = 0.

4. Conclusions

The approach introduced in this paper constitutes an advancement in the theoretical study of
biological systems, in particular for fluid systems (such as blood), since the longitudinal wave is used
as a probe. Its most important aspect is in the use of internal variables. These allow a more detailed
description of the phenomena occurring inside the biological system, since an opportune variable can
be associated with each process. This may help us to understand the evolution of a (physiological
or pathological) phenomenon and, moreover, to test a therapeutic approach. Our technique can be
applied in several cases since it is not invasive because ultrasound waves are non-invasive. But the
most significant contribution of this approach is the knowledge of the phenomena associated with
each phenomenological and state coefficient and with internal variables. These can highlight the
evolution of pathologies that cannot be demonstrated with evidence in other investigations. In fact, as
shown in several previous papers [8,21,22,27], these coefficients are specific for each system and this
technique can be considered a new method of characterization. It is like watching a phenomenon with
a magnifying glass, or splitting up a phenomenon into its components. Moreover, this knowledge can
be used for the prevention, for example, of tumor pathologies: phenomena, which do not appear by
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using classical techniques of investigation, can be identified by the aforementioned coefficients, since a
process is associated with each of them that can characterize the system [13]. Generally, coefficients
are considered constant and it is a novelty to represent their spectrum as a function of the frequency.
In our case, in which the ultrasound wave is used as a probe, the aforementioned spectrum can be
used to correlate a specific process to the frequency at which it occurs. This result may also be used
for therapeutic interaction with the system. The model introduced here may be considered as a dual
value: it may be used as prevention and as a therapeutic technique. First, we argue that the importance
of an analytical expression of function which describes a phenomenon is well known. In our case
the knowledge of an analytical form of a complex dynamic longitudinal modulus or a complex wave
vector contribute in a consistent way to a theoretical study of phenomena that cannot be approached
experimentally. Moreover, the model can predict processes which are not experimentally accessible
and, as stated above, can be investigated as phenomena that do not appear in classical models from a
theoretical point of view.
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