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Abstract: Analytic formulations of elementary flow field profiles in weakly anisotropic nematic
fluid are determined, which can be attributed to biological or artificial micro-swimmers, including
Stokeslet, stresslet, rotlet and source flows. Stokes equation for a nematic stress tensor is written
with the Green function and solved in the k-space for anisotropic Leslie viscosity coefficients under
the limit of leading isotropic viscosity coefficient. Analytical expressions for the Green function are
obtained that are used to compute the flow of monopole or dipole swimmers at various alignments of
the swimmers with respect to the homogeneous director field. Flow profile is also solved for the flow
sources/sinks and source dipoles showing clear emergence of anisotropy in the magnitude of flow
profile as the result of fluid anisotropic viscosity. The range of validity of the presented analytical
solutions is explored, as compared to exact numerical solutions of the Stokes equation. This work is
a contribution towards understanding elementary flow motifs and profiles in fluid environments that
are distinctly affected by anisotropic viscosity, offering analytic insight, which could be of relevance
to a range of systems from microswimmers, active matter to microfluidics.

Keywords: elementary flow field profiles; anisotropy; micro-swimmers; nematic; non-Newtonian
fluids

1. Introduction

Microswimmers are biological or artificial entities that are characterized by locomotion at
microscopic scales, such as bacteria, protozoa, spermatozoa, algae, or Janus colloids, self-propelling
droplets, shape-shifting swimmers, and rotating colloids [1–3]. The locomotion of the swimmers
is affected by their relatively small size (order of magnitude 10µm) and relatively slow propulsion
(up to few 100µm/s) [1,3], which determines that their dynamics is described by the Stokes equation
(rather than the full Navier–Stokes), as having very small Reynolds numbers (Re� 1). As recognized
by Purcell, the swimming mechanism of such microswimmers requires swimming strokes that are
irreversible in time [4]. While swimming of biological microswimmers is an essential part of their
survival and reproduction, artificial microswimmers not only help to understand the biomechanics
behind swimming organisms [5], but could possibly be also utilized to drive gears (produce work) [6,7],
enhance the diffusion of a solution [8], increase stirring by the process of particle entrainment [9] or
produce frictionless fluids [10,11].

Microswimmers are often faced with non-Newtonian environment. For example, biological
fluids, such as blood, mucus, and saliva show viscoelastic behavior [12], and cytoskeleton of
animal cells shows orientational order [13]. Furthermore, many biomaterials can form a nematic
phase [14]. To investigate the influence of anisotropic background on swimming bacteria, studies of
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bacterial solutions in lyotropic liquid crystals were conducted, investigating the behavior of single
bacteria [15–17], their pairwise interaction [18] or their collective motion [19,20]. Bacterial suspensions
in liquid crystals can be used for transport of microcargo [21]. While investigating swimming bacteria
in liquid crystals is particularly challenging due to high toxicity of many nematics, this problem is
avoided by studying artificial active particles in liquid crystals [22], or, for example, properties of
a Taylor’s swimming sheet [23,24]. Even passive systems, such as sedimentation of spheres shows an
intertwined behavior of fluid velocity and internal structure of nematics. Flow profiles in a nematic
liquid crystal were discussed typically in the context of a moving sphere inside a nematic for a case
of homogeneous [25,26] or inhomogeneous [27–29] director profile. In [30], the solution for the flow
profile and the drag force on a moving sphere were determined in the weakly anisotropic limit. In [31],
the problem of nematic flow around a sphere was investigated by the use of Green functions for the
Stokes equation, which is a method that is applied also in this article. Biological and artificial swimmers
in non-Newtonian fluids, possibly with a anisotropic structure, represent a further complexity in their
underlying physics. Finally, understanding the effects of the internal structure of the complex fluids
on the microswimmers is an open challenge in both living systems as well as designed devices.

The flow fields caused by the microswimmers can be characterized by the moments of force that
microswimmers apply on a fluid [1–3]. If a microswimmer exerts an effective point force on a fluid,
we speak of a Stokeslet flow. Such flows have been observed in the case of Volvox carteri [32] and
externally driven colloids [5]. A microswimmer that exerts an effective force dipole on a fluid produces
a stresslet or rotlet flow. Stresslet is a typical flow profile for swimming microorganisms, such as
Escherichia coli [33] or self-driven colloids [5]. Although multipolar approach ignores the details of the
flow field close to the swimmers, for example around the flagella, its particular advantage is that higher
order multipoles decay faster with the distance from the swimmer. Therefore, it is especially efficient
in semi-dilute suspensions, where multipolar expansion of the flow field was used to investigate
problems such as fluid mixing by the microswimmers [34], interaction between microswimmers [35,36],
and collective behaviour in microswimmer suspensions [37,38]. The swimmer flow field can be
additionally affected by the confinement, as, for example, in thin films [39] or droplets [40], where the
orientation and position of the swimmer with respect to the boundary determines the flow field and the
behavior of microswimmers. In dense suspensions, the dominating interactions are steric, electrostatic,
van der Waals and close-field hydrodynamic [3]. In such high-density suspensions, swimmers tend to
move in swarms, or can even produce an active nematic phase [41].

In this paper, we determine the analytical formula for flow fields of micro-swimmers—represented
as point forces, point torques, or stresslets—in anisotropic nematic fluids, under the assumption of
uniform nematic alignment and within the first order expansion of the anisotropy of the viscosity
tensor. Specifically, we first calculate analytical approximations of the Green function to the Stokes
equation with anisotropic viscosity, included via the nematic-type stress formulation, and then use
these solutions to construct the flow fields of point force, point torque, and stresslet in uniform nematic
fluid. Using a similar approach, we also determine analytically the flow field of point sinks and
sources in a uniform nematic. Distinctly, we show how the direction of the applied forces and torques
with respect to the nematic director affects the calculated flow profiles. The two key assumptions
of the demonstrated analytical solutions—uniformity of nematic field and anisotropy expansion
in viscosity—are discussed. Anisotropy expansion in viscosity is tested against precise numerical
solutions. More generally, the results of this paper give analytical insight into elementary flow field
profiles applicable to micro-swimmers in anisotropic fluids and could be used to further explore more
complicated flow profiles and swimming dynamics in various complex environments.
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2. Results

2.1. Nematic Green Function for the Stokes Equation

A strong approach to the formulation of elementary flow profiles as generated by local
stimuli—like micro-swimmers—is to first consider point-like forces acting on a fluid, which is known
as the Method of Green’s functions [42]. Specifically, in a distinct point in space, a point force ~F is taken
to act on the fluid (in our case at~r = 0), and then one tries to solve the corresponding flow field from
the dynamic equation of the fluid. For fluid flows relevant to micro-swimmers, we are interested in the
solutions of the Stokes equation with a point force acting on a fluid:

− ∂i p(~r) + ∂jσij(~r) = −Fiδ(~r) (1)

where ∂i is a spatial derivative along the i-th direction, p is the fluid pressure, ~F a point force, σ the
stress tensor, and δ(~r) the three-dimensional Dirac delta function. We also assume incompressible flow
∂ivi = 0. Equation (1) needs to be solved for both the pressure field p(~r) and the velocity field ~v(~r).
The solution of Equation (1) is called Stokeslet and is well known for isotropic fluids [42], where the
stress tensor is proportional to the strain rate σISO

ij = α4(∂ivj + ∂jvi)/2 (Figure 1). Often, the interaction
between a microswimmer and the surrounding fluid is not best described by a single point force,
but by a distribution of forces. In this case, the main advantage of the Green function approach is that,
once the solution for the point force is found, it can be easily expanded to other force distribution, such
as a pair of opposite forces (stresslet flow), or a point torque (rotlet flow), solutions which are shown
in Figure 1 for the isotropic stress tensor. Here, we are interested in the same elementary solutions,
however in the systems with the nematic degree of order, i.e., with anisotropic viscosity and some
preferred homogeneous orientation (director) field of the system. The anisotropy of the system is
reflected in the nematic stress tensor, which we write in the Ericksen–Leslie formulation [43]:

σij = α1ninjnknl Akl + α2njNi + α3ni Nj + α4 Aij + α5njnk Aki + α6nink Akj (2)

where Ni = ṅi − (~ω ×~n)i, ~ω = 1
2 (∇ × ~v), Aij = 1

2 (∂ivj + ∂jvi), ~n is the director, ~v the flow field
velocity vector, and αi are six Leslie viscosity coefficients (five are independent due to constraint
α6 − α5 = α2 + α3). In an isotropic liquid, only α4 viscosity coefficient is non-zero, giving the standard
isotropic fluid stress tensor.

Flow fields may cause realignment in the nematic orientational profile. The dynamics of the
director profile as coupled to the velocity field is given by the equation [43]

Ni =
1

α3 − α2

(
− ∂ f

∂ni
+ ∂j

∂ f
∂(∂jni)

)
− α3 + α2

α3 − α2
Aijnj −Λni (3)

where f is a free energy density of the nematic due to elastic deformations of the director field and
due to coupling to the external fields, and Λ is a Lagrange multiplier preserving the unit length of~n.
In principle, a solution to the proposed problem of microswimmer flow profiles in nematic fluids could
be found by solving the Stokes equation together with the incompressibility condition, and molecular
field equation as a set of coupled nonlinear differential equations. Indeed, such solutions could be
found by using numerical simulations [44,45], but not analytically. However, a particular question we
want to address in this paper is whether some analytic insight can be found, which is quite rare in
complex fluid systems. We search for a solution by assuming a homogeneous director field, therefore
excluding Equation (3) from our calculations. Such analytic solutions typically prove distinct relevance
as they can be used in a variety of experimental or computer modelling setups either for analysis
or as elementary building solutions in a much more complex system. For example, one idea would
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be to take these elementary analytic solutions of individual flow elements and incorporate them as
simplest-order approximations in systems of multiple flow objects—like colonies of swimmers.

The posed problem of elementary solutions in Stokes fluid with anisotropic viscosity can be
solved analytically—within approximation—if considering the regimes of the anisotropic viscosity
coefficients αi. The large variety of nematic materials—for example from molecular to virus and
colloidal, thermotropic or lyotropic, passive or active—exhibit a variety of regimes of the actual values
of the viscosity coefficients αi. For example, in some lyotropic nematics, α5 − α2 can be very large,
whereas |α1|, |α3|, α4, and |α6| are smaller in size and α1, α3, and α6 are negative [46–48]. Differently,
in a standard thermotropic nematic like 5 4-cyano-4’-pentylbiphenyl (5CB) α2, α4, α5 are of similar order
of magnitude which is slightly larger than the magnitude of α6, whereas α1 and α3 are smaller [49].
However, a common trend in nematic systems is that if the nematic degree of order gets smaller
(for example, as when approaching the nematic-isotropic phase transition), the (isotropic) viscosity
coefficient α4 typically can become the leading viscosity coefficient [50]. Stimulated by this behaviour
of α4, we assume in this work that α4 is the largest coefficient and calculate the solutions to the Stokes
equation that are of first order in other viscosity coefficients. From a more theoretical perspective, such
approach of taking isotropic viscosity coefficient α4 as the leading term in the stress tensor can be seen
also as searching for solutions that are close to the isotropic fluid solutions but adapted (within first
order) for anisotropic viscosity. An example of how to give physical meaning to viscosity coefficients
is to compare effective viscosity at different orientations of velocity, velocity gradient, and director
field—in the context of Miesowicz geometry [43]. For the hierarchy of α2, α3, α5, and α6 of lyotropic
nematics discussed above, the lowest effective viscosity is in the case of a director being parallel to flow
direction and perpendicular to flow gradient, whereas the highest viscosity is for a director parallel to
flow gradient and perpendicular to flow direction. This regime of viscosity coefficients is used also for
the graphic representation of the results throughout the paper, where we use values α5 − α2 = 0.6α4,
α1 = α3 = α6 = −0.15α4, although the calculations are for general values αi, as long as α4 is the leading
viscosity coefficient.

We solve the Stokes equation (Equation (2)) with the assumption of homogeneous director
pointing along the z-axis and write the Stokes equation and incompressibility condition in terms of x,
y, and z components:

−Fxδ(~r) + ∂x p =
1
2
(−α2 + α4 + α5) ∂zzvx +

α4

2
∂yyvx + α4∂xxvx +

α4

2
∂xyvy +

1
2
(α2 + α4 + α5) ∂xzvz (4)

−Fyδ(~r) + ∂y p =
1
2
(−α2 + α4 + α5) ∂zzvy +

α4

2
∂xxvy + α4∂yyvy +

α4

2
∂xyvx +

1
2
(α2 + α4 + α5) ∂yzvz (5)

−Fzδ(~r) + ∂z p = (α1 + α4 + α5 + α6) ∂zzvz +
1
2
(α3 + α4 + α6)

(
∂xxvz + ∂yyvz

)
+

1
2
(−α3 + α4 + α6)

(
∂xzvx + ∂yzvy

) (6)

0 = ∂xvx + ∂yvy + ∂zvz (7)

where ∂ij is a second derivative over the i-th and j-th spatial coordinates. Due to linearity of the Stokes
equation, we look for the solution in the form

vi(~r) =
GijFj

8π
(8)

p(~r) =
PjFj

8π
(9)

where Gij and Pj are the Green functions for velocity and pressure, respectively. Following
the standard approach of the method of Green’s functions, we insert Equations (8) and (9) into
the Stokes and continuity equations and make the Fourier transform of the equations, using
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F ( f (~r)) =
∫

f (~r) e−i~k·~rd3~r. Taking into account that F (∂i f ) = ikiF ( f ) and the fact that Green
functions are independent on the force Fj, we obtain the Green functions in the reciprocal space:

P̂j = −8πi

(
δjxkx + δjyky

) (
(2α̃1 + νb + νd)k2

z + (1 + νc)k2)+ δjz
(
(1− νd)kzk2 + (νb + νd)k3

z
)

2α̃1k2
zk2
⊥ + (νb − νc) k2

zk2 + (1 + νc) k4
(10)

Ĝzj =
16π

α4

(
δjzk2 − k jkz

)
2α̃1k2

zk2
⊥ + (νb − νc) k2

zk2 + (1 + νc) k4
(11)

Ĝyj =
16π

α4

δjy

νbk2
z + k2 −

16π

α4

(1− δjz)k jky
(
2α̃1k2

z + νck2)+ k jky
(
νbk2

z + k2)[
2α̃1k2

zk2
⊥ + (νb − νc) k2

zk2 + (1 + νc) k4
]
[νbk2

z + k2]
(12)

Ĝxj =
16π

α4

δjx

νbk2
z + k2 −

16π

α4

(1− δjz)k jkx
(
2α̃1k2

z + νck2)+ k jkx
(
νbk2

z + k2)[
2α̃1k2

zk2
⊥ + (νb − νc) k2

zk2 + (1 + νc) k4
]
[νbk2

z + k2]
(13)

where the caret symbol above P̂j and Ĝij indicates solutions in the reciprocal space. We have also used
the notation k2

⊥ = k2
x + k2

y and

α̃1 =
α1

α4
(14)

νb =
α5

α4
− α2

α4
= α̃5 − α̃2 (15)

νc =
α3

α4
+

α6

α4
= α̃3 + α̃6 (16)

νd =
α5

α4
+

α2

α4
= α̃5 + α̃2 (17)

to indicate which of the viscosity coefficients are present in the Green functions. While α4 only rescales
the velocity, α̃1, νb, and νc determine the actual shape of the velocity profile. νd is included only in the
pressure field.

In order to be able to perform the inverse Fourier transform of Equations (10), (11) and (13) we
first expand them in the series of α̃i, where i 6= 4:

Ĝzz =
16π

α4

[
(1− νc)

1
k2 + (−1− 2α̃1 − νb + 2νc)

k2
z

k4 + (4α̃1 + νb − νc)
k4

z
k6 − 2α̃1

k6
z

k8

]
+O

(
α2

i 6=4

α2
4

)
(18)

Ĝxz = −
16π

α4

[
(1− νc)

kxkz

k4 + (−2α̃1 − νb + νc)
kxk3

z
k6 + 2α̃1

kxk5
z

k8

]
+O

(
α2

i 6=4

α2
4

)
(19)

Ĝxy = −16π

α4

[
kxky

k4 + (−νb + νc)
kxkyk2

z

k6 + 2α̃1
kxkyk4

z

k8

]
+O

(
α2

i 6=4

α2
4

)
(20)

Ĝxx =
16π

α4

[
1
k2 −

k2
x

k4 − νb
k2

z
k4 + (νb − νc)

k2
xk2

z
k6 − 2α̃1

k2
xk4

z
k8

]
+O

(
α2

i 6=4

α2
4

)
(21)

P̂x = −8πi
[

kx

k2 + (νc + νd)
kxk2

z
k4 + 2α̃1

kxk4
z

k6

]
+O

(
α2

i 6=4

α2
4

)
(22)

P̂z = −8πi
[
(1− νc − νd)

kz

k2 + (−2α̃1 + νc + νd)
k3

z
k4 + 2α̃1

k5
z

k6

]
+O

(
α2

i 6=4

α2
4

)
(23)

The expressions for Ĝyz, Ĝyy, and P̂y can be deduced by simply switching the x-coordinate with
y-coordinate in the above equations. To perform an inverse Fourier transform of the above Green
functions, we employ a procedure, described in Ref. [51], based on the plane wave expansion of ei~k·~r

and integral properties of spherical Bessel functions. This method allows for the calculation of inverse
Fourier transforms of expressions in the form ki1 ki2 . . . kiN /kN+2, among others, for any value of N and
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indices i by performing the angular momentum decomposition. Following the approach in Ref. [51],
we calculate the list of inverse Fourier transforms in Table 1. Finally, we obtain for the Green functions
the following expressions:

Gzz =
1

2α4

[
(4− α̃1 − νb − 3νc)

1
r
+ (4− α̃1 − 2νb − 2νc)

z2

r3 + 3(−α̃1 + νb − νc)
z4

r5 + 5α̃1
z6

r7

]
(24)

Gyz = Gzy =
1

2α4

[
(4− α̃1 − 3νb − νc)

yz
r3 + (−4α̃1 + 3νb − 3νc)

yz3

r5 + 5α̃1
yz5

r7

]
(25)

Gxz = Gzx =
1

2α4

[
(4− α̃1 − 3νb − νc)

xz
r3 + (−4α̃1 + 3νb − 3νc)

xz3

r5 + 5α̃1
xz5

r7

]
(26)

Gxy = Gyx =
1

2α4

[
(4 + α̃1 − νb + νc)

xy
r3 + 3(−2α̃1 + νb − νc)

xyz2

r5 + 5α̃1
xyz4

r7

]
(27)

Gyy =
1

2α4

[
(4− α̃1 − 3νb − νc)

1
r
+ (4 + α̃1 − νb + νc)

y2

r3 + (2α̃1 + 3νb + νc)
z2

r3

+ 3(−2α̃1 + νb − νc)
y2z2

r5 − α̃1
z4

r5 + 5α̃1
y2z4

r7

] (28)

Gxx =
1

2α4

[
(4− α̃1 − 3νb − νc)

1
r
+ (4 + α̃1 − νb + νc)

x2

r3 + (2α̃1 + 3νb + νc)
z2

r3

+ 3(−2α̃1 + νb − νc)
x2z2

r5 − α̃1
z4

r5 + 5α̃1
x2z4

r7

] (29)

Pz =
1
2
(4 + 3α̃1 + 2νc + 2νd)

z
r3 − 3(3α̃1 + νc + νd)

z3

r5 +
15
2

α̃1
z5

r7 (30)

Py =
1
2
(4 + 3α̃1 + 2νc + 2νd)

y
r3 − 3(3α̃1 + νc + νd)

yz2

r5 +
15
2

α̃1
yz4

r7 (31)

Px =
1
2
(4 + 3α̃1 + 2νc + 2νd)

x
r3 − 3(3α̃1 + νc + νd)

xz2

r5 +
15
2

α̃1
xz4

r7 (32)

Figure 1. (a) an outline of the problem—a microswimmer exerts forces upon the surrounding nematic
fluid with homogeneous director~n, driving a flow field ~v(~r). A set of elementary flow profile solutions
for isotropic fluids is shown as reference for later comparison: (b) Stokeslet flow due to a point force;
(c) stresslet flow due to a pair of opposite forces (a force dipole), and (d) rotlet flow due to a point
torque. The magnitude of the flow field as noted in the colorbar is given in basic quantities (see text
for more).

Note that, if α1 is much smaller than other viscosity coefficients, which is true for quite some
nematic fluids (e.g., in nematic 5 4-cyano-4’-pentylbiphenyl (CB) at 30 ◦C α1/α4 is ∼0.03 [49]),
the nematic Green functions can be further simplified neglecting terms with α1. If only α4 is non-zero,
a solution reduces to the well known Green functions for an isotropic fluid [42].
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Table 1. A list of inverse Fourier transforms used in this article, obtained by the procedure,
described in [51]. Note that the expressions form self-consistent pairs bound by the relation

∂
∂ri
F−1

(
f̂ (~k)

)
= iF−1

(
f̂ (~k)× ki

)
.

f̂
(
~k
)

F−1
(

f̂
)

ĝ
(
~k
)
= kz× f̂

(
~k
)

F−1 (ĝ)

1
k2

1
4πr

kz

k2
iz

4πr3

kikj

k4

δij

8πr
−

rirj

8πr3
k3

z
k4 − 3i

8πr2

(
z3

r3 −
z
r

)
kxk2

z
k4

i
8πr2

(
−3xz2

r3 +
x
r

)
k4

z
k6

1
4πr

(
3
8

z4

r4 −
3
4

z2

r2 +
3
8

)
k5

z
k6

5i
4πr2

(
3
8

z5

r5 −
3
4

z3

r3 +
3
8

z
r

)
kxk3

z
k6

3
32πr

(
xz3

r4 −
xz
r2

)
kxk4

z
k6

i
4πr2

(
15
8

xz4

r5 −
9
4

xz2

r3 +
3
8

x
r

)
k2

xk2
z

k6
1

32πr

(
3

x2z2

r4 −
x2

r2 −
z2

r2 + 1
)

k2
xk3

z
k6

i
32πr2

(
15

x2z3

r5 − 3
z3

r3 − 9
x2z
r3 + 3

z
r

)
k6

z
k8

5
64πr

(
− z6

r6 + 3
z4

r4 − 3
z2

r2 + 1

)
k7

z
k8

35
64πr2

(
− z7

r7 + 3
z5

r5 − 3
z3

r3 +
z
r

)
kxk5

z
k8

5
32πr

(
−1

2
xz5

r6 +
xz3

r4 −
1
2

xz
r2

)
kxk6

z
k8

5i
64πr2

(
−7

xz6

r7 + 15
xz4

r5 − 9
xz2

r3 +
x
r

)

k2
xk4

z
k8

1
32πr

(
−15

6
x2z4

r6 +
1
2

z4

r4

+3
x2z2

r4 −
1
2

x2

r2 −
z2

r2 +
1
2

) k2
xk5

z
k8

i
32πr2

(
−35

2
x2z5

r7 +
5
2

z5

r5

+25
x2z3

r5 −
15
2

x2z
r3 − 5

z3

r3 +
5
2

z
r

)
kxkyk4

z

k8
1

32πr

(
−15

6
xyz4

r6 + 3
xyz2

r4 −
1
2

xy
r2

)
kxkyk5

z

k8
5i

32πr2

(
−7

2
xyz5

r7 + 5
xyz3

r5 −
3
2

xyz
r3

)

Two notable conclusions about the properties of the flow fields of micro-swimmers can be
drawn from the calculated Green functions in k-space (Equations (10)–(13)): (i) Green function for
the velocity decays as 1/r and for the pressure as 1/r2; and (ii) Green functions are symmetrical.
Furthermore, the calculated profiles exactly satisfy the incompressibility condition, despite being only
an approximation to the exact solution of the Stokes equation. More generally, the calculated nematic
Green functions now allow for the calculation of the flow and pressure fields at any force distribution
and could possibly be also used in the presence of walls, where, in isotropic fluids, a set of mirror flow
fields is constructed to accommodate the no-slip velocity condition at the wall [39,42].

2.2. Flow Fields of Point Force in Nematic Fluid

We use Green functions from Equations (24)–(32) to calculate the velocity profile in a weakly
anisotropic homogeneous nematic due to a point force. In isotropic fluids, such Stokeslet profiles are
associated with the dynamics of externally driven colloidal particles [3] or distinct microswimmers [32].
Differently as in the isotropic fluids, in the case of anisotropic nematic fluids, there are two principal
solutions to the flow profile, corresponding to force being parallel or perpendicular to the director.
For any other angle, the flow profile can be calculated as a linear combination of the two principal
solutions due to the linearity of the Stokes equation. The nematic flow field generated by a point force
~F can be written as:



Fluids 2018, 3, 15 8 of 19

vi(~r) =
GijFj

8π
(33)

where Gij are Green functions given in Equations (24)–(28). The calculated flow profiles are shown
in Figure 2. Figure 2a,e shows the flow profile of a point force that is aligned with the director.
Similar as in the isotropic case (Figure 1), the flow profile retains the rotational symmetry around the
force direction; however, the effective viscosity is lower along the director and more fluid is pumped
in the direction of the force, meaning that less fluid is pumped from the perpendicular directions,
thus reducing the curvature of the velocity field. If the force is aligned perpendicular to the director
(Figure 2b,e), the flow profile shows only a mirror symmetry with respect to xy, xz, and yz planes.
The spreading of the flow perpendicular to the force is more efficient along the director, showing larger
magnitudes in the xz profile (Figure 2b,f opposed to xy profile in Figure 2b,e. At some angle between
the force and the director (45◦ in Figure 2c,f), the flow field retains only a symmetry with respect to
the~r → −~r transformation. The flow magnitude is generally larger in the direction along the director.
To generalise, our results demonstrate that for moderate anisotropy of the stress tensor that was chosen
for graphical representation, flow profiles show obviously visible dependence on the direction of the
applied force. We show three distinct cases, however, calculated results for the Green function allow
for easy calculation of flow and pressure profiles at any angle between director and the driving force.

Figure 2. Flow field of point force in nematic fluid oriented (a,d) parallel, (b,e) perpendicular, or (c,f) at
angle 45◦ to the director. The flow field decays as 1/r with the distance from the point force. In the
bottom row, the velocity field component parallel to the force ~v‖ (along~e‖) and perpendicular to the
force ~v⊥ (along~e⊥) at distance d0 from the centre is shown as a function of azimuthal and polar angle.
The value of d0 can be chosen arbitrarily as long it is much larger than a swimmer size, since it only
rescales the velocity magnitude. The values are compared to the isotropic case (dashed lines, see also
Figure 1). Flow field is drawn for arbitrary values of the length d0 and force F. Results show that
for the given nematic anisotropy of the viscosity tensor, spreading of the momentum in the direction
perpendicular to the director is suppressed, while the direction along the director offers much less
resistance to the fluid flow. Note that graphs (d,e) are symmetrical with respect to θ = 0 case (or to
φ = 0 case). In (f), which is no longer the case—the velocity field is tilted with respect to the direction
of the applied force.
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2.3. Flow Field of Force Dipole

Microswimmers with no external force applied have no Stokeslet contribution to the surrounding
flow field. Instead, flow field is generated by higher moments of the distribution of forces exerted on
the fluid, with force dipole being often the leading term. Indeed, typically the flow field of a force
dipole exerted on the fluid falls as 1/r2, where r is the distance from the swimmer. In addition, since
higher moments of force distribution decay faster, dipolar flow field is the most pronounced in the far
field of the velocity distribution, which was observed both in self-driven colloidal particles [5] and
biological microswimmers [33].

More formally, the flow multipoles are introduced by using the linearity of the Stokes equation
and writing the flow field of an arbitrary force distribution in the integral form as

vi(~r) =
1

8π

∫
Gij(~r−~r′) f j(~r′)d3~r′ (34)

Equation (34) is then Taylor expanded for distances much larger than the size of a microswimmers,
which reveals separate contributions of force monopoles, dipoles, quadrupoles and other multipoles to
the flow field of a swimmer, where the force dipole contribution equals [42]

vi(~r) =
1

8π

[
∂kGij(~r)

]
Djk (35)

and Djk = −
∫

rk f jd3~r is the dipolar force moment. Typically, Dij is decomposed into a traceless
symmetrical tensor Sij (stresslet) and an antisymmetrical tensor Tij (rotlet):

Dij −
1
3

Dkkδij = Sij + Tij (36)

The trace of Dij was subtracted since the zero compressibility condition renders it ineffective to
the fluid flow. The stresslet can be related to swimmer-imposed strain of the fluid and the rotlet to the
net torque of the force distribution, with notably both mechanisms relevant in the complex swimming
strokes of various micro-elements of micro-organisms.

2.3.1. Stresslet Flow Field in Nematics

To demonstrate stresslet flow field in a nematic, we plot the corresponding flow profiles of the
far flow field due to two equal and opposite uniaxial point forces with size F acting on the fluid at
a separation l (see scheme in Figure 1). Eigenvalues of the S tensor are in that case −S/2, −S/2, and S,
where S = 2

3 lF. Negative S is associated with the pusher type of microswimmers, and positive values
with puller type. In Figure 3, we plot flow fields of a puller microswimmer at different orientations
of the axis of the applied forces with respect to the nematic director. Velocity field of a pusher has
exactly the opposite direction of the flow. In order to calculate the appropriate flow field, one must
first determine the components of the S tensor. For example, Figure 3 shows a flow field due to two
contractile forces along z-direction distance l apart. In that case, the components of the S tensor equal:
Szz = S = 2

3 lF, Sxx = Syy = −S/2 = −lF/3 and other components equal zero. The stresslet flow field
is given by equation

vi(~r) =
1

8π

[
∂kGij(~r)

]
Sjk (37)

where appropriate derivatives of the Green functions (Equations (24)–(28)) are easily calculated.
Flow magnitude decays distinctly as 1/r2; therefore, all the main information about the flow field is
contained in the angular dependence of the flow components, which we show in the bottom row of
Figure 3 and compare them with the solution for the isotropic fluid, which has only a radial flow profile.
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If the force dipole is aligned along the director (Figure 3a,d), the flow field retains the radial-only flow
profile and only the magnitude of the velocity field is changed:

~valigned =
3S

32πα4r2

[
4− α̃1 − 3νb − νc − 3(4 + 3α̃1 − 6νb + 2νc) cos2 θ

+15(3α̃1 − νb + νc) cos4 θ − 35α̃1 cos6 θ
]~r

r

(38)

here given in spherical coordinates ~v(~r) = vr~er + vθ~eθ + vφ~eφ, where the z-axis is defined by
homogeneous director field. Radial-only flow profile in the aligned case is a necessary consequence of
the symmetry imposed by the direction of the director and the force dipole, 1/r2 dependence of the
flow, and flow incompressibility. However, in the case where the force dipole is perpendicular to the
director (Figure 3b,c,f,g), flow field attains polar and azimuthal components. The profiles of the velocity
magnitudes once again show rough correspondence with the regime of the lowest fluid resistance
along the director. Upon tilting the force dipole at angle 45◦ to the director (Figure 3d,h), the symmetry
of the velocity profile is reduced and the difference to the radial profile is even more pronounced.

We have measured the volume Vt around a dipolar swimmer, where the flow magnitude exceeds
the value of |S|

2α4d2
0

(as some selected value). For a microswimmer aligned along the director, Vt = 0.36d3
0.

If the force dipole is perpendicular to the director Vt is reduced by 4.2%. We expect similar behavior
if one would consider the detection volume of a microswimmer [52]—a volume within which the
gradients of the velocity field exceed a certain threshold. In nematic fluids, at the same force dipole,
a microswimmer has lesser influence on the surrounding flow field if it is oriented at large angles with
respect to the director.

Figure 3. Flow field of a force dipole at different orientations with respect to the director field.
The bottom row shows radial and azimuthal (or polar) component of the velocity at distance d0

from the centre as a function of azimuthal (or polar) angle compared to the result for isotropic fluids.
(a,e) flow field of force dipole aligned with the director has only radial component. Note that radial
flow field is characteristic for dipolar flow in isotropic fluids; however, in nematic fluids, there is still
a difference between the magnitudes of the flow field between the isotropic case and a dipole aligned
along the director due to anisotropic viscosity (see, e). In (a,e), the magnitude of the velocity field falls
to zero at angle θ = 48.3◦, whereas, in the isotropic case, the transition from inward to outward flow
occurs at θ = 54.7◦. At (b,c,f,g) 90◦ or (d,h) 45◦, angles between force dipole and the director before
radial flow configuration gains additional terms in the azimuthal and polar directions.
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2.3.2. Rotlet Flow

Motile parts of a microswimmer can in principle impose torques on the surrounding fluid,
for example by rotating flagella [53]. However, for an isolated microswimmer, total torque applied
on the fluid has to vanish [1]. To show the effect of torques in a nematic, we plot a flow field due to
a point torque in Figure 4. A point torque in the y-direction was constructed by an antisymmetric
force dipole tensor Tij, where Txz = −Tzx = T and other components equal zero. Flow field follows
from Equation (35):

vi(~r) =
1

8π

[
∂kGij(~r)

]
Tjk, (39)

where derivatives of the Green functions (Equations (24)–(28)) need to be calculated. Compared to the
isotropic fluid rotlet flows (Figure 1), Figure 4 shows concentric vortices around the origin deformed
due to the anisotropy of the nematic fluid. The deformation occurs both in terms of magnitude of the
velocity field, which is stretched along the director, and in terms of the shape of the velocity profile,
which gains a radial component (compared to the isotropic case of only polar flow direction).

Figure 4. Flow field of a point torque in nematic. (a,b) flow field due to torque that is perpendicular to
the director. Compared to the isotropic case (b, see also Figure 1), the vortex stretches in the direction
of the director; (c,d) same flow field in the xy cross-section. In (c), flow lines point in (out) of the plane.

2.4. Flow Fields of Sources and Sinks in Homogeneous Nematics

Flow sources and sinks represent another type of fundamental microfluidic elements that in
various arrangements could also be associated with micro-organisms. More formally, point sources
and sinks are another set of elementary solutions to the Stokes and compressibility equations [42].
They are characterized by zero force exerted on the fluid, but a non-zero velocity divergence at the
position of the source or sink (in our case at~r = 0):

∇×~v = Aδ(~r), (40)

where A represents volumetric flow rate through a source (positive A) or a sink (negative A).
Point-source dipoles or even more complex flow structures can be achieved using a linear combination
of flow sources and sinks, as allowed by the linearity of the Stokes equation. We calculate the velocity
and pressure profiles of a point source or sink in the homogeneous nematic and find the exact solutions
in the reciprocal space and write the expressions in the real space in the limit of weak viscous anisotropy,
using the same procedure as in Section 2.1. Notably, we obtain the velocity profile directly as analytic
formulas. We write in terms of x-, y-, and z-components the compressibility condition (Equation (40))
and the Stokes equation for homogeneous director along the z-axis (Equations (4)–(6) for zero force)
and perform the Fourier transform, similarly as was done in Equations (10)–(13). We obtain the
solutions for velocity and pressure in the k-space:
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v̂x = −iAkx
(α3 + α4 + α6)k2

⊥ + (2α1 − α2 + α4 + α5 + 2α6)k2
z

(α3 + α4 + α6) k4
⊥ + (2α1 − α2 + α3 + 2α4 + α5 + α6) k2

⊥k2
z + (−α2 + α4 + α5) k4

z
(41)

v̂y = −iAky
(α3 + α4 + α6)k2

⊥ + (2α1 − α2 + α4 + α5 + 2α6)k2
z

(α3 + α4 + α6) k4
⊥ + (2α1 − α2 + α3 + 2α4 + α5 + α6) k2

⊥k2
z + (−α2 + α4 + α5) k4

z
(42)

v̂z = −iAkz
(α3 + α4 − α6)k2

⊥ + (−α2 + α4 + α5)k2
z

(α3 + α4 + α6) k4
⊥ + (2α1 − α2 + α3 + 2α4 + α5 + α6) k2

⊥k2
z + (−α2 + α4 + α5) k4

z
(43)

p̂ = Aα4 + A
(α3α5 − α2α6 + α4(α5 + α6))k2

⊥k2
z + (−α2 + α4 + α5)(α1 + α5 + α6)k4

z

(α3 + α4 + α6) k4
⊥ + (2α1 − α2 + α3 + 2α4 + α5 + α6) k2

⊥k2
z + (−α2 + α4 + α5) k4

z
(44)

We expand over αi 6=4
α4

and perform the inverse Fourier transform. The results for the velocity field
~v(~r) = vx~ex + vy~ey + vz~ez in the spherical coordinates ~v(~r) = vr~er + vθ~eθ + vφ~eφ are:

vr =
A

4πr2

[(
1 +

3
4

α̃1 + α̃6

)
+

(
−9

2
α̃1 − 3α̃6

)
cos2 θ +

15
4

α̃1 cos4 θ

]
(45)

vθ = vφ = 0 (46)

p = A
(

α4 +
α1

5
+

α5

3
+

α6

3

)
δ (~r) +

A
4πr3

[(
3
2

α1 + α5 + α6

)
− 3 (3α1 + α5 + α6) cos2 θ +

15
2

α1 cos4 θ

]
(47)

The velocity field of a point source is drawn in Figure 5. As shown in Equations (45) and (46), flow
field has only a radial component. Similar to the stresslet flow in Figure 3a,d, the purely radial flow
field is a consequence of the symmetry imposed by the director, flow incompressibility outside the
source, and 1/r2 dependence of the flow. However, the anisotropy of the nematic medium results in
the azimuthal dependence of the flow magnitude. The flow profile is dependent only on the α1/α4 and
α6/α4 ratios of Leslie viscosities, whereas differently the pressure field is dependent on four viscosity
coefficients (α1, α4, α5, α6). In the isotropic fluids (αi 6=4 = 0), the pressure is a delta function at the point
source. Other viscosity terms add 1/r3 terms that also depend on the azimuthal angle θ.

Figure 5. Flow field of point source in (a) isotropic and (b) nematic fluid; and (c) radial flow velocity
for a source flow (Equation (40)) shown for an isotropic and for a nematic fluid as a function of the
azimuthal angle. In nematic fluid, the velocity field retains the radial direction; however, its amplitude
as a function of azimuthal angle θ shows an increase along the z-axis—the director—and a decrease
perpendicular to the director. Note that the flow field of a point sink is obtained directly by taking
the opposite sign of the flow field of the source; (d) flow source and sink can be combined in a source
dipole, here shown for isotropic medium.

2.5. Source Dipole Flow

Another elementary flow profile is a source dipole, which was shown to be an important
contribution to the flow field of microswimmers [5]. It is formulated as a flow due to a point source
and a point sink (each with strength A), which are separated by a dipole vector ~d. The solution is
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obtained by using solutions for flow source and flow sink (as calculated In Section 2.4) and Taylor
expanding the formulas for distances~r much larger than ~d, giving

vi =
A

4π

[(
−B− C z2

r2 − D
z4

r4

)
di
r3 +

(
3B + 5C

z2

r2 + 7D
z4

r4

) rjdjri

r5 +

(
−2C

zdz

r
− 4D

z3dz

r3

)
ri

r4

]
(48)

where B = 1 +
3
4

α̃1 + α̃6, C = −9
2

α̃1 − 3α̃6, and D =
15
4

α̃1. Note that since the curl of the source
flow is not zero—contrary to the isotropic case—we are not allowed to use the formalism of the
potential flow [42] and have derived the above equation directly from Equation (45). For α̃1 = 0 and
α̃6 = 0, Equation (48) is equivalent to the solution for isotropic fluid [42] that is shown in Figure 5d.
For non-zero values of α̃1 and α̃6, source dipole flow is dependent on the orientation between the
dipole and the director. Figure 6 shows flow profiles for (a,d) dipole parallel to the director, (b,c,f,g)
dipole perpendicular to the director, and (d,h) dipole at angle 45◦ to the director. Similar to other
flow profiles discussed in this article, the magnitude of the velocity field is spread along the director
field. In particular, at angle 45◦ between the director and the dipole, flow magnitude profile is skewed
compared to the isotropic case. The bottom row of Figure 6 gives a direct comparison to the isotropic
solution in terms of radial and azimuthal (or polar) component of the velocity field.

Figure 6. Flow field of source dipole in nematic (Equation (48)) for the dipole aligned (a) parallel to the
director; (b,c) perpendicular to the director, and (d) at angle 45◦ to the director. The bottom row shows
radial and azimuthal (or polar) components of the velocity field compared to the solution for isotropic
fluid (α1 = α6 = 0) for each of the cases above. Spreading of the velocity magnitude along the director
is observed.

3. Discussion

3.1. Assumption of Weakly Anisotropic Nematic Fluid

The demonstrated results for the Green function in nematics rely on the first order expansion
in the ratio αi 6=4/α4, where αi are six Leslie viscosities (coefficients), from which α4 corresponds to
isotropic stress. For the variety of nematic materials—i.e., the variety of regimes of values of the
Leslie coefficients—this assumption is not necessarily justifiable in general. Therefore, we calculate
in full—by numerical integration of the inverse Fourier transforms of the Green functions in
Equations (10)–(13)—the corresponding flow profiles and compare them to the analytical flow profiles
obtained through first order approximation of small αi 6=4/α4. Note that in order to achieve good
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numerical convergence of the Fourier integrals, we have followed the approach in Ref. [31] and
multiplied Equations (10)—(13) by a regularization function e−x2

0k2/25π to eliminate large wavenumbers.
We compare angular dependence of a Stokeslet flow for analytical and numerical results at the values
of α1, ηb, and ηc used throughout this article and at higher/lower anisotropies. The comparison is
shown in Figure 7. At smaller anisotropy (α̃1 = −0.075, νb = 0.3, νc = −0.15), the full numerical
calculations show an excellent match with first order approximations. At higher anisotropy (α̃1 = −0.3,
νb = 1.2, νc = −0.6), there is a clear mismatch between numerical and analytical results, indicating
a clear overstep of the first-order approximation in αi 6=4/α4. Analytical and numerical results for
the viscosity coefficients used in the figures of this article (α̃1 = −0.15, νb = 0.6, νc = −0.3) show
some discrepancies, but they still capture similar behaviour. To generalise, the analytic to numeric
comparison shows that, although slight discrepancies between the exact flow profiles are possible,
flow profiles calculated in this article capture the essential response of flow fields to the anisotropy in
the environment.

Figure 7. Evaluation of small αi/α4 expansion assumption. Results for the point force along the director
(first row) and perpendicular to the director (second row) obtained through the nematic Green function
in Equations (24)–(29) are compared to the results obtained by numerical inverse Fourier transform
of Equations (10)–(13) at distance d0 from the point of force origin. The comparison is performed for
the values of Leslie coefficients used throughout this article (middle column), values twice as small
(first column) and twice as large (third column).

3.2. Deformations in the Director Profile

We have calculated the nematic Green functions by also assuming a homogeneous nematic
director field (and also constant nematic degree of order). However, director deformations may
occur due to anchoring of the nematic molecules on the surface of a microswimmer, anchoring at
the confining interfaces, or due to backflow coupling to high velocity gradients. In a more complete
analysis, simultaneously with the Stokes equation, an equation for the nematic order would have to be
solved—for example the Ericksen–Leslie equation for the time derivative of the director alignment
(Equation (3)). Due to complexity of the problem, the solution would most likely be only numerical.
The resulting behavior could in principle include oscillatory solutions or even more complex temporal
flows. However, experiments [19,20] and simulations [54] that consider interconnected behavior
of nematic order and microswimmer-induced flow profiles typically observe stable trajectories of
microswimmer motion and orientation. More complex temporal behavior though can occur at larger
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concentrations of microswimmers [20]. Notice that in real systems—such as swimmers—the centres
of these flow multipoles are effectively within the body of the swimmer. Consequently, the exact
singularity is always overlayed physically with the swimmer and only the flow fields already at
some distance from the singularity affect the nematic. Additionally, surface anchoring at the body of
the microfluidic object or possible external fields can further stabilize the nematodynamic behavior.
Anchoring induced director field deformations due to a single swimmer and elastic interactions
between individual swimmers, mediated by the deformation of the director field, can be assessed
within the multipole expansion of the director field components [55]. In that case, the corrections
to the homogeneous director field typically decay with a square of distance from the swimmer
(in a case of a dipolar configuration) or faster. The torque on the nematic director due to material
flow decays with the gradient of the velocity field, which in the leading (isotropic) approximation
scales as |∇~vStokeslet(r)| ∼ F

4πα4
1
r2 and |∇~vstresslet(r)| ∼ 3S

4πα4
1
r3 for a Stokeslet and stresslet, respectively.

Director field deformations due to all of the above effects enter the divergence of the stress tensor
and alter the velocity profile in the close proximity of a microswimmer. However, if at a sufficient
distance from a microswimmer a homogeneous director far field is established, a general set of
solutions for the flow field coincides with the results obtained in this article. A homogeneous director
field could be additionally imposed by strong electric or magnetic fields. Finally, introducing and
exploring the full role of nematic elasticity in the response of microswimmers is a highly exciting and
interesting challenge.

3.3. Possible Application to Experiments

Recently, thorough investigative work has been conducted in the field of bacteria swimming in
lyotropic nematics [19,20]. Due to anchoring of the nematic molecules on the surface of bacteria in
lyotropic nematics, bacteria tend to align along the nematic director [18,19]. This is one of the rationale
behind the control of the bacteria swimming direction by using patterned surface anchoring [56], similar
to patterned anchoring in colloidal suspensions driven by liquid-crystal-enabled electrophoresis [57].
However, in principle, bacteria can change its direction and swim even perpendicular to the nematic
director [58]. This means that, in principle, all orientations of force dipoles relative to the director
field (as shown in Figure 3) are relevant to experimental applications. Ref. [18] shows how bacteria
swimming along the nematic director can advect particles in the direction of its way, while particles
which are positioned on the side of the swimming trajectory of the bacteria move only a little. This could
be explained by the fact that the stresslet velocity field due to bacteria is strong mostly along the
director, as shown in Figure 3 and is further affected by the strong anisotropy of the viscosity of the
lyotropic nematic used in Ref. [18]. In Ref. [19], a collision of two bacteria swimming along the nematic
director is discussed, leading to formation of chains. Notice though that if bacteria could be oriented
at a notable angle relative to the director, such collision and/or binding events could further gain
in complexity. As seen from Figure 3, non-radial terms in the flow field could in principle shift the
colliding bacteria to non-colliding trajectories.

Emergent velocity profiles as discussed in this article are highly dependent on the microswimmer
orientation with respect to the nematic director. This suggests that the swimming speed and the
power consumption will also depend on the microswimmer orientation. Indeed, the existence of
an effectively lower viscosity direction for swimming provides another or additional mechanism
that affects the direction of swimming of the micro-swimmers [18,19]. Simulations for spherical
squirmers show that pusher types tend to swim along the director, while pullers tend to swim
perpendicular to the director [54]. It would be interesting to see how microswimmers would behave if
the preferred alignment due to elasticity effects would be at large angles compared to the effective lower
viscosity direction of swimming. Possibly, this could be achieved by different types of microswimmers,
more complex shapes or anchoring conditions at the surface of a microswimmer, or possibly by using
nematics with different material parameters.
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The mutual interaction of bacteria depend on their concentration and the strength of force dipoles
they impose upon the nematic. At high concentrations, interactions between bacteria are mediated
through the deformation of the director field [18]. Instabilities due to the coupling of the orientation
of bacteria, director field of the nematic, and bacterial flow can induce periodic stripe patterns in
the director field [20]. However, at more dilute suspensions of bacteria, deformation of the director
field might get suppressed by the homogeneous anchoring at the confining walls. In such cases,
hydrodynamic interactions between bacteria could become of prime importance, including the effect of
anisotropic viscosity as investigated in this article, suggesting that nematic flow profiles that mediate
hydrodynamic interaction between microswimmers could significantly alter collective behavior of
active particle suspensions.

4. Conclusions

Elementary solutions of the Stokes equation in nematic fluids are important from the perspective
of understanding the nematic flows as well as in the context of swimming active particles in anisotropic
fluids. We have derived Green functions for the Stokes equation for homogeneous nematic fluid (given
by Equations (24)–(32)) under the approximations that (isotropic) viscosity α4 is the leading viscosity
coefficient in the Ericksen–Leslie stress tensor. Specifically, to obtain the solution, we have written
Green functions for the Stokes equation for velocity and pressure in the Fourier space, expanded them
to first order in anisotropic viscosity coefficients, and converted them back to real space. The calculated
Green functions or their derivatives were then used to determine the flow field profiles of point
forces (Equation (33)), stresslet (Equation (37)) and point torques (Equation (39)). Similarly, we have
derived flow fields of point sources (sinks)(Equations (45)–(46)) and source dipoles (Equation (48)) in
nematics. The solutions for the corresponding flow profiles are given as direct analytical formulas that
could be used in further studies. The general qualitative consequence of anisotropic viscosity is that
flow profiles change depending on the angle between the applied force (or stresslet or rotlet) and the
nematic director. For viscosity coefficients used in the graphical representation of the derived equations,
effective viscosity is smallest if flow direction coincides with the director. Therefore, for Stokeslet
flow, the magnitude of the velocity field is the highest if the point force is aligned along the director
(Figure 2a). If the alignment is at some angle, we observe a tilt of the velocity field towards the
director (Figure 2c,f). The main characteristic of the stresslet flow in nematics is that, unless the
force dipole is aligned along the director, flow field gains non-radial terms (Figure 3). Similarly,
concentric vortices that form a rotlet flow in isotropic fluids get stretched along the nematic director in
nematics (Figure 4). Source (sink) flow field remains only radial also in nematics; however, the flow
magnitude shows an oval shape, oriented along the director (Figure 5). The obtained results were also
critically assessed with regards to the two main assumptions of our approach—the leading isotropic
viscosity and homogeneous nematic director—identifying the regimes of validity of the approach.
In conclusion, our work provides an analytical insight into the field of elementary flow elements
in nematic fluids—relevant for e.g., microswimmers in experiments in nematic liquid crystals or
in biological fluids with anisotropic order—where the derived Green functions and flow profiles
can be used to further construct flow fields of other—in principle arbitrary—swimmers and model
their dynamics.
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