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Abstract: The onset of Rayleigh-Bénard convection in a horizontally unbounded saturated porous
medium is considered. Particular attention is given to the stability of weakly nonlinear convection
between two plane horizontal surfaces heated from below. The primary aim is to study the
effects on postcritical convection of having small amplitude time-periodic resonant thermal forcing.
Amplitude equations are derived using a weakly nonlinear theory and they are solved in order
to understand how the flow evolves with changes in the Darcy-Rayleigh number and the forcing
frequency. When convection is stationary in space, it is found to consist of one of two different types
depending on its location in parameter space: either a convection pattern where each cell rotates
in the same way for all time with a periodic variation in amplitude (Type I) or a pattern where
each cell changes direction twice within each forcing period (Type II). Asymptotic analyses are also
performed (i) to understand the transition between convection of types I and II; (ii) for large oscillation
frequencies and (iii) for small oscillation frequencies. In a large part of parameter space the preferred
pattern of convection when the layer is unbounded horizontally is then shown to be one where the
cells oscillate horizontally—this is a novel form of pattern selection for Darcy-Bénard convection.

Keywords: porous media; convective instability; weakly nonlinear; resonant forcing; horizontal
oscillations

1. Introduction

The classical Bénard problem as applied to a porous medium was first studied by Horton and
Rogers (1945) [1] and independently by Lapwood (1948) [2]; these authors considered the onset of
convection in a horizontal saturated porous layer heated uniformly from below. Using a linear stability
theory, the neutral curve which relates the Darcy-Rayleigh number, Ra, to the wavenumber, k, may be
shown to take the form,

Ra =
(k2 + n2π2)2

k2 , (1)

(see Rees 2000, for example) [3] where the value of n corresponds to the number of rolls which are
stacked above one another in the layer. This variation of Ra with k is shown in Figure 1 and it may
be shown easily that the minimum/critical value is Rac = 4π2, which occurs when k = π and n = 1.
These values correspond to rolls with a square cross-section.
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Figure 1. Neutral curve for the classical Darcy-Bénard problem with n = 1; see Equation (1). the critical
values are given by Rac = 4π2 and kc = π.

Palm et al. (1972) [4] subsequently analysed the moderately supercritical flow using a series
representation in terms of powers of (Ra− Rac)/Ra. A very detailed numerical stability analysis was
undertaken by Straus (1974) [5] who delineated the region in (Ra, k)-space within which steady rolls
form the stable planform of convection.

The general topic of Darcy-Bénard convection continues to grow rapidly as further effects, realism
and/or practical application are added to the original Horton-Rogers-Lapwood configuration [2,6].
Reviews have been presented by Rees (2000) [3] and Tyvand (2002) [7], but the topic has continued to
be the subject of substantial interest in the time since then, and therefore we would refer the reader to
the latest edition of Nield and Bejan (2017) [8] for an up-to-date account of the topic.

In the present paper, we shall confine our interest to the role played by boundary imperfections,
itself a well-researched subtopic. It is widely recognised that completely uniform and idealised
boundary conditions are not easily achieveable in practice, and therefore authors such as Riahi
(1983) [9], Saleh et al. (2011) [10], Motjabi and Rees (2011) [1] and Rees and Mojtabi (2011) [11]
have concerned themselves with more realistic boundary conditions where the perfectly conducting
bounding surfaces are replaced by conducting solids. The resulting stability properties are influenced
profoundly by the nature of the solids used and their thickness. Thus it is possible for perfectly
conducting boundary conditions on the outer surfaces to give rise to stability properties which are
more closely associated with constant heat flux surfaces, and vice versa. It is also possible for roll
solutions to be unstable in some circumstances, in which case convection with a square planform forms
the preferred pattern (see Riahi 1993, Rees and Mojtabi 2011) [11].

In a series of papers, Rees and Riley (1986, 1989a, 1989b) [12–14] and Rees (1990) [15] considered
the effect of small-amplitude boundary variations on both the onset of convection and convection
within the weakly nonlinear regime. Depending on the wavenumber of the variation, the preferred
pattern of convection may take the form of rolls, wavy rolls, rectangular cells or exhibit other unusual
properties. Other papers of this type include those by Vozovoi and Nepomnyaschii (1974) [16],
Tavantzis et al. (1978) [17], O’Sullivan and McKibbin (1986) [18] and Riahi (1993, 1995) [9,19,20].

A little later, Mamou et al. (1996) [21] and Banu and Rees (2001) [22] applied thermal boundary
variations of the form cos π(x −Ut), which correspond to travelling thermal waves at the critical
spatial wavenumber, π. The former paper considered strongly supercritical convection using fully
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numerical methods, while the latter applied a weakly nonlinear theory in order to understand the
subtle details which arise closer to the onset of convection. The effect of having a forcing wave speed,
U, is to cause a competition between the tendency of the rolls to remain stationary, which is what
happens naturally in a layer without such imperfections, and the tendency to follow the forcing
wave. It was found that there is a catastrophic transition between the wave-following regime and the
quasi-stationary regime in that the amplitude and horizontal velocity of the convection pattern change
suddenly as the Darcy-Rayleigh number increases. This system was also found to display hysteresis,
for the reverse transition which occurs as the Rayleigh number decreases, does so at a different value
of the Rayleigh number.

The present paper is concerned with a physical configuration for which convection cells also have
a tendency to move. For the Darcy-Bénard problem one of the easiest ways in which this may arise
is when the fluid is also subject to a horizontal pressure gradient. Prats (1967) [23] showed that the
convection cells then move with precisely the same velocity as the pressure-gradient-induced flow
which exists in the absence of heating. Thus the dynamics of the ensuing convection are precisely the
same as that for a layer without the background flow when it is considered in a frame of reference
which is moving with the background flow. An interesting variation on this Darcy-Bénard-Prats
problem was studied by Dufour and Néel (1996) [24] where a uniform horizontal flow is injected into
a horizontally semi-infinite porous layer heated from below. In general the flow remains roughly
uniform near to injection and there exists a spatial transition towards the time-periodic flow described
by Prats (1967) [23]. The length of the transition region depends on the magnitudes of the injection
velocity, Q (a Péclet number) and the Darcy-Rayleigh number, increasing as Péclet number increases
but decreasing as the Darcy-Rayleigh number increases; these phenomena are related to the phase
diffusion speed of the convection cells. A much more recent paper by Rees and Mojtabi (2013) [1] shows
that the presence of solid conducting boundaries serves to reduce the phase speed of the convecting
cells. This reduction may be attributed to what might be called a thermal drag which arises due to the
fact that the time-varying convection mode has to move through a stationary boundary of finite height.

Another mechanism which relies neither on an external pressure gradient nor on moving
boundary conditions to induce phase drift is when convection takes place in a cylindrical container
with a circular planform. Although no studies have yet been published on such flows in porous
media, it is well-known that such a variant of the classical Bénard problem may sometimes exhibit a
rotating spiral convection pattern even though all the boundary conditions are steady and uniform;
see Plapp et al. (1998) [25].

In this paper we consider thermal forcing of the form cos ωt cos πx, and this may be regarded
as the standing wave counterpart to the work of Banu and Rees (2001) [22]. Although this thermal
forcing is now stationary in space, we shall show later that it remains possible for rolls to exhibit
a time-periodic horizontal motion. As shall be seen, the reason for this periodic motion is that the
preferred phase of the convection cells depends (in a quasi-static sense) on the sign of the forcing
amplitude, cos ωt, and therefore the phase of the cells is drawn towards two different fixed points
during the two different parts of the forcing cycle. Our subsequent analyses involve a derivation of the
weakly non-linear amplitude equations, together with both numerical simulations and asymptotic
analyses of those amplitude equations. Attention is also focused on the transition between two different
types of stationary motion, and on a twitching motion at high Rayleigh numbers where cells execute
small-amplitude periodic movements in phase.

2. Governing Equations

Darcy’s law gives the most basic equation governing fluid flows in a porous medium. It is the
macroscopic law which relates the fluid flux to the applied pressure gradient. For buoyancy-affected
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flows of a Boussinesq fluid, where the porous medium is assumed to be homogeneous, nondeformable
and isotropic, the dimensional equations which govern the fluid motion are,

u = −K
µ

∂p
∂x

,

v = −K
µ

∂p
∂y

,

w = −K
µ

∂p
∂z

+
ρ f gβK

µ
(T − Tc) .

(2)

In these equations all the terms take their common meanings. The coordinates x and y are
in the horizontal directions, while z is vertically upwards. T is the temperature of the saturated
medium, Tc is the mean upper (cold) boundary temperature, p is the pressure, K the permeability,
µ the viscosity, g gravity, ρ f a reference density of the fluid, and β the coefficient of cubical expansion
of the fluid. The quantities u, v and w, correspond to the fluid seepage velocities in the x, y and z
directions, respectively.

The full equations are completed by the equation of continuity,

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0, (3)

and the heat transport equation,

σ
∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

+ w
∂T
∂z

= κ

(
∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2

)
, (4)

where κ is the thermal diffusivity of the saturated porous medium and,

σ =
(1− φ)(ρc)s + φ(ρc) f

(ρc) f
, (5)

is the heat capacity ratio of the saturated medium to that of the fluid. The value, c, is the specific
heat and ρ the density of the medium, with the subscripts f and s referring to the fluid and solid
phases, respectively.

The nondimensionalisation of Equations (2)–(4) is achieved using the following substitutions,

(x, y, z) =
(x, y, z)

d
, (u, v, w) =

d
κ
(u, v, w), (6)

p =
K
κµ

p, θ =
T − Tc

Th − Tc
, t =

κ

d2σ
t, (7)

where d is the height of the layer. Here, Tc and Th are the cold (upper) and hot (lower) mean
temperatures of the horizontal bounding surfaces. Hence, the non-dimensional equations are,

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0, (8)

(u, v, w) = −
(∂p

∂x
,

∂p
∂y

,
∂p
∂z

)
+ (0, 0, Ra θ), (9)

∂θ

∂t
+ u

∂θ

∂x
+ v

∂θ

∂y
+ w

∂θ

∂z
=

∂2θ

∂x2 +
∂2θ

∂y2 +
∂2θ

∂z2 . (10)
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In the above, the parameter,

Ra =
ρ f gβ(Th − Tc)Kd

µκ
, (11)

is the Darcy-Rayleigh number; the usual clear-fluid Rayleigh number may be obtained by replacing
the permeability, K, by d2. The Darcy-Rayleigh number expresses the balance between buoyancy and
viscous forces.

Assuming that the flow is two dimensional, then v = 0 and all the derivatives with respect to y
may be neglected. Hence, by introducing the stream function, ψ, using u = −ψz and w = ψx, not only
is Equation (8) satisfied but Equations (9) and (10) become,

∂2ψ

∂x2 +
∂2ψ

∂z2 = Ra
∂θ

∂x
, (12)

∂θ

∂t
+

∂ψ

∂x
∂θ

∂z
− ∂θ

∂x
∂ψ

∂z
=

∂2θ

∂x2 +
∂2θ

∂z2 . (13)

Both of the equations above are to be solved analytically using a weakly nonlinear analysis.
The boundary surfaces are considered to be impermeable. The thermal boundary conditions

comprise a combination of heating from below and a small-amplitude variation which is periodic in
both time and space. Therefore the boundary conditions are

z = 0 : ψ = 0, θ = 1 + δ cos ω̂t cos πx,
z = 1 : ψ = 0, θ = δ cos ω̂t cos πx,

(14)

where δ� 1 is the amplitude of the thermal forcing and ω̂ is its nondimensional temporal frequency.

3. Weakly Nonlinear Analysis

In this section we shall carry out a weakly nonlinear analysis in order to obtain a complex
Landau equation for the amplitude of convection in the presence of the thermal boundary
imperfections given in Equation (14). This will be undertaken using the scalings which were used
in Rees and Riley (1989a) [13] and Banu and Rees (2002) [22], and which are suitable for those cases
where the wavenumber of the imperfection takes the critical value. We follow the methodology
introduced by Newell and Whitehead (1969) [26] for the Bénard problem.

Therefore we shall set the amplitude of convection to be of O(ε) and the Darcy-Rayleigh number
shall be within a distance of O(ε2) of its critical value, 4π2. Given that the imperfection has the critical
wavenumber, we need to set δ = ε3 � 1; see Rees and Riley (1986,1989a) [12,13]. The appropriate time
scale is of O(ε−2). Equations (12) and (13) may now be expanded using the following asymptotic series,

ψ = εψ1 + ε2ψ2 + ε3ψ3 + · · · , (15)

θ = 1− z + εθ1 + ε2θ2 + ε3
[
θ3 + cos 2ω̃τ cos πx

]
+ · · · , (16)

and, given the above observations, we set

Ra = R0 + ε2R2 + · · · , ω̃ = ε−2ω̂, τ = 1
2 ε2t, (17)

where R0 = 4π2. The leading term in Equation (16) is the linear conduction profile while the
additional cosine term at O(ε3) renders the thermal boundary conditions for θ3 to be homogeneous
(see Equation (14)).

At O(ε), the leading order disturbance equations are,

ψ1xx + ψ1zz − R0 θ1x = 0, (18)
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θ1xx + θ1zz + ψ1x = 0. (19)

These homogeneous equations form the linearised stability problem for the uniformly heated layer,
and are to be solved subject to the following homogeneous Dirichlet boundary conditions,

ψ1 = θ1 = 0 on both z = 0 and z = 1; (20)

identical conditions will also apply for ψi and θi, i = 2, 3. We choose to use the following
roll eigensolutions,

ψ1 = −iπ
(

Aeiπx − Ae−iπx
)

sin πz, θ1 = 1
2

(
Aeiπx + Ae−iπx

)
sin πz, (21)

where A = A(τ) is a complex amplitude which is a function of the slow timescale, τ. The complex
forms used in Equation (21) allow for a straightforward modelling of phase variations in the solutions.

At O(ε2) the equations for ψ2 and θ2 are,

ψ2xx + ψ2zz − R0 θ2x = 0, (22)

θ2xx + θ2zz + ψ2x = ψ1xθ1z − ψ1zθ1x. (23)

When the solutions given in Equations (21) are substituted into Equation (23) the latter becomes,

θ2xx + θ2zz + ψ2x = π3 A A sin 2πz, (24)

and therefore ψ2 and θ2 are found to be,

ψ2 = 0, θ2 = − 1
4 πA A sin 2πz. (25)

At O(ε3) the equations for ψ3 and θ3 are,

ψ3xx + ψ3zz − R0θ3x = R2θ1x − R0π cos 2ω̃τ sin πx, (26)

θ3xx + θ3zz + ψ3x = ψ1xθ2z − ψ1zθ2x + ψ2xθ1z − ψ2zθ1x +
1
2 θ1τ + π2 cos 2ω̃τ sin πx. (27)

After the substitution of Equations (21) and (25), the above equations become,

ψ3xx + ψ3zz − R0θ3x = − 1
2 iπR2

(
Aeiπx − Ae−iπx

)
sin πz + 4π3 cos 2ω̃τ sin πx, (28)

θ3xx + θ3zz + ψ3x = − 1
2 iπ4 AA

(
Aeiπx + Ae−iπx

)(
sin 3πz− sin πz

)
− 1

4

(
Aτeiπx + Aτe−iπx

)
sin πz + π2 cos 2ω̃τ cos πx.

(29)

The inhomogeneous terms in Equations (28) and (29) contain components which are proportional
to the eigensolution of the homogeneous form of the equations, namely, the solutions given in
Equation (21). The value for R2 is presently arbitrary but in general this system of equations cannot
be solved unless R2 takes a specific value. The derivation of a solvability condition will yield the
desired amplitude equation for A in terms of R2, the satisfaction of which guarantees the solution of
Equations (28) and (29) up to an arbitrary multiple of the eigensolution.

If Equations (28) and (29) are written in the form,

ψ3xx + ψ3zz − R0θ3x = R1, θ3xx + θ3zz + ψ3x = R2, (30)
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and if we define the quantities, ψ∗ = iπe−iπx sin πz and θ∗ = 1
2 e−iπx sin πz, which are the coefficients

of A in Equation (21), then the following identity may be formed:

∫ 1

0

∫ 2

0

[
(ψ3xx + ψ3zz − R0θ3x)ψ∗ + R0 (θ3xx + θ3zz + ψ3x) θ∗

]
dx dz

=
∫ 1

0

∫ 2

0

[
R1ψ∗ + R0R2θ∗

]
dx dz.

(31)

The left hand side of Equation (31) may be shown to be precisely equal to zero by using integration
by parts, and thus the solvability condition is that,

∫ 1

0

∫ 2

0

[
R1ψ∗ + R0R2θ∗

]
dx dz = 0. (32)

Upon application of this solvability condition to Equations (28) and (29) we obtain the following
amplitude (i.e., Landau) equation,

Aτ = R2 A− π4 A2 A + 8π cos 2ω̃τ. (33)

The coefficients of the last two terms of Equation (33) may be simplified by rescaling A, τ and R2

in order to obtain the following canonical form of the amplitude equation,

A∗τ∗ = R∗2 A∗ − A∗2 A∗ + cos ω∗τ∗. (34)

The scalings which are required to do this are,

ω∗ =
ω̃

2π2 , A∗ = 1
2 πA, R∗2 =

R2

4π2 , τ∗ = 4π2τ. (35)

If we omit the asterisks for simplicity of presentation, then the complex amplitude equation
governing weakly nonlinear convection is,

At = R2 A− A2 A + cos ωt, (36)

where τ∗ has been replaced by t for simplicity of presentation from this point onwards, and this t
should not be confused with that used in §§1 and 2. The rest of the paper is devoted to the properties
of the real and complex solutions of this equation. For any given ω the forcing period is T = 2π/ω.

4. Real Solutions of the Amplitude Equations

4.1. Initial Considerations and Context

Rees and Riley (1986) [12] obtained the following amplitude equation for a steady perfectly
resonant imperfection,

At = R2 A− A2 A + 1. (37)

and this is equivalent to the setting of ω = 0 in the present paper. The steady solutions of Equation (37)
are shown in Figure 2 and this Figure shows that no zero-amplitude solution is possible. When R2 < 0
a unique solution is obtained, and it satisfies the asymptotic relation, A ∼ −R−1

2 , when R2 has a large
amplitude. But as R2 increases, the amplitude of this solution branch also increases until it approaches
asymptotically to A ∼ R1/2

2 when R2 is large and positive. The upper branch of this bifurcation
diagram is stable. However, when R2 > 3/22/3, there exist two other solution branches, and both
of these are unstable with respect to perturbations in phase when the porous layer is unbounded
horizontally. The middle branch is also unstable unconditionally to perturbations in amplitude.
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Figure 2. The steady solution curves for the amplitude equation Equation (37). The upper branch is
stable. The other two branches are unstable with respect to perturbations in phase, while the middle
branch is also unstable with respect to perturbations in amplitude.

An alternative way of visualizing the stability properties of Equation (37) which are described
above is shown in Figure 3. In this Figure are displayed solution trajectories of A as a complex
amplitude for different values of R2 and for different initial conditions placed on a unit circle in the
complex plane. For all choices of R2, the values of A converge onto the solution which is on the positive
real axis. When R2 is sufficiently large and the initial condition is close to the negative real axis, then
the amplitude increases rapidly to close to R1/2

2 and then the phase varies relatively slowly until the
positive real axis is reached. The variation in phase is equivalent to a slow physical migration of the
rolls towards the stable location, and this means that |A| has also been maximised.
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Figure 3. Numerical solutions of Equation (37) for initial conditions placed on a unit circle in the
complex plane, for Ra = −5, −1, 0, 1, 2 and 5. Showing how solutions evolve to the unique solution on
the positive real axis.
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The usefulness of the above picture lies in the fact that it gives a good insight into what might
happen when ω is no longer zero. Thus when cos ωt > 0, Figure 3 gives an indication of the trajectories,
while the mirror image about the vertical axis corresponds to when cos ωt < 0. Therefore we may
draw an a priori conclusion that there might be the possibility of cases where there could be permanent
oscillations in phase, given that a positive real value of A forms the attractive stable solution when
cos ωt > 0 and its negative counterpart does so when cos ωt < 0.

4.2. Numerical solutions

We may expand Equation (36) by splitting it into its real and imaginary components: A(t) =

B(t) + iC(t), where B(t) and C(t) are both real. This yields the following pair of coupled non-linear
equations,

Bt = R2B− (B2 + C2)B + cos ωt, (38)

and
Ct = R2C− (B2 + C2)C. (39)

From Equation (39) we see that C = 0 is a possible solution, which corresponds to real values of
A and, given the definition of A in Equations (21), convection is exactly in phase with the thermal
forcing when both A and cos ωt are of the same sign.

In this subsection we shall concentrate solely on real solutions of Equation (38) with C = 0, namely,

Bt = R2B− B3 + cos ωt. (40)

This equation was solved using the classical 4th order Runge Kutta method with at least
2000 timesteps within a period until all transients have decayed and a steady periodic state is
achieved. Integration took place over a whole number of periods of the forcing, i.e., up to the
time tmax = N(2π/ω) where N is an integer. For each period, the solution was compared with that
over the previous period, and when the maximum absolute difference over all the time steps was less
than 10−6 then convergence was deemed to have occurred.

In Figure 4 steady real periodic solutions are shown for a variety of frequencies, ω, and for a
range of values of R2 lying between −5 and 3. These curves are typical of all periodic real solutions.
There are two different types of solution which occur as R2 and ω are varied:

(1) a single-signed oscillation, which we call Type I,
(2) solutions taking both positive and negative amplitudes, which we call Type II.

It is clear from Figure 4 that, for all values of ω, single-signed solutions (Type I) always exist when
R2 is sufficiently large and that double-signed solutions (Type II) exist when R2 is negative. However,
the transition between these two states isn’t straightforward to see in this Figure. When the forcing
period is large (e.g., when T = 100) there appears to be a sudden transition between the two Types.
However, when the forcing period is small (such as when T = 1 and T = 5) the solution curves
simply descend as R2 decreases. There will be a precise value of R2 (which we will call Rzero

2 ) at which
the minimum value of B is zero; these values are listed in Table 1. But the consequence is that there
appears to be an intermediate range of R2 which seems to be transitional between the two Types.

Further analysis of these curves indicates that the characterisation of the two Types based on
whether a particular curve is single-signed or double-signed is too simplistic. A much better alternative
is to consider the variation in the maximum and minimum values of B over one period; such curves are
displayed in Figure 5. Concentrating first on the continuous lines for T = 5 and for low values of R2,
we see that Bmax + Bmin = 0, and therefore the corresponding solution curves for B are double-signed
and are of Type II. Once R2 reaches roughly 0.838 there is a clear bifurcation to a new form of solution,
and it is this which should be labelled as being of Type I. Again concentrating on the continuous
curves, we see that Bmax and Bmin still have the opposite sign for a further small range of values of R2,
but once R2 exceeds roughly 1.043 the solution then becomes single-signed.



Fluids 2017, 2, 60 10 of 30

In Figure 5 the continuous curves correspond to the use of B(t = 0) > 0 as the initial condition,
whereas the dotted lines correspond to B(t = 0) < 0, or, equivalently, to solutions with a phase-shift of
π compared with the solutions with the positive initial condition. Inclusion of these latter curves give
rise to sets of curves which are more obviously of supercritical bifurcation type, and it is this point of
bifurcation which marks the exact transition between solutions of the two Types. Although we shall
not demonstrate it, Type II solutions also exist above the bifurcation point and have been computed,
but they are unstable.
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Figure 4. The effect of different Rayleigh numbers on real solutions of Equation (36) for the following
selection of forcing periods: T = 1, 5, 20 and 100. The respective frequencies are ω = 2π, 0.4π,
0.1π and 0.02π. The uppermost curve corresponds to R2 = 3; the dash-dotted curve to Ra = 0 with
intermediate curves corresponding to intervals of 0.2 in Ra; the dotted curves correspond to Ra = −1,
−2, −5 and −10.

Given that the bifurcation point is where the Type II solutions become unstable, we may determine
these points numerically. If we set A = B + D into Equation (40), where D is both real and
asymptotically small, then we obtain the following linearised equation for D:

Dt = (R2 − 3B2)D. (41)

The bifurcation point now corresponds to nonzero solutions for D for which D(0) = D(2πω).
This was incorporated into the above-mentioned shooting method code where, for a chosen value
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of ω, the critical value of R2 may then be found. Although a Newton-Raphson scheme was used,
solutions converge only linearly, and with increasing difficulty as ω becomes small. However, these
critical values of R2, named Rbif

2 are also shown in Table 1.

- 2 - 1 0 1 2 3 4 5

- 2

- 1

0

1

2

ω = 5π

T = 0.4

B

R2 - 2 - 1 0 1 2 3 4 5

- 2

- 1

0

1

2

ω = π

T = 2

- 2 - 1 0 1 2 3 4 5

- 2

- 1

0

1

2

ω = 2
5 π

T = 5
- 2 - 1 0 1 2 3 4 5

- 2

- 1

0

1

2

ω = 1
5 π

T = 10

- 2 - 1 0 1 2 3 4 5

- 2

- 1

0

1

2

ω = 1
20 π

T = 40
- 2 - 1 0 1 2 3 4 5

- 2

- 1

0

1

2

ω = 1
100 π

T = 200

Figure 5. The bifurcation diagram for the given values frequencies/periods. The curves correspond to
Bmax and Bmin over period. The dashed lines correspond to solutions for which B(t = 0) is negative,
while continuous lines have B(t = 0) > 0.
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Table 1. The values of R2 corresponding to the transition between Type I and Type II solutions of
Equation (40). Rzero

2 marks where Bmin = 0, while Rbif
2 marks the bifurcation point in Figure 5.

ω/π Rzero
2 Rbif

2

0 1.889881 1.889881
1/100 1.871665 1.871665
1/50 1.853286 1.853286
1/20 1.797093 1.797080
1/10 1.699355 1.699006
1/5 1.488797 1.466053
1/4 1.378595 1.321533
1/3 1.192159 1.050448

ω/π Rzero
2 Rbif

2

2/5 1.043338 0.837670
1/2 0.829189 0.583587
2/3 0.540125 0.339267
4/5 0.388046 0.236835

1 0.251850 0.151874
4/3 0.142320 0.085479

2 0.063326 0.037995
4 0.015856 0.009499

4.3. Analysis of the Real Solution Profiles for Large Frequencies (ω � 1)

Now we proceed to the analysis of the high frequency cases, and Figure 4 shows clearly that the
solutions are of Type I and are essentially constant but with a small periodic variation superimposed.
It proves convenient to use a new time scale, τ = ωt, in Equation (40); this yields the equation,

ωBτ = R2B− B3 + cos τ. (42)

Equation (42), when expanded using the following series,

B =
∞

∑
i=0

Bi

ωi , (43)

gives a sequence of equations for the real functions, B0(τ), B1(τ) and so on. Given the above
observation regarding the form of the solution, we will expect that B0 is constant.

At O(ω) in the expansion we have the equation, B0τ = 0, which confirms the numerical evidence
that B0 is a constant. Therefore at O(1) in the expansion we have the equation,

B1τ = R2B0 − B3
0 + cos τ, (44)

This is one equation for two unknowns but, given that B0 must be constant, the solutions for B0

and B1 are,
B0 =

√
R2, B1 = sin τ, (45)

No other solutions are possible which are physically reasonable, for if B0 were any constant
other than

√
R2 (or alternatively −

√
R2) then B1 would contain a term which grows in time, and this

possibility must be discounted given the evidence of Figure 4. The B1 term shows that the leading
unsteady response is π/2 out of phase with the cosine forcing when the forcing frequency is high.

At O(ω−1) the governing equation is

B2τ = R2B1 − 3B2
0B1, (46)

and upon substitution of the previous solutions we have

B2τ = −2R2 sin τ, (47)

Thus, the solution for this equation is,

B2 = 2R2 cos τ + α, (48)

where α is a constant which is determined later.
At O(ω−2) the equation is

B3τ = R2B2 − 3B2
0 B2 − 3B0B2

1 , (49)
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which, after substitution of the previous solutions, becomes,

B3τ = −2R2(α + 2R2 cos τ)− 3
√

R2 sin2 τ. (50)

In Equation (50), there are effectively two constant terms on the right hand side, and if α is not
chosen correctly then the equation will have a solution involving a secular term, i.e., one which grows
with time. Such unphysical growth may be eliminated by setting

α =
−3

4
√

R2
. (51)

Therefore the solution for B3 is

B3 =
3
√

R2 sin 2τ

4
− 4R2

2 sin τ. (52)

Hence, the asymptotic solution up to order O(ω−3) is

B =
√

R2 +
sin τ

ω
+

2R2 cos τ − 3
4
√

R2
ω2 +

3
√

R2 sin 2τ

4
− 4R2

2 sin τ

ω3 + · · · . (53)

This solution shows that oscillations take place about the mean value, B =
√

R2 − (3/4
√

R2)ω
−2.

The cosine term in (53) shows that the phase lead compared with that given by B1 is of O(ω−1).
In particular, the maximum response takes place when sin(τ + 2R2/ω) ' 1 and therefore, it occurs at
a time which is 2R2/ω earlier than the peaks given by B1 = sin τ.

Equation (53) confirms the shape of the Bmax and Bmin (continuous) curves for large values of T
in Figure 5 when R2 is well beyond the bifurcation point. A second asymptotic solution based on the
leading order solution, B ∼ −

√
R2, may also be found:

B = −
√

R2 +
sin τ

ω
+

2R2 cos τ +
3

4
√

R2
ω2 +

−3
√

R2 sin 2τ

4
− 4R2

2 sin τ

ω3 + · · · , (54)

and this may be regarded as confirming the analogous dashed lines in Figure 5. Both these solutions
are Type I oscillations.

A third solution may also be derived where the amplitude is small and which is of Type II; it is:

B =
sin τ

ω
− R2 cos τ

ω2 −
R2

2 sin τ

ω3 +
(R3

2 +
3
4 ) cos τ − 1

12 cos 3τ

ω4 +
(R4

2 +
3
2 R2) sin τ − 5

18 R2 sin 3τ

ω5 + · · · , (55)

Although this solution clearly applies when R2 is negative, it is also valid for all fixed values of
R2 including those which are large and positive. Thus, when R2 > 0, it may be regarded as the middle
branch solution. So we may conclude from this large-ω analysis (and which confirms the solutions
shown in Figure 5) that the imperfect bifurcation shown in Figure 2, which arises when the boundary
forcing is stationary, is replaced by a supercritical pitchfork bifurcation when the boundary forcing is
time-periodic.

4.4. Analysis of the Basic Flow for Low Frequencies (ω � 1)

When ω � 1 the forcing term varies very slowly and it is natural to assume at the outset that the
solution is quasi-static. This does turn out to be the case except for a range of values of R2. A detailed
study shows that there are four regimes:
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(1) R2 < 0,
(2) 0 < R2 < 3/22/3,
(3) R2 ≈ 3/22/3,
(4) R2 > 3/22/3.

and these are described in detail below. In the following analysis we shall continue to use Equation (42)
for mathematical convenience.

4.4.1. The Quasi-Static Regimes, R2 < 0 and R2 > 3/23/2

We begin by expanding the solution of Equation (42) using the following power series in ω,

B =
∞

∑
i=0

ωiBi. (56)

At O(1), the resulting equation for B0 is,

R2B0 − B3
0 + cos τ = 0, (57)

As there is no time-derivative in this equation B0 varies smoothly and quasi-statically when either
R2 < 0 or R2 > 3/22/3 ≈ 1.889881. That this is so may be seen by considering the quasi-static variation
of B0 as depicted in Figure 6 where the various symbols represent the solution for three representative
values of R2. The curves displayed in each frame of Figure 6 represent all the possible solutions of (57)
at different values of τ over half a forcing period.

-4 -2 2 4
R2

-2

-1

1

2

B0

ωt = 0

-4 -2 2 4
R2

-2

-1

1

2

B0

ωt = π/4

-4 -2 2 4
R2

-2

-1

1

2

B0

ωt = π/2

-4 -2 2 4
R2

-2

-1

1

2

B0

ωt = 3π/4

-4 -2 2 4
R2

-2

-1

1

2

B0

ωt = π

Figure 6. Depiction of the bifurcation diagram corresponding to quasi-static real solutions of
Equation (40) over half a period. The five frames correspond to ωt = 0, π/4, π/2, 3π/4 and π. In each
frame, and from left to right, the symbols indicate potential solutions for (i) R2 < 0, (ii) 0 < R2 < 3/22/3

and (iii) R2 > 3/22/3. The solid circles depict how one might predict how an unsteady solution might
evolve from the initial conditions given when ωt = 0, while the circles depict possible solutions but
these do not arise with the chosen initial conditions.
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When R2 < 0 there is only one possible solution branch and therefore B0 can vary quasi-statically
as indicated by following the left hand circles in each subfigure. When R2 > 1.889881, which is
represented by the right hand symbols in each frame, there are always three branches and it is again
possible for each outer branch solution to vary quasi-statically and remains on that branch. In this
case we observe that the upper branch always exists and therefore there is no mechanism to cause the
solution to change to another branch.

4.4.2. Sudden Transitions Between Branches

However, when 0 < R2 < 1.889881, then there are parts of the forcing period when three
branches exist, and parts when only one exists. If we follow the movement of the filled circle from
frame 1 (ωt = 0) onwards in Figure 6, then we see a gradual decrease in the amplitude of the solution
on the upper branch until frame 4 (ωt = 3

4 π). At a point in time somewhere between this and ωt = π,
the upper branch ceases to exist at that value of R2, and the only branch which exists is then the lower
branch. Therefore we are forced to expect to see a rapid change in the solution when τ is close to
those values corresponding to when R2 is at the nose of the conjoined branches. Examples of this
have already been seen for T = 100 and R2 < 1.4 in Figure 4. It is straightforward to show that this
‘quasi-static’ transition happens when

τ = τ∗ + nπ, (58)

where
cos τ∗ = −2(R2/3)3/2 and 1

2 π < τ∗ < π, (59)

for integer values of n. One example of the sensitivity of the solution curves to the value of R2 is
shown in Figure 7 where ω = π/100 (T = 200) has been chosen as the representative small value of ω.
At this value of ω the transition between flows of the two types occurs between R2 = 1.871665 and
R2 = 1.871666, and therefore there is an obviously sharp transition between solutions of Type 1 and of
Type II. Solutions for the neighbouring values, R2 = 1.4, 1.8 and 2 are shown in Figure 8, together with
the corresponding quasi-static solution curves, for comparison. For the Type II solutions depicted,
the true solution is given very accurately by the quasi-static solution, but as it approaches the nose of
the quasi-static curve, the value of B drops precipitously to the lower branch and is then given very
accurately by the negative quasi-static solution.

−2

−1

1

2

T /4 T /2 3T /4 T
t

Figure 7. An example of a catastrophic change in the qualitative nature of the solution for the small
frequency, ω = π/100. The solid line corresponds to R2 = 1.871666 and the dashed line to R2 = 1.871665.
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−2

−1

1

2

T /4 T /2 3T /4 T
t

Figure 8. Solution curves (continuous lines) for ω = π/100 (T = 200) and for R2 = 1.4 (lowest),
1.8 and 2.0 (uppermost). Also shown are the corresponding quasi-static solutions.

We now proceed to a study of the process of transition from one branch to another. On letting
τ = τ∗ + ωt̃ in Equation (42), where τ∗ is defined in Equation (59), we have

Bt̃ = R2B− B3 + cos(τ∗ + ωt̃). (60)

Thus t̃ is simply a phase-shifted version of t. The function cos(τ∗ + ωt̃) may be expanded for
small values of ω according to,

cos(τ∗ + ωt̃) = S
(

1− ω2 t̃2

2!
+ . . .

)
−
√

1− S2
(

ωt̃− ω3 t̃3

3!
+ . . .

)
, (61)

where S = cos τ∗ = −2(R2/3)3/2 < 0. Thus, if Equation (60) is rewritten in terms of the leading terms
given in Equation (61), then we obtain,

Bt̃ = R2B− B3 + S−
√

1− S2 ωt̃ + O(ω2). (62)

Upon rewriting R2 in Equation (62) in terms of S, and rescaling using

B = −B̂∗(S/2)1/3 and t̃ = t̂(2/S)2/3, (63)

then we obtain,

− B̂t̂ = −3B̂ + B̂3 +
2
S

(
S− (2/3)5/2

√
1− S2 ωt̂

)
+ O(ω2). (64)

The right hand side of Equation (64) may be simplified, and if also rename the last term to be Sωt̂
then the equation becomes,

B̂t̂ = −(B̂− 1)2(B̂ + 2) + Sωt̂ + O(ω2), (65)

where S = 2(2/3)5/2(
√

1− S2)/S, which also depends on R2.
We may now use the method of dominant balance to determine suitable scalings for further

analysis. By setting, B̂ = 1 + ωa ˆ̂B and t̂ = ωb ˆ̂t. It was found that a = 1/3 and b = −1/3 form
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the suitable powers of ω for the subsequent analysis. Hence, the substitution of these values into
Equation (65) gives the following equation,

ˆ̂B ˆ̂t = −3 ˆ̂B
2
+ S ˆ̂t. (66)

Figure 9 shows the numerical solution of Equation (66) the case when S = −0.5 where the
solution separates from the quasi-static solution before taking a sharp descent. The shape of the
tranient solution shown in Figure 9 has obvious qualitative similarity with the Type II solutions shown
in Figure 8. This asymptotic solution is also fully representative of all other values of S since S may
also be scaled out of Equation (66) using yet another transformation.

-6 -4 -2 2 4

-1

-0.5

0.5

1

ˆ̂B

ˆ̂t

Figure 9. Solution of Equation (66) for S = −0.5 (continuous line). The corresponding quasi-static

solution of 3 ˆ̂B
2
= −S ˆ̂t is represented by the dashed line.

The solution shown in Figure 9 becomes negatively infinite at a finite time. Given that the present
analysis is a local analysis, we conclude that this is equivalent to jumping from the upper branch to the
lower branch, which is in accord with many of the curves for small values of ω (or large values of T )
which are shown in Figure 4. Upon going back through the various transformations, this indicates that
the transition timescale is of order ω−1/3 in duration, which is very short compared with the forcing
period, 2π/ω.

An identical analysis may be used to describe the reverse transition from a lower branch to an
upper branch when cos τ∗ = 2(R2/3)3/2 and 3

2 π < τ∗ < 2π, i.e., exactly half a period after the first
transition; see Equation (59).

4.4.3. Transitional Regime (R2 ≈ 3/22/3)

Finally, we consider the case when R2 is very close to 3/22/3. In this regime neighbouring turning
points are close together, as demonstrated by the R2 = 1.8 quasi-static curve in Figure 8. In this regime
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we need to consider cases near to τ = π, in order to determine the criterion which determines whether
the positive solution may or may not jump to a negative solution in that region.

Therefore we rescale Equation (42) by setting τ = π + ωt̃ which then yields,

Bt̃ = R2B− B3 − cos ωt̃. (67)

Here the solution is considered to be at or near the turning point. We have assumed that R2 is
close to 3/22/3 and we allow a small perturbation from this value by writing,

R2 =
3

22/3 (1 + R̃), (68)

where |R̃| � 1 and where R̃ may be negative. We rescale B relative to the value (1/2)1/3 at the turning
point and add a small perturbation, B̃, using

B =
1

21/3 (1 + B̃), (69)

where |B̃| � 1. The magnitudes of the three small parameters R̃, B̃ and ω are related, and these are
now determined. Thus, after the substitution of Equations (68) and (69) into Equation (67) and the
retention of leading order terms, we obtain,

1
21/3 B̃t̃ =

3
2

R̃− 3
2

B̃2 +
ω2 t̃2

2
. (70)

We may now find the relationship between R̃, B̃ and ω and the magnitude of the time scale
by setting,

B̃ = O(ωa), t̃ = O(ωb), and R̃ = O(ωc). (71)

All the terms balance in terms of their respective orders of magnitude when a = 1/2, b = −1/2
and c = 1. Therefore, a rescaling according to

B̃ = ω1/2B̂, t̃ =
t̂

ω1/2
22/3

3
, and R̃ = ωR̂, (72)

yields the equation,

B̂t̂ = R̂− B̂2 +
24/3

33 t̂2. (73)

Numerical solutions indicate that when R̂ is sufficiently large and positive then B̂ remains finite,
and this is equivalent to remaining on the upper branch. Some typical solutions are shown in Figure 10.
For smaller values of R̂, B̂ can become negatively infinite in a finite time; this is again equivalent to the
solution jumping to a different branch.

We find that the critical value of R̂ which delineates the Types I and II behaviours is
R̂c = −0.3054955 to 7 decimal places. This is illustrated in Figure 11 where solution curves for
R̂ = R̂c + n× 10−7 where n = −5, . . . , 5 are shown. Therefore we conclude that transition between the
two types of behaviour occurs when

R2 ≈ 3/22/3 − 0.3054955ω (74)

when ω � 1.
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B̂

t̂

R̂ = 1

105−5−10

3

2

1

−1

−2

−3

Figure 10. Solution of Equation (73) for R̂ = −0.3, −1, 0 and 1 (continuous lines). The corresponding
quasi-static solutions are represented by the dashed lines.
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t̂

Figure 11. Solutions of Equation (73) for values of R̂ which are close to the critical value,
i.e., R̂ = −0.3054955± n× 10−7 with n = −5,−4, · · · , 4, 5 (continuous lines). The corresponding
quasi-statics solution is represented by the dashed line.
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5. Stability Analysis for Real Solutions

So far we have concentrated on analysing solutions for which A is real, where the convective
pattern remains stationary relative the spatial pattern of the temperature variations on the boundary
of the layer. The work of Banu and Rees [22] (2001), which studied a moving resonant wavelength
thermal forcing, naturally found cellular patterns which also move along the layer. Mathematicially
such movement is accounted for by allowing the amplitude, A, to be complex.

In the present context it is possible to predict the existence of complex solutions by considering
again the sketches in Figure 6 If we look at the R2 = 4 solution (filled circle) which is on the upper
branch, then once τ is as large as that represented in frame 4 (ωt = 3π/4), that solution is unstable
with respect to perturbations in phase. There is therefore an a priori expectation that the cellular will
move towards the closer position where the heat transfer will be maximised, Therefore it is to be
expected that the phase of the pattern should be a function of time, in general.

5.1. General Linear Stability Analysis

We may determine the linear stability equations for the real solutions, B(t), given above,
by substituting

A = B + D (75)

into Equation (36) and by linearising, given that we are setting |D| � 1. This gives the following
equation for the small-amplitude disturbance, D:

Dt = R2D− 2B2D− B2D. (76)

We may split D into its real and imaginary components using D = DR + iDI , and therefore we
have the following equations,

dDR
dt

= (R2 − 3B2)DR, (77)

and
dDI
dt

= (R2 − B2)DI . (78)

The form of these decoupled equations makes it clear that imaginary disturbances will always
become unstable at a smaller value of R2 than real disturbances will, and therefore our linear theory
will consider only imaginary disturbances. We also note that Equation (77) is identical to Equation (41),
and therefore we may already conclude that real solutions of Type I, which exist after the supercritical
bifurcation, will always be unstable to phase disturbances.

5.2. Numerical Solutions

The basic state which we analyse for stability is given by the solution of Equation (40) while the
linearised disturbances satisfy Equation (78) above. There are various ways in which stability criteria
may be found numerically. One of these involves integrating both Equations (40) and (78) forward
in time using a non-zero initial condition for DI . If we denote by Dn the value of DI after n forcing
periods, then the critical value of R2 corresponds to when the following relation is satisfied,

lim
n→∞

Dn+1

Dn
= 1. (79)

One alternative procedure would be to use a shooting method based on the classical fourth order
Runge-Kutta code mentioned earlier where the boundary condition, DI(0) = DI(2π/ω), is imposed
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in order to find the critical value of R2. A second alternative relies on the fact that DI may be found
analytically in terms of B:

DI = constant× exp
[∫ 2π/ω

0
(R2 − B2) dt

]
. (80)

If there is no overall growth over one forcing period then neutral conditions exist and, in terms of
τ, the following condition needs to be met:

I =
∫ 2π

0
(R2 − B2) dτ = 0; (81)

this integral may also be encoded within a shooting method code.
The results of an extensive set of calculations are shown in Figure 12 and Table 2 where the

numbers given are correct to 8 decimal places. The detailed numerical values indicate that

R2c ∝ ω−2 (ω � 1) and R2c − 3/22/3 ∝ ω1/2 (ω � 1). (82)

Table 2. Numerical solutions showing the relationship between ω and R2c corresponding to neutral
stability with respect to phase perturbations. In the right hand subtable we also show R2c,asymp from
Equation (92) and its error.

ω/π R2c

0 1.88988158
0.001 1.84449388
0.002 1.83042922
0.005 1.79452727
0.01 1.74209700
0.02 1.64886998
0.05 1.41741816
0.1 1.12923353
0.2 0.74433223
0.3 0.56289546

ω/π R2c R2c,asymp R2c − R2c,asymp

0.4 0.30410142 0.30211086 1.99× 10−3

0.5 0.20030754 0.20020688 1.01× 10−4

0.6 0.14016556 0.14015740 8.16× 10−6

0.8 0.07910061 0.07910046 1.48× 10−7

1 0.05065108 0.05065108 7× 10−9

1.5 0.02251545 0.02251545
2 0.01266511 0.01266511
3 0.00562895 0.00562895
5 0.00202642 0.00202642
10 0.00050661 0.00050661

When R2 and ω take values which are below the stability curve, which is the dotted curve in
Figure 12, then real solutions are stable. Otherwise, the imaginary part grows and the final periodic
state is complex, implying that the convection cells move horizontally. This neutral curve also lies
below the whole of the curve marking the transition from Type II solutions to Type I solutions as R2

increases, as mentioned above. This means that real type I solutions are unstable when the porous
layer is of infinite horizontal extent. On the other hand, if the porous layer were to be of finite width,
and specifically a whole number of spatial periods of the boundary forcing, then disturbances which
alter the phase of the disturbance uniformly, as we have used here, will not satisfy any acceptable
sidewall boundary conditions, and therefore real solutions which are stationary will remain stable,
at least within the weakly nonlinear regime.
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Figure 12. Showing the value of R2 as a function of ω at which solutions of Type II undergo a
supercritical bifurcation to solutions of Type I (continuous line), and the neutral stability curve with
respect to imaginary disturbances (dashed line).

5.3. Stability for Large Frequencies (ω � 1)

In the large-ω limit it is possible to supplement the above numerical data using the asymptotic
basic state solutions given in Equations (53)–(55). For the upper branch solution given in Equation (53),
substitution into Equation (81) yields,

I =
∫ 2π

0

[
−2
√

R2 sin τ

ω
+

1− 4R3/2
2 cos τ + 1

2 cos 2τ

ω2 + · · ·
]

dτ =
2π

ω2 + · · · . (83)

which shows that this solution is always unstable. An alternative way of viewing Equation (83) is that
the imaginary disturbance takes the form of a time-periodic function multiplied by eτ/ω2

, and therefore
the disturbance grows very slowly in time. An almost identical analysis shows that the lower branch
solution given in Equation (54) is also unstable unconditionally.

If we take the leading term in the middle branch solution Equation (55), then we have

I =
∫ 2π

0

[
R2 −

sin2 τ

ω2 + · · ·
]

dτ = 2π
[

R2 −
1

2ω2 + · · ·
]
τ. (84)

This solution will be unstable once R2 exceeds 1/2ω2, and therefore the one-term large-ω
expression for the neutral curve is

R2 =
1

2ω2 . (85)

Although this neutral curve compares quite well with our numerical data, it is worth attempting
to find the next term in the large-ω expansion. Given that powers of R2 appear in Equation (55),
where R2 is assumed to be of O(1), it will be necessary first to rescale R2 in order to carry out a rigorous
large-ω analysis. Therefore we set,

R2 = S/ω2, (86)

and we are now solving,

ωBτ =
S

ω2 B− B3 + cos τ, (87)
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by means of the substitution,

B =
∞

∑
n=1

Bn

ωn . (88)

The resulting solutions for the first seven terms are as follows,

B1 = sin τ, B4 = ( 3
4 − S) cos τ − 1

12 cos 3τ,

B7 =
[
−S2 + 3

2 S− 5
8

]
sin τ +

[
− 5

18 S + 11
48

]
sin 3τ − 1

80 sin 5τ.
(89)

where B2 = B3 = B5 = B6 = 0. Application of the condition given in Equation (79) gives the following
critical value for S:

S = 1
2 +

[
− 1

2 S2 + 3
4 S− 49

144

]
/ω6 + · · · . (90)

Clearly there is an O(ω−6) correction to this leading term we find that S will take the
following form,

Sc =
1
2 −

13
144 ω−6. (91)

Therefore the asymptotic critical Rayleigh number for real solutions is

R2c,asymp = 1
2 ω−2 − 13

144 ω−8 + · · · , (92)

values of which are also shown in Table 2. This expression gives an exceptionally good prediction
for the numerical values; even when ω is as small as π, the relative error is approximately 7× 10−5.
An alternative demonstration of how good this asymptotic expression is may be seen in Figure 13,
which shows the variation of R2cω2 with ω. The one-term expansion is already extremely good, but
the two-term expression offers some improvement.

0.25 0.5 0.75 1 1.25 1.5 1.75 2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R2cω2

ω/π

Two-term asymptotic solution

One-term asymptotic solution

Figure 13. Critical values of R2 above which real solutions are unstable to iaginary disturbances
(dashed line). Also shown are one-term (thin line) and two-term (thick line) approximations using a
large-ω analysis.
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6. Complex Solutions

Equations (38) and (39) are the expanded forms of Equation (36) which is both complex and
non-linear. Based on the stability results given in Table 2 of the linear form of Equations (38) and (39),
we could begin to seek the qualitative behaviour of solutions at higher Rayleigh numbers.

6.1. Numerical Simulations

A Runge Kutta code was run until a steady periodic complex solution was achieved. The solutions
thus obtained are independent of initial conditions and transients decay quite quickly when the real
initial condition is taken to be

√
R2. A nonzero imaginary part is used to seed complex solutions, for if

a zero imaginary part were to be used then the solution will always remain real. When ω is small the
steady periodic state is attained after 2 or 3 forcing periods. On the other hand, when ω is large, it takes
many periods to achieve a steady periodic state; this is consistent with the very small exponential
growth rate which is a consequence of Equation (83). A set of different R2 values for each selected
values of ω is used in the code. A selection of these solutions are shown in Figure 14, and all represent
a distinctive pattern showing oscillations above the real axis whenever R2 exceeds its critical value.

An interesting observation is found that the stable solutions oscillate about the zeros on the real
axis while the unstable real solutions become closed trajectories on the complex plane. For the case
of unstable solutions, when cos ωt is positive the steady solution is attracted to the stable branch
therefore, as the result the solution curve moves closer to the real axis where it follows the quasi-static
solution. This result is especially obvious when the value for ω is small. When convection changes sign
or rather when the boundary forcing changes sign, which is analogous to cos ωt being negative, the
stable branch changes position after going through the supercritical pitchfork bifurcation. Hence, the
solution curve jumps to the second branch where it is stable before it follows the quasi-static solution
again and complete the phase. The solutions are therefore unstable to variations in phase which is
clearly seen in Figure 14 when ω values are small.

6.2. Solutions for Large Values of R2

Figure 14 shows that solutions for large values of R2 tend to show quite small oscillations about a
value close to A =

√
R2 i. Therefore, we shall conclude our analysis of Equation (36) by considering

the large-R2 limit of its solutions. The analysis begins by adopting the following series expansion,

A = A0
√

R2 + A1 +
A2√
R2

+
A3

R2
+

A4

R3/2
2

. (93)

On substituting into Equation (36), the equation which arises at O(R3/2
2 ) is

A0 − A0 A2
0 = 0. (94)

In general, any complex value of A0 satisfying |A0| = 1 is a solution of this equation, but the fully
numerical solution suggests that A0 = i should be set.

At O(R2), the equation we obtain is,

0 = A1 − A1 A2
0 − 2A1 A0 A0

= A1 − A1.
(95)

The only valid solution of Equation (95) is a real function of t, but it must allow for the possibility
of periodic oscillations in the real part of A. However, this equation is silent on what that function is
and therefore we shall set A1 = a1(t) for now and determine a1 later.

At O(
√

R2) we have,

A′0 = A2 − A2 A2
0 − 2A2 A0 A0 − 2A0 A1 A1 − A2

1 A0 =⇒ A2 − A2 = −ia2
1. (96)
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Therefore the solution for A2 must be a combination of real and imaginary parts, and we obtain,

A2 = a2(t)− 1
2 ia2

1, (97)

where a2(t) is also an unknown real function at present.
At O(1) we obtain,

A′1 = A3 − A3 A2
0 − 2A3 A0 A0 − A2

1 A1 − 2A2 A1 A0 − 2A2 A1 A0 − 2A2 A1 A0 + cos ωt, (98)

which, after substitutions and simplification, reduces to the form,

A′1 = A3 − A3 − 2ia1a2 + cos ωt. (99)

The substitution of A3 = a3(t) + ib3(t) into this latest equation above reduces it to

a′1 = cos ωt− 2i[a1a2 + b3]. (100)

Since a1 is real, the real and the imaginary parts may be separated to give,

a′1 = cos ωt and b3(t) = −a1(t)a2(t). (101)

The real part gives us,

a1(t) =
sin ωt

ω
, (102)

which provides the required oscillation in the A1 term. Therefore we may now write,

A3 = a3(t)− i
sin ωt

ω
, (103)

where at present both a2(t) and a3(t) remain unknown.
At O(1/

√
R2), the equation to solve is,

A′2 = A4 − A4 A2
0 − 2A4 A0 A0 − A2 A2

1 − 2A2 A1 A1 − A2
2 A0 − 2A2 A2 A0

−2A3 A1 A0 − 2A3 A1 A0 − 2A3 A1 A0,
(104)

and, with simplification, this becomes,

A′2 = A4 − A4 − 2a2
sin2 ωt

ω2 − i

(
sin4 ωt

4ω4 + a2
2 +

2a3 sin ωt
ω

)
. (105)

Upon using the substitution given in Equation (97), then the real part of Equation (105) becomes,

a′2 = −2a2
sin2 ωt

ω2 . (106)

The general solution of this equation is

a2 = constant× exp
[ sin 2ωt

2ω3 − t
ω2

]
. (107)

which decays exponentially in time. Therefore we may set a2 = 0.
The solution proceeds by substituting A4 = a4(t) + ib4(t) into Equation (105) and this gives,

b4(t) =
sin4 ωt

4ω4 + a2
2 +

2a3 sin ωt
ω

. (108)
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where a3(t) and a4(t) are now the remaining unknowns.
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Figure 14. The effect of different values of R2 and ω on solution trajectories. Bold values of R2 indicate
values for which solutions are real. All solution trajectories follow that of the arrow shown in the top
right subfigure.

Further terms have been obtained in the same manner although the algebra becomes very lengthy
and therefore it is omitted. The expression for a3 is found at higher order in the expansion and it turns
out that a4 = 0. To summarise, we have obtained the following asymptotic solution for Equation (36),

A = iR1/2
2 +

sin ωt
ω
− i
[ sin2 ωt

2ω2

]
R−1/2

2 −
[ sin3 ωt

3ω3

]
R−1

2 + i
[5 sin4 ωt

24ω4

]
R−3/2

2 + · · · . (109)
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Comparisons of the asymptotic solution and the numerical solution are shown in Figure 15.
The asymptotic solutions show an increasingly good quantitative agreement with the numerical
solution as R2 increases. Clearly the large-R2 state consists of cells which are π/2 out of phase with
the boundary forcing, and which twitch slightly in the horizontal direction.
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Figure 15. Continuous curves show the solution trajectories for the given values of R2. The left hand
column corresponds to ω = π/2 and the right hand column corresponds to ω = π/20. Dashed lines
indicate the large-R2 asymptotic solution.
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7. Conclusions

We have studied the behaviour of two-dimensional convective rolls in a horizontal fluid-saturated
porous layer heated from below, taking into account the effect of time-periodic resonant thermal
boundary imperfections of small amplitude. A weakly non-linear theory has been used to derive the
governing amplitude equation and to analyse the stability of the motion.

There exist different solutions of this amplitude equation in different regions of Rayleigh
number/wavenumber space. If the flow is constrained to be stationary, which will happen if the
layer is bounded by suitably-placed sidewalls with impermeable and insulating boundary conditions,
then what is termed a Type II flow exists and is stable when Ra is below a frequency-dependent critical
value. As Ra increases there is a supercritical bifurcation to what is termed a Type I flow. Flows of
Type II are double-signed, whereas Type I flows are usually single-signed—exceptions are situated
close to the bifurcation point. Detailed asymptotic solutions are presented for small frequencies where
the numerical solutions display localised and quite rapid changes in sign.

When the layer is unbounded horizontally, then the real-A stationary solutions are susceptible to
disturbances in phase, and we find that all Type I solutions are unstable to this type of disturbance.
Type II real solutions may also be destabilised if R2 is sufficiently large to become one with complex
amplitude, which corresponds to a convection pattern which oscillates horizontally.

Numerical solutions have in many cases been supplemented by asymptotic solutions and these
have shown excellent agreement.

Three dimensional disturbances have not been considered in this paper. Given that the boundary
disturbances have a spatial pattern which has the critical wavenumber, it is our a priori expectation
that three-dimensional effects are subdominant. However, we think that three-dimensional effects will
be important when the spatial wavenumber of the disturbance is different from k = π. Certainly it
is the case that such patterns are dominant when these boundary forcing terms are steady in time;
see Rees and Riley 1989(a,b) [12].

Finally we note that some of the work described here on moving cells may need to be modified if
a layer of long but finite length were to be considered. It has already been stated that disturbances in
phase cannot arise in a short layer due to the presence of sidewalls. However, if the layer is of finite
but sufficiently large extent (which will be of O(δ−1/3)), then it may well be possible for cells to be
compressed slightly near those sidewalls, and this would allow for phase movements in the bulk which
then reduce in magnitude as the sidewalls are approached. In these the resulting time-dependent flow
may be visualized by having stationary cells fixed or pinned to the two sidewalls, rather than being
generated or annihilated, and then the magnitude of the time-variation of the phase of all other cells
will increase to a maximum midwall between the sidewalls. If the layer is sufficiently long, then there
will be a substantial region in the middle of the layer where the present theory is valid.

It is also intended to extend the present work well into the nonlinear regime.
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Abbreviations

A amplitude of convection
B real part of A
c heat capacity
C imaginary part of A
d height of the porous layer
D disturbance
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g gravity
k wavenumber
K permeability
p pressure
Ra Darcy-Rayleigh number
R1,R2 Right hand sides of Equations (28) and (29)
t time
T nondimensional forcning period
T dimensional temperature
Tc upper (cold) boundary temperature
Th lower (hot) boundary temperature
u, v horizontal velocities
w vertical velocity
x, y horizontal coordinates
z vertical coordinate

Greek symbols
β thermal expansion coefficient
δ amplitude of thermal imperfection
ε amplitude of convection
θ temperature
µ dynamic viscosity
ρ density
σ heat capacity ratio
τ scaled time
ψ streamfunction
φ porosity
ω frequency

Subscripts, superscripts, and other symbols
c critical value
f fluid
s solid

dimensional quantity
0, 1, 2, · · · terms in a series expansion
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