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Abstract: A four-parameter kinematic model for the position of a fluid parcel in a time-varying ellipse
is introduced. For any ellipse advected by an arbitrary linear two-dimensional flow, the rates of
change of the ellipse parameters are uniquely determined by the four parameters of the velocity
gradient matrix, and vice versa. This result, termed ellipse/flow equivalence, provides a stronger version
of the well-known result that a linear velocity field maps an ellipse into another ellipse. Moreover,
ellipse/flow equivalence is shown to be a manifestation of Stokes’ theorem. This is done by deriving
a matrix-valued extension of the classical Stokes’ theorem that involves a spatial integral over the
velocity gradient tensor, thus accounting for the two strain terms in addition to the divergence and
vorticity. General expressions for various physical properties of an elliptical ring of fluid are also
derived. The ellipse kinetic energy is found to be composed of three portions, associated respectively
with the circulation, the rate of change of the moment of inertia, and the variance of parcel angular
velocity around the ellipse. A particular innovation is the use of four matrices, termed the IJKL basis,
that greatly facilitate the required calculations.

Keywords: elliptical vortex; linear flow; Kida vortex; Stokes’ theorem; Ball’s theorem; moment of
inertia; matrix basis

1. Introduction

Elliptical vortex solutions form a fundamental building block of fluid dynamics. In two-
dimensional flow, the Kida vortex (an elliptical vortex patch evolving under the action of a linear flow
field) is one of the few exact solutions of the Euler equations. This solution was introduced by Kida [1]
as an extension of the classical unforced Kirchhoff vortex, given a Hamiltonian formulation by Neu [2],
then generalized to time-dependent forcing fields by Ide and Wiggins [3]. The Kida vortex has been of
considerable interest as a means of understanding such phenomena as instability mechanisms [4–9],
chaotic advection [10,11], the interaction of diffusion and advection [12], vortex-vortex interactions
in shear [13], vortex energetics [14] and vortex interactions with boundaries [15]. Elliptical vortices
also play a central role as a basis ingredient in ambitious attempts to approximate the dynamics
of more complex or realistic flows [16–19]. Closely related to such elliptical vortices are ellipsoidal
vortices in three dimensions, which have been studied under quasi-geostrophic dynamics [20–23].
Elliptical vortices are also relevant for two-dimensional surface quasi-geostrophic dynamics, in which
a steadily-rotating, unforced elliptical vortex solution has been found [24], consisting of a non-uniform
distribution of surface buoyancy having a particular form.

Elliptical vortex solutions are important in shallow water dynamics, as well. A freely-evolving
elliptical vortex within an active layer that outcrops at the surface is thought to be a reasonable
model for large-scale oceanic eddies such as Gulf Stream rings (e.g., [25,26]). Such shallow water
eddies may exhibit a range of behaviors. Two exact analytic solutions were found by Cushman-Roisin
and collaborators [25,27]: a rodon or freely-precessing elliptical eddy, the shallow-water analog of
a Kirchhoff vortex; and a pulson (a term coined by [28]), a circular eddy with a moment of inertia that
pulsates at the inertial frequency. These two solutions were later combined by Rogers [29] to give the
pulsrodon. A final degree of freedom, corresponding to a time-varying eccentricity or elliptical aspect
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ratio, was examined by both Young [26] and Holm [30], drawing on earlier work by Ball [31] on fluid
motion in a parabolic basin; while no analytic solution exists in this case, there is a simple differential
equation that governs the evolution of the aspect ratio. On a more practical level, the differing stabilities
of cyclonic and anticyclonic vortices in shallow water dynamics has been implicated as a possible
explanation for the well-known dominance of anticyclones in the world ocean [32,33].

Elliptical vortex solutions would appear to be of renewed relevance for oceanography on account
of the groundbreaking recognition of the ubiquity of propagating nonlinear vortices in satellite
altimetry by Chelton et al. [34]. While such structures appear circular when seen with the limited
resolution available to remotely-sensed sea surface height, high-resolution numerical models such
as that of Early et al. [35] reveal them to be approximately elliptical in shape; see Figure 7 therein.
One particular application for analytic solutions to elliptical vortices is as test cases for assessing
Lagrangian analysis methods. For example, Lilly et al. [36] present an objective method for inferring
time-varying properties of a possibly elliptical vortex, by decomposing a Lagrangian trajectory into a
quasi-periodic or oscillatory portion and a residual. Analytic solutions could be used to validate such
methods and to determine to what extent, and under what conditions, elliptical structure in oceanic
eddies may be accurately inferred on the basis of Lagrangian observations. Yet, the usefulness of such
analytic solutions is limited by the dispersed state in which the relevant results appear throughout the
literature, a difficulty that is compounded by the formidable algebra that is often required.

The goal of this paper is to set the stage for a unified exploration of elliptical vortex solutions,
by establishing kinematic results that are common to both the two-dimensional and shallow water
systems. All of the solutions referred to above have in common the fact that they consist of elliptical
rings of fluid advected by a constant or time-varying linear flow field. In fact, the bulk of the
mathematical machinery that is required for treating elliptical vortex solutions is connected not with
any characteristic of the particular physical systems, but rather with the underlying kinematics of
deformable fluid ellipses. The creation of a common mathematical framework allows the separation
of the mathematical and physical aspects of the investigation, permitting solutions to be derived
with much greater ease. The key is a parametric model for the position of a fluid parcel within a
time-varying ellipse, controlled by three parameters describing the ellipse geometry, together with
a fourth describing the parcel location around the ellipse periphery. A matrix-based approach is
employed that greatly simplifies algebraic manipulations and that, it is hoped, may find applicability
in other areas, as well. The focus of this paper is therefore abstract in nature; the actual derivation and
examination of the vortex solutions is outside the scope of this work and will be left to a sequel.

It is well known (see, e.g., [1]) that a two-dimensional linear velocity field maps an ellipse into
another ellipse. Provided that the positions of particles along the ellipse are tracked in addition
to the ellipse geometry, the evolution of a fluid ellipse is even more directly related to the linear
flow field. They are equivalent: a linear flow determines the evolution of any ellipse placed within
it, and conversely, the evolution of any (non-degenerate) fluid ellipse uniquely specifies the linear
flow that must have created it. In an exact sense, the evolution of a fluid ellipse is the Lagrangian
representation of a linear flow. This result, which will be termed ellipse/flow equivalence, will be shown
to be a special case of a generalization of Stokes’ theorem to a 2× 2 matrix form. This extended
Stokes’ theorem embodies not only the classical Stokes’ theorem and the divergence theorem, but also
analogous integral relations between spatial and contour integrals of the two components of the strain
field. This result is not strictly new, in the sense that it is merely another form of the generalized
Stokes’ theorem, like the divergence theorem; yet, its presentation here has a strikingly simple form,
incorporating all four components of the velocity gradient tensor, that does not appear to have been
previously presented.

Using the kinematic model, general expressions for the basic physical properties of an elliptical
ring of fluid are derived, specifically the circulation, the average angular momentum around the ellipse,
and the average kinetic energy. These are expressed both in terms of the rates of change of the ellipse
itself, as well as in terms of the flow derivatives. While the expressions for the circulation and angular
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momentum have appeared previously (e.g., [30]), that for the kinetic energy is new. It is shown that in
a non-divergent, temporally-constant imposed flow field, the angular momentum averaged along any
fluid ellipse, perhaps surprisingly, remains constant. The kinetic energy is shown to have a partitioning
into three terms: a term associated with the circulation, a term associated with the rate of change of the
moment of inertia of the elliptical ring, and a third term, combining the effects of both deformation and
precession, which is shown to be due to the variance of parcel angular velocity (or momentum) around
the ellipse. Rearranging this expression for kinetic energy illustrates the possibility of fixed energy
solutions in which oscillations of the moment of inertia decouple from other changes in the ellipse
geometry. This purely kinematic result is reminiscent of a theorem of Ball’s [31] on the dynamics of the
moment of inertia that is central to the study of elliptical vortices in shallow water [26,30].

Herein, only passive rings of fluid are considered, that is, those lacking a vorticity anomaly relative
to the background. While this may seem like a stringent limitation, that is not the case. The reason is
that in all of the vortex solutions referred to earlier, the self-advection velocity arising from the vorticity
anomaly of the elliptical vortex itself is also linear. Most of the results derived herein therefore apply
directly to those cases with only minor modifications.

The structure of the paper is as follows. Section 2 introduces definitions and notation, including
the matrix basis that will be used herein, and presents the elementary properties of a linear flow;
the kinematic model for a fluid ellipse is introduced in Section 3 and is used to derive the principle of
ellipse/flow equivalence; the integral properties of an elliptical ring of fluid are derived in Section 4;
in Section 5, the extended Stokes’ theorem is derived, and the ellipse/flow equivalence is reinterpreted
as a special case of this theorem. The paper concludes with a discussion.

2. Definitions and Notation

This section begins with a discussion of a linear velocity field, introduces a matrix-based notation
for representing the velocity gradient tensor and relevant differential operators, then uses that basis to
derive further properties of the linear velocity field. Two sets of Eulerian ellipses characterizing the
flow are also examined.

2.1. A Linear Velocity Field

In this paper, we will be primarily concerned with linear velocity fields, that is, velocity fields
u(x, t) that depend linearly on the horizontal position x. We may write the velocity in terms of some
two-by-two matrix U(t) as

u(x, t) = U(t)x (1)

where the velocity and position vectors have components u = [u v]T and x = [x y]T , respectively,
with the superscript “T” denoting the transpose. Taking the gradient of Equation (1) leads to

∇u =

[
∂

∂x u ∂
∂y u

∂
∂x v ∂

∂y v

]
= U (2)

and thus the matrix U(t) is seen to be identical to the velocity gradient matrix of the linear flow.
While∇u in general depends on the position x, for linear flow it becomes independent of x, and in this
case we write it as U(t). We refer to U(t) simply as the flow matrix, a term already introduced by [21].
Any two-dimensional flow matrix may be written as

U(t) =
1
2

δ

[
1 0
0 1

]
+

1
2

ζ

[
0 −1
1 0

]
+

1
2

γ

[
cos 2α sin 2α

sin 2α − cos 2α

]
(3)

where δ is the divergence, ζ is the vorticity, γ is the strain magnitude, and α is the strain orientation,
all of which are spatially uniform but potentially time-varying.
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In what follows, it will prove convenient to express differential operators in a matrix-based
notation. We introduce the counterclockwise rotation matrix through angle θ, and the ninety-degree
counterclockwise rotation matrix, respectively, as

R(θ) ≡
[

cos θ − sin θ

sin θ cos θ

]
, J ≡

[
0 −1
1 0

]
= R(π/2). (4)

Furthermore, let boldface ∇ be the horizontal gradient operator represented as a two-vector, ∇ ≡[
∂

∂x
∂

∂y

]T
, as opposed to the basis-free representation ∇. In this notation, the velocity gradient matrix

is given by ∇u =
(
∇uT)T , with the extra transpose required in order that the operator ∇ acts from

the left and at the same time recovering the correct arrangement of terms as seen in Equation (2). The
velocity divergence and the vertical component of vorticity are then

δ ≡ ∇Tu = ∇ · u =
∂u
∂x

+
∂v
∂y

, ζ ≡ ∇TJTu = k · ∇ × u =
∂v
∂x
− ∂u

∂y
(5)

where k is the vertical unit vector. The normal strain ν, shear strain σ, strain magnitude γ, and strain
angle α are defined as

ν ≡ ∂u
∂x
− ∂v

∂y
, σ ≡ ∂v

∂x
+

∂u
∂y

, γ ≡
√

ν2 + σ2, α ≡ 1
2

arctan(σ/ν) (6)

while the rate-of-strain matrix for a strain field oriented along direction α arises from the rotation

1
2

R(α)

[
γ 0
0 −γ

]
RT(α) =

1
2

γ

[
cos 2α sin 2α

sin 2α − cos 2α

]
=

1
2

[
ν σ

σ −ν

]
(7)

which is the third quantity appearing in Equation (3). Note that the orientation angle α is defined such
that α = 0 corresponds to extension along the x-axis and compression along the y-axis. Sometimes,
it will be useful to think of the strain in terms of its magnitude γ and angle α, and other times in terms
of the normal strain and shear strain components, ν and σ.

For future reference, we also note some expressions involving the cross product. If f and g are
both purely horizontal vectors, e.g., f =

[
fx fy

]T and g =
[
gx gy

]T , we have

k · (f× g) = fTJTg, k× f = Jf (8)

for the vertical component of their cross product and for the cross product of the vertical unit vector
with the purely horizontal vector f, respectively. In these expressions, f and g are regarded on the
left-hand sides as being three-vectors with a vanishing z component.

2.2. A Matrix Basis

Any real-valued two-by-two matrix can be written as a weighted sum of the four matrices

I ≡
[

1 0
0 1

]
, J ≡

[
0 −1
1 0

]
, K ≡

[
1 0
0 −1

]
, L ≡

[
0 1
1 0

]
(9)

which will be referred to as the IJKL basis. The trace, or sum of the diagonal elements, is equal to
two for the identity matrix I and zero for the others, while the determinants are positive one for I and
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J, and negative one for K and L. The third and fourth matrices, K and L, are reflection matrices about
the lines y = 0 and x = y, respectively. In terms of the IJKL basis, we find

U(t) =
1
2
(δI + ζJ + νK + σL) (10)

as a compact expression for the flow matrix, which is seen to be identical to Equation (3). The velocity
field is then composed of terms proportional to Ix, Jx, Kx, and Lx, respectively, which are shown for
illustration purposes in Figure 1. Note that this is a general decomposition for the matrix product Ux
involving any real two-by-two matrix U.

Figure 1. Matrix products associated with the IJKL matrices presented as quiver plots. From left to
right, plots of Ix, Jx, Kx, and Lx are shown. These are the same as a velocity field of pure divergence,
pure vorticity, pure normal strain and pure shear strain, respectively.

This basis expansion greatly facilitates matrix multiplications, as one can refer to predetermined
rules. J, K, and L multiply themselves according to the rule −JJ = KK = LL = I, which is equivalent
to the transposition rules J = −JT , K = KT , and L = LT . These matrices multiply each other as

JK = +L KL = −J LJ = +K
KJ = −L LK = +J JL = −K

(11)

thus forming a kind of cycle. In the upper line, the matrices are arranged in alphabetical order,
if one considers L to be followed again by J; only the second, beginning with K, leads to a minus sign.
The reverse alphabetical order rules on the second line are obtained by transposition. The multiplication
rules are also presented in Table 1, the inspection of which reveals a kind of symmetry. It follows from
these rules that the expansion coefficients for a general matrix U in terms of the IJKL basis are

U =
1
2

{
tr {U} I + tr

{
UJT

}
J + tr {UK}K + tr {UL}L

}
(12)

where tr {·} denotes the matrix trace. The factor of one half arises due to the fact that tr {I} = 2.

Table 1. Multiplication rules for the IJKL matrices, giving the result of multiplying the row matrix by
the column matrix. For example, the terms in the second row are the values of JTI, JTJ, JTK, and JTL.

I J K L
I I J K L
JT −J I −L K
K K −L I −J
L L K J I
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The matrices J, K, and L transform under rotations as follows. Since rotations in two dimensions
commute, R(θ)JRT(θ) = J, and J is unchanged by a rotation. The K and L matrices transform as

R(θ)KRT(θ) =

[
cos 2θ sin 2θ

sin 2θ − cos 2θ

]
, R(θ)LRT(θ) =

[
− sin 2θ cos 2θ

cos 2θ sin 2θ

]
(13)

which we can readily verify by decomposing the rotation matrix as R(θ) = cos θI + sin θJ. Then

R(θ)KRT(θ) = (cos θI + sin θJ)K (cos θI− sin θJ) = cos 2θK + sin 2θL (14)

R(θ)LRT(θ) = (cos θI + sin θJ)L (cos θI− sin θJ) = cos 2θL− sin 2θK (15)

as we see at once through the application of the multiplication rules of Equation (11). The first of these
has been used in forming the rotated strain matrix in Equation (7).

This matrix basis may be used to derive the form of U(t) in a direct way. A gradient matrix may
be expanded in the IJKL basis as(

∇uT
)T

=
1
2

{(
∇Tu

)
I +

(
∇TJTu

)
J +

(
∇TKu

)
K +

(
∇TLu

)
L
}

(16)

which follows from Equation (12) if one observes that tr
{(

∇uT)T GT
}
= tr

{
G∇uT} = ∇TGTu for

a generic real-valued matrix G, since tr
{

G∇uT} = G11vx + G12vy − G21ux − G22uy = ∇TGTu from
direct calculation. The coefficients of the IJKL matrices in this expression can be thought of in two
different ways. They can be seen as the divergences of the original velocity field u, the rotated velocity
field JTu, and the two velocity reflected fields Ku and Lu, respectively. Equivalently, we may think of
these coefficients as being due to the four operators

∇ =

[
∂

∂x
∂

∂y

]
, J∇ =

[
− ∂

∂y
∂

∂x

]
, K∇ =

[
∂

∂x

− ∂
∂y

]
, L∇ =

[
∂

∂y
∂

∂x

]
(17)

acting on the original velocity field u, by grouping the matrix with ∇ as in ∇TGTu = (G∇)T u.
The first two such operators in Equation (17) are recognized from Equation (5) as the divergence
and the vertical component of the curl, respectively. Writing out all four quantities explicitly leads to(

∇uT
)T

=
1
2

{(
∂u
∂x

+
∂v
∂y

)
I +

(
∂v
∂x
− ∂u

∂y

)
J +

(
∂u
∂x
− ∂v

∂y

)
K +

(
∂v
∂x

+
∂u
∂y

)
L
}

(18)

from which we see that the terms in the velocity gradient matrix of Equation (2) are indeed correctly
recovered. If the velocity gradient is spatially uniform, then

(
∇uT)T

= U, and Equation (10) follows
from the definitions of δ, ζ, ν, and σ. Thus, the four operators in Equation (17) are seen to be those
which operate on u to give, respectively, the values of the four velocity components shown in Figure 1.

This matrix basis, which was used previously (with different notation) in Waterman and Lilly [37],
has been independently introduced by [38] and no doubt elsewhere. It is similar to the well-known
Pauli basis for 2× 2 Hermitian matrices used in quantum mechanics, which being complex-valued,
is not appropriate for the present application.

2.3. The Kinetic Energy, Stream Function. and Angular Velocity

Next, we obtain a simple expression for the kinetic energy. In a linear flow the local kinetic energy
at each point is

1
2
‖u(x, t)‖2 =

1
2

xT
(

UTU
)

x. (19)
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One may readily find for UTU, from Equation (10) for U and using the basis multiplication rules,

UTU =
1
4

{(
δ2 + ζ2 + γ2

)
I + 2 (δν + ζσ)K + 2 (δσ− ζν)L

}
(20)

a form that, it will be seen, indicates that the kinetic energy is constant along either ellipses or
hyperbolas. This equation may be derived by writing U = UII + UJJ + UKK + ULL for convenience,

from which one finds UTU =
(

U2
I + U2

J + U2
K + U2

L

)
I + 2

(
UIUK + UJUL

)
K + 2

(
UIUL −UJUK

)
L.

Multiplying Equation (20) by x on both sides leads to the terms xTIx = x2 + y2, xTKx = x2 − y2 and
xTLx = 2xy. Thus, the first of the quantities in Equation (20) is non-negative, but the second and third
will take on either sign depending on the spatial location. These last two quantities reflect cross terms
arising from the interaction of the divergence and the vorticity with the strain. For reference, the four
quadratic products of x with itself modified by the IJKL matrices are shown in Figure 2.

Figure 2. Quadratic forms associated with the IJKL matrices. From left to right, contour plots of
xTIx, xTJx, xTKx, and xTLx are shown, with positive contours shown as black solid lines and negative
contours as dashed-dotted gray lines. Note that xTJx = 0 identically.

A non-divergent velocity field may be written in terms of a stream function ψ(x, t), given by

ψ(x, t) = xTΨ(t)x + ψo(t) (21)

where ψo(t) is a spatially-constant (but potentially time-varying) term that is generally determined
by boundary conditions, and where the stream function matrix Ψ(t) may be chosen to be symmetric,
Ψ = ΨT . A linear velocity field u with vanishing divergence δ may then be written as

u(x, t) = k×∇ψ = J∇ψ = J∇
(

xTΨx
)
= 2JΨx, δ = 0 (22)

using Equation (8) for the cross product of a vertical vector and a horizontal vector, and noting from
direct calculation that ∇

(
xTΨx

)
=
(
Ψ + ΨT)x = 2Ψx. Combining this with u = Ux, we find

Ψ(t) =
1
2

JTU =
1
4
(ζI + σK− νL) , δ = 0 (23)

for the stream function matrix in terms of the flow matrix. The second equality follows from
Equation (10) for U(t) together with the JKL multiplication rules of Equation (11). Note that the
stream function matrix is thus simply half of the flow matrix, rotated ninety degrees clockwise.

For future reference, we will also define a quantity closely related to the stream function.
The angular velocity about the origin of a parcel at any point in a linear flow can be expressed as

v(x, t) ≡ k · (x× u) = xTJTu = xTJTUx (24)

using Equation (8) for the cross product. Here, a comment should be made about our choice of
terminology. “Angular velocity” herein will refer to the angular velocity of the parcel at each point in
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space, as opposed to an angular velocity due to the solid-body rotation of the entire rotating frame.
While v(x, t) could also be seen as an angular momentum per unit mass, later angular momentum
per unit mass will be discussed as a property of an entire elliptical ring. If the flow is non-divergent,
comparison with Equation (23) shows that v = 2xTΨx, and we then have

ψ(x, t) = xTΨx + ψo =
1
2

xTJTUx + ψo =
1
2

v + ψo (25)

as the relationship between the stream function and angular velocity at each point.

2.4. Measures of Ellipse Size and Shape

At any time t, the equation for an ellipse with orientation θ(t) and semi-major and semi-minor
axes a(t) and b(t) is given by xTE(t)x = 1, with the ellipse matrix E(t) defined as

E(t) ≡ R(θ)

[
a−2 0
0 b−2

]
RT(θ) (26)

which is observed to be symmetric, E = ET . The ellipse axes are specified such that a(t) > b(t) > 0.
Note that xTEx = c2 for different choices of the constant c specifies ellipses with the same orientation
and aspect ratio, but with axes scaled as ca(t) and cb(t).

It is convenient to replace a and b with two other quantities, one measuring the ellipse size or
amplitude and another measuring the ellipse shape. Different quantities will prove at times to be more
natural than others. The four most common combinations of a and b that will be used are

ρ(t) ≡
√

ab, I(t) ≡ a2 + b2

2
, η(t) ≡ a

b
, µ(t) ≡ a2 + b2

2ab
=

η2 + 1
2η

=
I

ρ2 (27)

the first two quantifying the ellipse size and the second two the ellipse shape. Here, ρ is the geometric
mean radius, while I, the mean squared axes length, will be shown to also be the moment of inertia
per unit mass of an elliptical ring of fluid. The third quantity, η, is the ellipse aspect ratio, while the
fourth, µ, will be called the extension, a name that reflects how it changes as the ellipse is distorted. The
extension µ equals unity for a circle and increases without bound as the aspect ratio a/b increases with
the area held fixed. Another interpretation of µ is as a nondimensional moment of inertia.

Table 2 compares four different measures of ellipse shape. Three of these, those above the
horizontal line, are expressed in terms of all of the others. The second quantity varies between zero for
a circle and unity for a line, and is referred to as the ellipse linearity by [39]; it is seen to arise naturally
in the context of time series analysis of complex-valued signals. The final quantity is somewhat
less fundamental, but will nevertheless appear frequently in what follows. This table is useful in
understanding how the appearance of various geometric terms changes depending on one’s choice
of shape measure. The classical eccentricity, ε ≡

√
1− b2/a2, does not appear to be useful for this

problem and is therefore not presented here. One may also note, for future reference,

d ln η

dt
=

1√
µ2 − 1

dµ

dt
=

1
1− λ2

dλ

dt
(28)

as the relationships between the time derivatives of the aspect ratio, extension and linearity. Note that
these derivative expressions require η = a/b ≥ 1, as has been assumed.
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Table 2. A comparison of four different quantities describing ellipse shape. Each quantity is expressed
in terms of the first three, as well as in terms of the major and minor semi-axis lengths a and b.

Name Symbol Range (a, b) (η) (λ) (µ)

Aspect ratio η (1, ∞]
a
b

η

√
1 + λ

1− λ

√
µ +

√
µ2 − 1

µ−
√

µ2 − 1

Linearity λ (0, 1)
a2 − b2

a2 + b2
η2 − 1
η2 + 1

λ

√
µ2 − 1

µ

Extension µ (1, ∞]
a2 + b2

2ab
η2 + 1

2η

1√
1− λ2

µ

—
λ

µ
(0, ∞]

a2 − b2

2ab
η2 − 1

2η

λ√
1− λ2

√
µ2 − 1

2.5. Stream Function and Energy Ellipses

In the next section, we will investigate ellipses composed of sets of Lagrangian particles.
Before examining these Lagrangian ellipses, we now compute two sets of Eulerian ellipses associated
with the flow itself. The first type comprises contours of a constant stream function for a non-divergent
flow field, and the second type contours of constant kinetic energy. A general matrix E of the form

E = R(θ)

[
a−2 0
0 b−2

]
RT(θ) =

a−2 + b−2

2
I− b−2 − a−2

2
(cos 2θK + sin 2θL) (29)

specifies a family of concentric ellipses as xTEx = c2 for some constant c; note that the second coefficient
on the right-hand side is negative due to the fact that a > b. Writing E = EII + EKK + ELL, one may
readily find that the ellipse parameters ρ2, µ, and θ are given in terms of the matrix components as

ρ2 =
1√

det{E}
, µ =

1
2

tr{E}√
det{E}

, θ =
1
2

arctan2 (−EL,−EK) (30)

where tr{E} = 2EI and det{E} = E2
I − E2

K − E2
L are the matrix trace and determinant of E, and

arctan2(y, x) is the four-quadrant inverse tangent function. Then µ can be converted back into η via
the expression in the upper right-hand corner of Table 2, if desired. The parameter ρ2 is not particularly
interesting here, as it can be absorbed into the choice of constant c in xTEx = c2.

As the stream function matrix Ψ for a non-divergent flow and the kinetic energy matrix UTU each
lacks a J component, like E in Equation (29), each will describe a family of ellipses, provided, also like
E, that the determinant is nonnegative; otherwise, a family of hyperbolas will be described. Choosing
E = sgn(ζ)Ψ where sgn(·) is the signum function, one finds tr{E} = 1

2 |ζ| and
√

det{E} = 1
4

√
ζ2 − γ2

from Equation (23). Contours of the constant stream function are ellipses if |ζ| ≥ γ, leading to

µ =
|ζ|√

ζ2 − γ2
, η =

√
|ζ|+ γ

|ζ| − γ
, θ = α + sgn(ζ)

π

4
(31)

for the ellipse parameters. The stream function ellipse is therefore circular when the strain vanishes,
and otherwise is oriented with its major axis forty-five degrees from the extensional strain axis.
The ellipse orientation is rotated counterclockwise (in the mathematically-positive sense) from the
strain axis if the vorticity ζ is positive and clockwise (in the mathematically-negative sense) if ζ

is negative.
For the constant kinetic energy ellipses, we choose E = UTU and note from Equation (20) that the

trace and determinant of UTU are given by

tr{UTU} = 1
2

(
δ2 + ζ2 + γ2

)
,

√
det{UTU} = 1

4

(
δ2 + ζ2 − γ2

)
. (32)
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The determinant of W ≡ UTU is readily found if we write U = UII + UJJ + UKK + ULL, leading to

det {W} = W2
I −W2

K −W2
L =

(
U2

I + U2
J + U2

K + U2
L

)2
− 4

(
UIUK + UJUL

)2 − 4
(
UIUL −UJUK

)2

=
(

U2
I + U2

J −U2
K −U2

L

)2
. (33)

The determinant expression in Equation (32) shows that contours of constant kinetic energy are ellipses
provided

√
δ2 + ζ2 ≥ γ. In this case, the extension, aspect ratio, and orientation of the kinetic energy

ellipses are found to be

µ =
δ2 + ζ2 + γ2

δ2 + ζ2 − γ2 , η =

√
δ2 + ζ2 + γ√
δ2 + ζ2 − γ

, θ =
1
2

arctan2 (−δσ + ζν,−δν− ζσ) . (34)

In general, the ellipse orientation depends on the divergence, vorticity, and both components of the
strain. However, if the divergence vanishes, the last equation simplifies to

µ =
ζ2 + γ2

ζ2 − γ2 , η =
|ζ|+ γ

|ζ| − γ
, θ = α + sgn(ζ)

π

4
(35)

and thus, for non-divergent flow, the kinetic energy ellipses have the same orientation as the stream
function ellipses, but a different aspect ratio. The aspect ratio of the kinetic energy ellipses is the square
of that stream function’s ellipses, implying that the former are more eccentric than the latter.

3. Ellipse Kinematics

This section introduces a kinematic model for a particle in a fluid ellipse, and uses it to find the
relationships between the rates of change of the ellipse parameters and the spatial derivatives of the
linear flow field. A comparison with the kinematic boundary condition approach is also presented.

3.1. A Kinematic Model for Fluid Particles in an Ellipse

A parametric representation of the time-varying position of a fluid particle located on an ellipse
with semi-major axis a(t), semi-minor axis b(t) ≤ a(t), and major axis orientation θ(t) is given by

x̆(t) ≡ x̆ (a(t), b(t), θ(t), φ(t)) ≡ R (θ)

[
a cos φ

b sin φ

]
(36)

where the phase φ(t) controls the position of the particle around the ellipse periphery. The breve
symbol will be used to indicate that x̆(t) is a Lagrangian quantity, as distinct from the Eulerian position
vector x. A schematic is shown in Figure 3a. This parametric model can either be thought of as
representing a particle, by which we mean an infinitesimal point along an ellipse, or else a deformable
fluid parcel of small but finite volume between two concentric ellipses, as shown in Figure 3b. This
subtle distinction is not important in this section, but will be important in the following section when
the physical properties of the fluid ellipse are computed. It is important to emphasize that Equation (36)
does not specifically represent some special set of points, such as a vortex boundary; rather, it can
denote any set of particles that one may wish to mark out as an ellipse within a linear flow field.

A comment should also be made regarding the phase angle φ. This not the same as the geometric
azimuth or polar angle Θ ≡ arctan(y̆/x̆), where x̆ and y̆ are the components of x̆(t). The azimuth
angle, measured in a rotated reference frame in which the ellipse orientation angle θ is zero, becomes
Θ̃ = arctan ((b/a) tan φ), which is clearly different from φ except for the circular case in which a and b
are equal. In Figure 3a, the angle subtended by φ is marked with an elliptical arc, rather than a circular
arc, in order to emphasize this distinction; this corrects a shortcoming of the ellipse schematics of Lilly
and Gascard [40] and Lilly and Olhede [39], pointed out to the author by S. Elipot.
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Figure 3. Schematics for (a) an ellipse and (b) an elliptical ring or annulus. In both panels,
the semi-major and semi-minor axes a and b are denoted by heavy solid and heavy dashed lines,
respectively, while the location of one particular particle along the periphery is marked with a thin solid
line. The ellipse orientation angle θ, measured counterclockwise from the x-axis, and the phase angle φ

to the particle location from the major axis are also shown. The twenty-four “spokes” around the ellipse
mark uniform increments of ∆φ = π/48 radians in the phase angle φ. In (b), two concentric ellipses of
identical shape and orientation, but slightly different sizes, are drawn. The space between these two
ellipses forms an elliptical ring or annulus, with the phase angle φ now taken to mark parcels, shown
later to have the same area, as opposed to simply a location around the ellipse periphery. The parcel
between the indicated phase angle φ and φ + ∆φ is filled in with dark shading.

The velocity of the particle, or parcel, described by the vector x̆(t) will be denoted ŭ(t) ≡ d
dt x̆(t),

again as distinct from the Eulerian velocity due to a linear velocity field, u(x, t) = U(t)x. Here it will be
convenient to reparametrize the Lagrangian ellipse vector x̆(t) in terms of the geometric mean radius
ρ =
√

ab and aspect ratio η = a/b. Then a = ρ
√

η and b = ρ/
√

η, leading to

x̆(t) = x̆(ρ(t), η(t), θ(t), φ(t)) =
ρ
√

η
R (θ)

[
η cos φ

sin φ

]
. (37)

Taking the time derivative of this expression, the particle velocity ŭ(t) is readily found to be

ŭ(t) =
ρ
√

η
R(θ)

{
d ln ρ

dt

[
η cos φ

sin φ

]
+

1
2

d ln η

dt

[
η cos φ

− sin φ

]
+

dθ

dt

[
− sin φ

η cos φ

]
+

dφ

dt

[
−η sin φ

cos φ

]}
(38)

where d
dt ln ρ(t) will be called the expansion rate, the rate of change of the aspect ratio d

dt ln η(t) is one
of several possible measures of the deformation rate, d

dt θ(t) is the precession rate, and d
dt φ(t) is referred

to as the orbital frequency.
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3.2. The Ellipse Flow Matrix

The velocity ŭ(t) of a particle along the ellipse periphery may be equivalently expressed through
the matrix multiplication ŭ(t) = Ŭ(t)x̆(t), where the ellipse flow matrix Ŭ(t) is defined by

Ŭ(t) ≡ R(θ)

{
d ln ρ

dt
I +

(
dθ

dt
+

η2 + 1
2η

dφ

dt

)
J +

1
2

d ln η

dt
K− η2 − 1

2η

dφ

dt
L
}

RT(θ). (39)

Whereas ŭ(t) only gives the velocity of one particle along the ellipse, the matrix Ŭ(t) describes the
entire linear flow field implied by the evolution of the parametric ellipse model at any position x.
The ellipse flow matrix may be rewritten in the somewhat more transparent form

Ŭ(t) ≡ R(θ)

{
d ln ρ

dt
I +

dθ

dt
J +

1
2

d ln η

dt
K +

dφ

dt

[
0 −η

1/η 0

]}
RT(θ) (40)

from which one sees at once that Ŭ(t)x̆(t), with x̆(t) defined by Equation (37), does indeed recover
the expression for ŭ(t) given by Equation (38). In deriving the latter equation from Equation (39), it is

helpful to note the identity η2+1
2η J− η2−1

2η L =

[
0 −η

1/η 0

]
.

Equation (40) for Ŭ(t) has a clear physical interpretation. The velocity implied by the first term,
involving the expansion rate d

dt ln ρ(t), changes the magnitude of the ellipse vector x̆(t) without
changing its angle. The velocity implied by the second term, involving the precession rate d

dt θ(t), is
always oriented perpendicular to x̆(t), expressing a tendency for solid-body rotation. The velocity
implied by the third term, involving the deformation rate d

dt ln η(t), acts for the positive deformation
rate to increase the major axis a while at the same time decreasing the minor axis b. The final matrix
term, multiplying the orbital frequency d

dt φ(t), transforms [η cos φ sin φ]T into [−η sin φ cos φ]T , i.e.,
it advances the phase φ by ninety degrees; this implies a velocity that is tangent to the ellipse periphery,
as will be seen more clearly later; see Equation (63) of Section 4.

3.3. The Ellipse Evolution Equations and Ellipse/Flow Equivalence

The rates of change of the parameters of the ellipse model can be directly linked to the properties
of a linear flow field, leading to explicit expressions for those rates of change. With α̃ ≡ α− θ being the
orientation of the strain axis in the reference frame of the ellipse, one finds at once

δ = 2
d ln ρ

dt
, ζ = 2

(
dθ

dt
+

η2 + 1
2η

dφ

dt

)
, γ cos 2α̃ =

d ln η

dt
, γ sin 2α̃ = −2

η2 − 1
2η

dφ

dt
(41)

by comparing Equation (39) for the flow matrix Ŭ(t) implied by the Lagrangian velocity ŭ(t),
with Equation (10) for a general flow matrix U(t). These can be readily combined to give expressions
for the strain magnitude γ and angle α, if desired, thus establishing a correspondence between the
velocity gradient quantities δ, ζ, γ, and α of the linear velocity field, and the rates of change of the
ellipse parameters. Rearranging Equation (41) leads to the ellipse evolution equations, given by

d ln ρ

dt
=

1
2

δ,
d ln η

dt
= γ cos 2α̃,

dθ

dt
=

1
2

ζ +
1
2

η2 + 1
η2 − 1

γ sin 2α̃,
dφ

dt
= −1

2
2η

η2 − 1
γ sin 2α̃ (42)

which determine the evolution of the parameters of any ellipse in a possibly time-dependent linear
flow. Observe that the left-hand sides are all Lagrangian rates of change, while the right-hand sides
contain a mixture of Eulerian properties of the flow field and Lagrangian properties of the ellipse.

The evolution equations state that the divergence sets the fractional rate of change of the geometric
mean radius, d

dt ln ρ(t); the normal strain in the reference frame of the ellipse controls the deformation
d
dt ln η(t); the vorticity contributes to the precession rate d

dt θ(t); and the shear strain in the reference
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frame of the ellipse contributes to the precession rate and also entirely controls the orbital frequency
d
dt φ(t). Perhaps surprisingly, the vorticity does not contribute to the shifting of the position of particles
around the ellipse via the orbital frequency. Instead, it is the shear strain in the ellipse reference
frame that accomplishes this. Examining the sign of the strain angle relative to the ellipse orientation,
α̃ = α− θ, we see that strain always acts to rotate the vortex toward the extending axis of the strain;
recall here that γ is the strain magnitude and is therefore non-negative. This is accompanied by a shift
in phase angle φ that causes the particles to circulate along the ellipse in the opposite direction from
the strain-induced rotation of the ellipse itself.

Equations (41) and (42) together mean that given the evolution of any nondegenerate ellipse,
we know the instantaneous properties of the unique linear flow that could generate such evolution,
and conversely, given the properties of a linear flow, we know how any ellipse advected by that
flow will evolve. (By “nondegenerate” we mean to exclude the singular cases of a line, for which
η = ∞, and a circle, for which η = 1, as in both of these cases, the ellipse model only has three
free parameters instead of four.) This result is referred to as the principle of ellipse/flow equivalence.
It reflects a deep correspondence between Eulerian and Lagrangian quantities for the case of a linear
flow. The instantaneous properties of an arbitrary linear flow field and the instantaneous rates of
change of an elliptical ring of fluid, therefore, contain equivalent information.

Two caveats should be mentioned at this point. The first is that ellipse/flow equivalence does not
mean that if a fluid ellipse evolves at one particular moment into a new ellipse, the flow that caused
this is necessarily linear; it means that if we know that the flow is linear, then the ellipse evolution also
tells us the flow properties. This subtle point will be returned to later. Secondly, we have not specified
how the parameters of the ellipse model and their rates of change are to be inferred. An interesting
question, relevant to the Lagrangian analysis methods of e.g., [36], is whether the ellipse parameters
can be accurately estimated from a single Lagrangian trajectory. Such issues are outside the scope of
the present paper, where we simply ask what we can do with the knowledge of the rates of change of
the ellipse parameters, if this information is available.

The ellipse evolution equations are not themselves new. They are essentially those of the Kida
vortex [1–3] if the vorticity anomaly is set to zero, but with the addition of the divergence and the rate
of change of phase. The derivation used in those works involves considering the kinematic condition
for the advection of an elliptical boundary, as discussed in more detail shortly. That approach does
not lead to an equation for the orbital phase φ(t), though it could be inferred from conservation of
circulation. What is new is the understanding of the intimate link between ellipse evolution and linear
flows as a general result, which has been made apparent here through the use of the four-parameter
kinematic ellipse model, as opposed to the three-parameter kinematic boundary condition.

Note that the ellipse evolution equations do not prohibit the aspect ratio η from evolving to be
less that one; but we have assumed a ≥ b and, therefore, η > 1. This difficulty can be addressed as
follows. If η = 1, the ellipse becomes a circle, and the orientation θ is thus undefined. At moments
for which η = 1, we are free to introduce discontinuities of π/2 in the orientation angle θ such that
subsequent evolution will continue with η ≥ 1. That is, at any times at which the ellipse momentarily
becomes a circle, we may relabel the axes in order that a always refers to the longer of the two axes.
It turns out that this approach is sufficient for most cases, e.g., the Kida vortex solution, which does
not cross η = 1 in finite time. For cases in which this singularity is problematic, it may be removed by
a modified choice of elliptical parameters; see the note on p. 852 of [17].

3.4. The Kinematic Boundary Condition Approach

Here, the ellipse evolution equations have been derived with the use of a parametric model of
a particle orbiting a time-varying ellipse. A more standard approach in the literature, that used by,
e.g., Kida [1], Neu [2], and Ide and Wiggins [3], is to consider the kinematic boundary condition for an
evolving elliptical curve; this approach that may be extended to handle ellipsoids in three dimensions,
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see McKiver and Dritschel [21]. The kinematic condition for an evolving elliptical boundary is
described here for comparison with the parametric method.

With E(t) being the ellipse matrix given in Equation (26), we define χ(x, t) ≡ xTE(t)x,
with contours of constant χ being ellipses. In order for a particle to remain on the same ellipse,
as it is advected following the flow, it must be the case that the total time derivative of χ vanishes:

D
Dt

χ(x, t) =
(

∂

∂t
+ u · ∇

)
χ =

(
∂

∂t
+ uT∇

)(
xTEx

)
= 0. (43)

Following [2], this may be rearranged to give

xT
(

dE
dt

+ UTE + ETU
)

x = 0 (44)

where we have observed from inspection that ∇
(
xTGx

)
=
(
G + GT) x for some spatially-constant

real-valued matrix G. Note that it is important to arrange the quantity in parenthesis in Equation (44)
such that it is symmetric. The solution is then found by choosing

dE
dt

= −EU−UTE (45)

where we have noted E = ET . From this, one may deduce the first three evolution equations,
as shown the Appendix A. This is done in Kida [1], Neu [2], and Ide and Wiggins [3] for the case
of the Kida vortex, whereas here we consider an arbitrary linear flow field. As pointed out above,
an equation for the rate of change of the phase φ is not obtained, as the kinematic boundary condition
does not track the locations of particles around the ellipse periphery.

4. Integrals of a Fluid Ellipse

In this section, expressions for various integral properties of a fluid ellipse are derived.
The relationship between integrals over a thin elliptical ring or annulus of fluid, versus those over
an elliptical disk of fluid, is discussed. The kinetic energy averaged around the elliptical ring is shown
to have an interesting partitioning into three distinct physical terms, an apparently new result.

4.1. An Elliptical Ring of Fluid

Rather than merely describing a position along the periphery of any ellipse, as in Figure 3a, we let
x̆(t) describe the location of a fluid parcel within a thin elliptical ring or annulus, as in Figure 3b,
around which parcels may flow while preserving their volume. (The terms “ring” and “annulus” will
be used interchangeably herein, as “annulus” means “ring” in Latin.) The ring could be imagined
as a deformable tank of negligible weight. It is taken to have a uniform (but possibly time-variable)
height h(t) measured in the dimension out of the page, and a width that is proportional to the distance
from the origin, i.e., a width of ε‖x̆(t)‖ for some small positive number ε(t). The fluid is assumed
to have a constant density $. The ring volume VR is therefore constant and is given by VR = ARh,
where AR = 2πabε is the ring area. Conservation of volume implies that the ring width ε must be
equal to ε = VR/(2πabh). The annulus may change orientation, shape, or size, consistent with volume
preservation. The reason for permitting a time-varying height is so that the integrals will be applicable
both to the two-dimensional Euler and shallow water systems.

An important point is that the elliptical annulus is different from, for example, an elliptical wire,
which could also be described by x̆(t), but which will have a different mass density and therefore
different integrals. Computing, for example, the moment of inertia of an elliptical wire, one would
need to evaluate elliptic integrals (also known as elliptic functions), which will not be needed here.

The ellipse integrals will be derived for a non-rotating reference frame, but can trivially be
modified for a rotating reference frame. Because all of the properties to be derived are kinematic
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(that is, not referring to any forces), there is no difference between a rotation of the reference frame
and a rotation of the ellipse. In order to be applicable to an ellipse lying within a reference frame
that is rotating about the vertical axis at a rate of 1

2 f , where f is the Coriolis frequency, one simply
formally replaces the ellipse rotation rate d

dt θ(t) with d
dt θ(t) + 1

2 f wherever it appears in the following
expressions. Then the angular momentum, circulation, and kinetic energy derived below become
absolute quantities as measured in the non-rotating frame.

Because the fluid density $ is constant and the thickness h is assumed to be spatially uniform,
one finds with dA being a differential area

1
$VR

$h dA =
1

VR
h dA =

1
AR

dA (46)

and mass-weighted area averages are therefore the same as simple area averages. For simplicity in
what follows, we will write averaging integrals in the latter form.

4.2. Moment of Inertia, Angular Momentum, and Circulation

Three important physical properties of an evolving elliptical ring of fluid, occupying an annular
region R (for “ring”) in a flat domain and bounded on the exterior by a curve C, are defined as

I(t) ≡ 1
AR

∫∫
R
‖x‖2 dA, M(t) ≡ 1

AR

∫∫
R

k · (x× u) dA, Π(t) ≡ 1
2π

∮
C

u · dx (47)

which are, respectively, the moment of inertia per unit mass, the average angular momentum per
unit mass, and 1/(2π) times the enclosed circulation. Here the contour integral in the final equation
is taken in the right-hand sense around the contour C, with dx being a differential segment of C.
The quantity Π(t) is related to the usual circulation Γ(t) by Π ≡ Γ/(2π), and is therefore recognized
as the angular density of the circulation. We will work with Π rather than Γ in order to emphasize
a similarity to the angular momentum. These three integrals become

I(t) =
a2 + b2

2
, M(t) =

a2 + b2

2
dθ

dt
+ ab

dφ

dt
, Π(t) = ab

dθ

dt
+

a2 + b2

2
dφ

dt
(48)

for the evolving elliptical ring, as will be shown shortly. Note that deformation and change in the
ellipse area contribute neither to the angular momentum, nor to the circulation.

Observe the symmetry in form between the ellipse angular momentum M and the normalized
circulation Π. These expressions for M and Π are essentially the same as (4.6b) of Holm [30], in which
these quantities emerge from a Hamiltonian framework as the canonical momenta conjugate to the
orientation angle θ and orbital phase φ, respectively, for a shallow-water elliptical vortex. M and Π
are two distinct but related quantities, both with units of length squared per unit time, or angular
momentum per unit mass. These both describe the rotation of the system, but in two different ways.

To clarify the distinction between M and Π, we first consider the case of solid-body rotation of
the ellipse, for which d

dt φ(t) vanishes. Let Ω ≡ d
dt θ(t) be the ellipse rotation rate. Then the angular

momentum per unit mass is enhanced over the angular rotation rate through the moment of inertia,
M = IΩ, as usual. A solid-body velocity given by u = Ωk× x = ΩJx = Ω [−y x]T corresponds to
a vorticity of ζ = d

dx v− d
dy u = 2Ω. From Stokes’ theorem, the circulation is the spatially-integrated

vorticity within the enclosed contour, so we have Γ = 2Ωπab for solid-body rotation, or Π = Ω ab, in
agreement with Equation (48). Thus the first term in both M and Π is due to the effect of solid-body
rotation. The second term similarly captures the angular momentum ab d

dt φ(t) and circulation I d
dt φ(t)

associated with the flow of particles along the elliptical ring. Note that with the ellipse area fixed,
the term proportional to I can increase without bound through an elongation of the ellipse, increasing
the θ contribution to M and the φ contribution to Π. More generally, conservation of M or of Π would
imply relationships between the ellipse geometry and the rates of change of these two angles.
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The above expressions for M and Π are general, in the sense that they are expressed in terms of
the rates of change of the ellipse itself. For the particular case of an ellipse in a linear flow, one may
substitute from the ellipse evolution equations, Equation (42), to find

M(t) =
1
2

ρ2
[

η2 + 1
2η

ζ +
η2 − 1

2η
γ sin 2α̃

]
, Π(t) =

1
2

ρ2ζ. (49)

Differentiating these expressions and substituting again from Equation (42) leads to

dM
dt

= M
d ln ρ2

dt
+

1
2

ρ2 η2 − 1
2η

(
dγ

dt
sin 2α̃− 2γ

dα

dt
cos 2α̃

)
,

d ln Π
dt

=
d ln ρ2

dt
+

d ln ζ

dt
(50)

after making use of the derivative relationships d
dt
[
(η2 ± 1)/2η

]
=
[
(η2 ∓ 1)/2η

] d
dt ln η. Thus, in

a non-divergent linear flow that is constant in time, and in the absence of any vorticity anomalies,
both the average angular momentum as well as the circulation of any fluid ellipse are constant. While
the latter conservation law is well known, the former is perhaps surprising. The term proportional
to d

dt ln ρ2 in d
dt M deserves comment, as one would expect angular momentum to be conserved

independent of changes in the size of the ring. It is important to keep in mind that the ambient flow is
considered to be imposed. Thus, for example, if the strain vanishes, but the vorticity is held fixed, then
d
dt ln M = d

dt ln ρ2 gives the correct conservation law; the angular momentum increases as the ring area
increases on account of the fixed vorticity.

For a non-divergent flow, another important physical property is the spatially-averaged value of
the stream function over the elliptical ring, which is found to be given by

ψ(t) ≡ 1
AR

∫∫
R

ψ dA =
1
2

{
a2 + b2

2
dθ

dt
+ ab

dφ

dt

}
+ ψo =

1
2

M + ψo. (51)

This equals one half of the angular momentum per unit mass of the elliptical ring, plus the
spatially-uniform portion of the stream function, ψo(t), as follows directly from the pointwise
relationship between the stream function and angular velocity described earlier in Equation (25).

4.3. Physical Properties of an Elliptical Disk of Fluid

The integrals of an elliptical disk bear a simple relation to the integrals of an elliptical ring,
which we assume to have a spatially uniform but potentially time-varying height h. For a quadratic
quantity, given by xTGx for some matrix G, it will be shown later that (with “D” denoting the disk)

1
AD

∫∫
D

xTGx dA =
1
2

(
1

AR

∫∫
R

xTGx dA
)

(52)

such that the mass-weighted average value of xTGx, taken over the entire elliptical disk, is simply one
half its mass-weighted average value over one of the concentric elliptical rings R within the disk D. In
other words, the “disk integrals” are one half of the “ring integrals” for quadratic quantities, which
includes I and M, as well as the kinetic energy K introduced in the next section.

The stream function is an exception. Because it includes a quadratic term, as well as a
spatially-uniform term, the disk-averaged stream function is no longer equal to one half of the
ring-averaged stream function. Instead, one finds

1
AD

∫∫
D

ψ(x, t)dA =
1

AD

∫∫
D

xTΨx dA + ψo =
1
2

(
1

AR

∫∫
R

ψ(x, t)dA
)
+

1
2

ψo (53)

where we note the appearance of an extra additive constant with a value of 1
2 ψo in the disk-averaged

version compared with the ring average. This distinction will be important for interpreting the so-called
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“excess” domain-integrated kinetic energy of an elliptical two-dimensional vortex such as the Kida
vortex, which is based on the value of the stream function; see e.g., [14].

Note that these results on disk averages directly apply to vortices in two-dimensional flow, such as
the Kida vortex, but not to the shallow water vortex solutions, in which the ellipse height exhibits
a quadratic dependence on the spatial coordinates.

4.4. Kinetic Energy

Along with the integrals presented in the last section, we may also compute the average kinetic
energy per unit mass experienced by parcels along the elliptical ring, defined as

K(t) ≡ 1
AR

∫∫
R

1
2
‖u‖2 dA. (54)

In terms of the geometric mean radius ρ =
√

ab, aspect ratio η = a/b, orientation θ, and phase φ, this
will be found to be

K(t) =
1
2

ρ2 η2 + 1
2η

{(
dφ

dt
+

2η

η2 + 1
dθ

dt

)2
+

(
d ln ρ

dt
+

1
2

η2 − 1
η2 + 1

d ln η

dt

)2

+

(
η2 − 1
η2 + 1

)2 (dθ

dt

)2
+

(
2η

η2 + 1

)2 (1
2

d ln η

dt

)2
}

(55)

an expression that may be simplified through the choice of different variables. Observe that the
fractional rate of change of the ring’s moment of inertia, I, may be expanded to give

1
2

d ln I
dt

=
1
2

d
dt

ln
(

ρ2 η2 + 1
2η

)
=

d ln ρ

dt
+

1
2

η2 − 1
η2 + 1

d ln η

dt
(56)

which is the second term in parenthesis in Equation (55). Replacing ρ with the moment of inertia I and
η with the linearity λ = (η2 − 1)/(η2 + 1), one finds

K(t) =
1
2

I

{(
dφ

dt
+
√

1− λ2 dθ

dt

)2
+

(
1
2

d ln I
dt

)2
+ λ2

(
dθ

dt

)2
+

1
1− λ2

(
1
2

dλ

dt

)2
}

(57)

after making use of Table 2 together with the derivative relations in Equation (28).
This expression has a very interesting interpretation. The entire first term is found to be simply

the squared normalized circulation Π divided by the moment of inertia I:

1
2

I
(

dφ

dt
+
√

1− λ2 dθ

dt

)2
=

1
2

Π2

I
. (58)

If circulation is conserved, this term reflects the generation of kinetic energy through changing the
moment of inertia, that is, the average squared distance of fluid parcels from the origin. This process
could be called kinetic energy induction. The second term in Equation (57) is due to the deformation and
expansion/contraction velocities that contribute to changing the moment of inertia. The third term
is the additional contribution of precessional velocities not already included in the induction term,
and the fourth term is the additional contribution of deformational velocities not already included
in the moment of inertia term. Later, the sum of the third and fourth terms will be shown to have an
interesting interpretation: it represents the ring variance of parcel angular velocity, that is, the average
squared departure of the angular velocity from its average value along the ring.
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The expression for the average kinetic energy of an elliptical ring in Equation (56) can be
rearranged to give

1
2

{(
dI
dt

)2
+ I2

[
4λ2

(
dθ

dt

)2
+

1
1− λ2

(
dλ

dt

)2
]}

= 4KI − 2Π2 (59)

a form that is strikingly similar to Equation (22) of Ball [31] for the evolution of the moment of inertia
of a body of fluid lying on a paraboloid, and to Equation (2.3) of Young [26] for the evolution of the
moment of inertia of a shallow-water elliptical vortex. In both of those systems, the entire quantity
in square brackets is replaced with a constant, f 2, the squared Coriolis frequency, and the moment
of inertia is found to oscillate at that frequency. Here, one observes that if the orientation angle and
linearity evolve such that the term in square brackets is a constant, say ω2

o , and if the circulation Π and
kinetic energy K are both also constant, then a decoupling occurs. Under these conditions, one may
differentiate Equation (57) to give

d2 I
dt2 + ω2

o I = 4K (60)

and the moment of inertia oscillates as a harmonic oscillator, independent of the other ellipse
parameters. This is again reminiscent of the results of Ball [31] and Young [26], suggesting that
the moment of inertia oscillations seen therein are a reflection of a kinematic constraint. Further
exploration of the relationship between this kinematic analysis and the moment of inertia oscillations
found in those two physical systems is left to the future.

4.5. Computing the Integrals of the Ellipse

To compute the integrals of the elliptical ring, we will need properties all along the ellipse at each
time. Therefore we reparametrize the ellipse vector x̆(t) in terms of a free phase ϕ as

x̆(ϕ, t) ≡ x̆(ρ(t), η(t), θ(t), ϕ) (61)

where ϕ, which can be chosen to access the location of any parcel along the fluid ellipse, is distinguished
from φ(t), a time-varying property of one particular parcel. Similarly, one may define a version of the
velocity ŭ(t) that is also dependent on a free phase as

ŭ(ϕ, t) ≡ Ŭx̆(ϕ, t) (62)

which gives the velocity at the location of any parcel along the ellipse through a suitable choice of the
phase ϕ. In general, x̆(ϕ, t) and ŭ(ϕ, t) parameterized by a free phase will only appear inside integrals
over ϕ; thus, there is no danger of confusing them with x̆(t) and ŭ(t).

We will also need a differential vector dx̆(ϕ, t) that is tangent to the ellipse periphery.
Differentiating the ellipse vector with a free phase, x̆(ϕ, t), with respect to the phase ϕ, we obtain

dx̆(ϕ, t) ≡ ∂

∂ϕ
x̆(a, b, θ, ϕ)dϕ = R (θ)

[
−a sin ϕ

b cos ϕ

]
dϕ. (63)

A differential unit of area of the elliptical ring as a function of the free phase ϕ is then given by

dA = ‖εx̆× dx̆‖ = ε

∥∥∥∥x̆× ∂x̆
∂ϕ

dϕ

∥∥∥∥ = ε

∣∣∣∣x̆TJT ∂x̆
∂ϕ

dϕ

∣∣∣∣ = abε dϕ (64)
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after making use of Equation (8) for the cross product of two two-vectors. Here ε, as described earlier,
is a small number specifying the width of the fluid annulus as ε‖x̆‖, i.e., with a width at each point
that is proportional to the distance from the origin. The area of the elliptical ring is found to be∫

R
dA =

∫ π

−π
abε dϕ = 2πabε (65)

and its volume is therefore VR = 2πabεh. This leads to the important result that

1
AR

dA =
1

$VR
$h dA =

1
2πabεh

abεh dϕ =
1

2π
dϕ (66)

such that area averages, or mass-weighted area averages, over the elliptical ring can be expressed as
phase averages over ϕ. Such quantities are independent of the ellipse width ε, height h, and density $.

At this point, we introduce a new notation. Let f (ϕ, x, t) be some function of the free phase ϕ and
possibly also of space x and time t. The phase average of f is defined by

〈 f (ϕ, x, t)〉 ≡ 1
2π

∫ π

−π
f (ϕ, x, t)dϕ (67)

an operation that gives the average value of f experienced by all fluid parcels along the elliptical ring.
The three integrals defined in Equation (47) become, again using Equation (8) for cross products,

I(t) =
〈

x̆T x̆
〉

, M(t) =
〈

x̆TJTŭ
〉

, Π(t) =

〈(
∂x̆
∂ϕ

)T
ŭ

〉
(68)

where x̆ and ŭ in these expressions are the free-phase versions x̆(ϕ, t) and ŭ(ϕ, t), respectively. For the
moment of inertia, one finds upon substituting for x̆ from Equation (36)

I(t) ≡
〈

x̆T(ϕ, t) x̆(ϕ, t)
〉
=

〈
a2 + b2

2
+

a2 − b2

2
cos 2ϕ

〉
=

a2 + b2

2
. (69)

In computing the angular momentum and circulation, it is convenient to define the two new
vectors

r ≡
[

a cos ϕ

b sin ϕ

]
, s ≡

[
−a sin ϕ

b cos ϕ

]
(70)

such that x̆(ϕ, t) = R(θ)r, while ∂
∂ϕ x̆(ϕ, t) = R(θ)s. The integrands in the phase averages for M(t) and

Π(t) become, respectively,

x̆TJTŭ = rT
[
RT(θ)JTŬR(θ)

]
r,

(
∂x̆
∂ϕ

)T
ŭ = sT

[
RT(θ)ŬR(θ)

]
r (71)

where the matrices in square brackets are readily found, using Equation (39), to be given by

RT(θ)JTŬR(θ) = −d ln ρ

dt
J +

(
dθ

dt
+

η2 + 1
2η

dφ

dt

)
I− 1

2
d ln η

dt
L− η2 − 1

2η

dφ

dt
K (72)

RT(θ)ŬR(θ) =
d ln ρ

dt
I +

(
dθ

dt
+

η2 + 1
2η

dφ

dt

)
J +

1
2

d ln η

dt
K− η2 − 1

2η

dφ

dt
L. (73)
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The IJKL-modified inner products between r and itself, and between r and s, involve trigonometric
terms which will reduce after phase averaging. The necessary phase-averaged inner products are

〈
rTr
〉
=

a2 + b2

2
,

〈
rTJr

〉
= 0,

〈
rTKr

〉
=

a2 − b2

2
,

〈
rTLr

〉
= 0 (74)〈

sTr
〉
= 0,

〈
sTJr

〉
= ab,

〈
sTKr

〉
= 0,

〈
sTLr

〉
= 0. (75)

Combining these values with the appropriate coefficients from Equations (72) and (73) gives the forms
of the angular momentum and circulation presented earlier in Equation (48).

At this point, we will also derive the relationship between disk integrals and ring integrals stated
earlier in Section 4.3. We will integrate over concentric rings, with the location of each ring designated
by a parameter ` that varies from zero to one, with ` = 1 corresponding to the outer boundary of the
ellipse. The differential area is dA = ‖ (`x̆ d`)× dx̆‖ = ab`d`dϕ. If the height h of the disk is assumed
to be uniform, the volume of the disk is

VD =
∫∫

D
h dA =

∫ π

−π

∫ 1

0
hab`d`dϕ = πabh. (76)

The average of a quadratic quantity xTGx over the entire disk is then found to be

1
AD

∫∫
D

xTGx dA =
1

πab

∫ π

−π

∫ 1

0
(`x̆)T G (`x̆) ab`d`dϕ

=
∫ 1

0
`3d`

1
π

∫ π

−π
x̆TGx̆ dϕ =

1
4π

∫ π

−π
x̆TGx̆ dϕ =

1
2

〈
x̆TGx̆

〉
(77)

showing that the average of xTGx over the entire disk is one half of its average in any ring, as claimed.

4.6. Computing the Kinetic Energy Integral

To derive an expression for the average kinetic energy of an elliptical ring, given earlier in
Equation (55), we write the kinetic energy integral as a phase average,

K(t) =
1

AR

∫∫
R

1
2
‖u‖2dA =

1
2

〈
x̆TŬTŬx̆

〉
, (78)

and then employ the expansion of the kinetic energy matrix from Equation (20). Writing the ellipse
flow matrix for convenience as Ŭ = 1

2 RT(θ) {δI + ζJ + ν̃K + σ̃L}R(θ), where ν̃ and σ̃ are the normal
and shear strains in the reference frame of the ellipse, Equation (20) becomes

ŬTŬ =
1
4

RT(θ)
{(

δ2 + ζ2 + γ2
)

I + 2 (δν̃ + ζσ̃)K + 2 (δσ̃− ζν̃)L
}

R(θ) (79)

for the kinetic energy matrix associated with the ellipse evolution. Then, from the phase averaging
rules given in Equation (74), the kinetic energy is found to be

K(t) =
1
8

{
a2 + b2

2

(
δ2 + ζ2 + γ2

)
+ 2

a2 − b2

2
(δν̃ + ζσ̃)

}
. (80)

It turns out that further manipulations will be considerably easier if we work with the ellipse extension
µ rather than with the aspect ratio η, so we rewrite Equation (39) for Ŭ as

Ŭ(t) = R(θ)

{
d ln ρ

dt
I +

(
dθ

dt
+ µ

dφ

dt

)
J +

1√
µ2 − 1

1
2

dµ

dt
K−

√
µ2 − 1

dφ

dt
L

}
RT(θ) (81)
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again using Table 2 and the derivative relations in Equation (28). This leads at once to

K =
1
2

ρ2µ

[(
d ln ρ

dt

)2
+

(
dθ

dt
+ µ

dφ

dt

)2
+

1
µ2 − 1

(
1
2

dµ

dt

)2
+
(

µ2 − 1
)(dφ

dt

)2
]

+ ρ2
√

µ2 − 1

[
d ln ρ

dt
1√

µ2 − 1
1
2

dµ

dt
−
(

dθ

dt
+ µ

dφ

dt

)√
µ2 − 1

dφ

dt

]
(82)

which may be rearranged to give

K =
1
2

ρ2µ×{(
d ln ρ

dt
+

1
2

d ln µ

dt

)2
+

1
µ2

(
dθ

dt
+ µ

dφ

dt

)2
+

µ2 − 1
µ2

(
dθ

dt

)2
+

1
µ2 − 1

(
1
2

d ln µ

dt

)2
}

. (83)

Re-expressing this in η form leads to Equation (55), as claimed.

4.7. A Partitioning of the Ellipse Kinetic Energy

The average kinetic energy of an elliptical ring has a simple partitioning into three portions, as is
now shown. With v̆(ϕ, t) ≡ k · x̆(ϕ, t)× ŭ(ϕ, t) being the instantaneous angular velocity at each point
along the ellipse, parameterized by the free phase ϕ, we find that the kinetic energy takes the form

K(t) =
1
2

1
I

{
Π2 +

(
1
2

dI
dt

)2
+ 2

〈
(v̆− 〈v̆〉)2

〉}
(84)

where the first term is again due to the circulation, the second is due to the change in the moment of
inertia, and the third is identified as the angular velocity variance along the ellipse. This term is given by

〈
(v̆− 〈v̆〉)2

〉
=

1
2

I2

{
λ2
(

dθ

dt

)2
+

1
1− λ2

(
1
2

dλ

dt

)}
(85)

and thus involves contributions from both precession and deformation. When fluid parcels at various
phase locations around the elliptical annulus all have the same angular velocity, this term vanishes.

To prove Equation (85), we note that the angular velocity along the ellipse periphery can be
expressed as v̆(ϕ, t) = x̆TJTŬx̆, and thus

v̆(ϕ, t)− 〈v̆〉 = x̆TJTŬx̆−
〈

x̆TJTŬx̆
〉

(86)

gives the deviation of this quantity from its phase mean. The quadratic form x̆TJTŬx̆ was previously
examined in Equations (71) and (72), but unlike in that case, we will now also need to keep track of
terms dependent on ϕ. The following combinations involving r will occur in x̆TJTŬx̆:

rTIr =
a2 + b2

2
+

a2 − b2

2
cos 2ϕ, rTJr = 0, (87)

rTKr =
a2 − b2

2
+

a2 + b2

2
cos 2ϕ, rTLr = ab sin 2ϕ. (88)
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However, only the sinusoidal terms need be considered, as the constant terms are removed by
subtracting the phase average. One finds that the deviation of the angular velocity from its
phase-averaged value is

v̆(ϕ, t)− 〈v̆〉 = ab
{

η2 − 1
2η

dθ

dt
cos 2ϕ− 1

2
d ln η

dt
sin 2ϕ

}
(89)

after making use of Equation (72), and noting a cancellation of all terms involving the orbital frequency
d
dt φ(t). Squaring this expression and applying the phase average again then leads to

〈
(v̆− 〈v̆〉)2

〉
=

1
2

a2b2

{(
η2 − 1

2η

)2 (dθ

dt

)2
+

(
1
2

d ln η

dt

)2
}

(90)

and transforming from the aspect ratio η to the linearity λ, we obtain the form given in Equation (85).

5. The Extended Stokes’ Theorem

In this section, it is shown that the principle of ellipse/flow equivalence can be understood as an
extended version of Stokes’ theorem that expresses relationships between contour and area integrals
involving all four terms in the velocity gradient matrix.

5.1. Moment Matrices

The physical properties encountered in the previous section can be compactly combined into two
matrix-valued quantities, defined as

M(t) ≡ 1
AR

∫∫
R

xxTdA, N(t) ≡ 1
2π

∮
C

u dxT (91)

which, with R again denoting the elliptical ring and C its boundary, can be expressed as

M(t) =
1

2π

∫ π

−π
x̆x̆Tdϕ =

〈
x̆x̆T
〉

, N(t) =
1

2π

∫ π

−π
ŭ

∂x̆T

∂ϕ
dϕ =

〈
ŭ

∂

∂ϕ
x̆T
〉

(92)

in terms of phase averages. The moment matrix M(t) for the elliptical annulus is found to be given by

M(t) =
1
2

R(θ)DRT(θ), D =

[
a2 0
0 b2

]
(93)

and as such is recognized as one half of the inverse of the ellipse matrix E(t) encountered earlier,
M = 1

2 E−1. Under the action of advection by a linear flow u = Ux, the ellipse matrix E and moment
matrix M evolve according to the formally different, but equivalent, laws:

dE
dt

= −EU−UTE,
dM
dt

= UM + MUT . (94)

The first of these was derived earlier in Section 3.4, while second is readily found by differentiating
EM = 1

2 I, then substituting the first equation; see p. 152 of [21] or p. 5 of [23], who derive these two
equations in the context of an ellipsoid in a three-dimensional linear flow.

The second matrix, N(t), will be referred to as the circulation matrix, as we recognize from its
definition in Equation (91) that tr{N} = Π. Because N(t) is defined as a contour integral, not a spatial
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average, it is a property of the elliptical boundary rather than of the annulus. The circulation matrix for
the ellipse is found to be

N(t) =
〈

ŭ
∂

∂ϕ
x̆T
〉

= ŬR(θ)
〈

rsT
〉

RT(θ) =
1
2

abŬJT (95)

where r = [a cos ϕ b sin ϕ]T and s = [−a sin ϕ b cos ϕ]T as defined previously, and where the final
equality follows from observing that

〈
rsT〉 = 1

2 abJT . Substituting from the definition of Ŭ(t) given in
Equation (39) leads to

N(t) =
1
2

abR(θ)

{(
dθ

dt
+

η2 + 1
2η

dφ

dt

)
I− d ln ρ

dt
J +

η2 − 1
2η

dφ

dt
K +

1
2

d ln η

dt
L
}

RT(θ). (96)

In the next section, it is established that there is an extension of the classical Stokes’ theorem that lets
us evaluate the matrix N(t) as an area integral, rather than as a contour integral. Using that result, we
find that N can be alternately expressed as

N(t) =
1
4

abR(θ) [ζI− δJ− γ sin 2α̃K + γ cos 2α̃L]RT(θ) (97)

and equating coefficients of the IJKL matrices between the previous two equations, we obtain
Equation (41) for the correspondence between the velocity gradient quantities and the ellipse rates of
change. Thus the principle of ellipse/flow equivalence is actually a manifestation of Stokes’ theorem,
for the particular case of a linear flow and with the region of integration chosen as an ellipse.

5.2. An Extended Stokes’ Theorem

The generalized form of Stokes’ theorem relates the contour integral of a quantity to a spatial
integral of a derivative of that quantity. Its two most common manifestations are the Kelvin–Stokes or
classical Stokes’ theorem, relating vorticity to circulation, and the divergence theorem, relating outward
flux to divergence. Similar integral relations may equally well be created for the two components of
the strain field, although the author is not familiar with any literature in which these appear.

In this section, a version of Stokes’ theorem will be proven that accommodates all four components
of the velocity gradient matrix. Let A be some area in a flat two-dimensional domain bounded by the
curve C, with dx being a differential element of C. We form the 2× 2 matrix u dxT as the outer product
of the velocity and the differential element of the boundary. This matrix is expanded as

u dxT =
1
2

{(
uTdx

)
I +

(
uTJ dx

)
J +

(
uTK dx

)
K +

(
uTL dx

)
L
}

(98)

which follows from Equation (12), substituting u dxT for U and then noting that the coefficients of the
IJKL matrices take the forms tr

{
u dxTGT} = uTG dx. We can choose to think of these coefficients

either as inner products between dx and modified versions of the flow field u, or as inner products
between u and modified versions of the differential element dx.

There is a simple relationship between the contour integral of the matrix u dxT and the spatial
integral of the velocity gradient matrix:∮

C
u dxT =

∫∫
A

(
∇uT

)T
JTdA. (99)
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This relationship, which will be called the extended Stokes’ theorem, expands to give, using Equation (16)
for the right-hand side,

∮
C

u dxT =
1
2

{(∮
C

uTdx
)

I +
(∮

C
uTJdx

)
J +

(∮
C

uTK dx
)

K +

(∮
C

uTL dx
)

L
}

=
1
2

∫∫
A

{(
∇TJTu

)
I−

(
∇Tu

)
J−

(
∇TLu

)
K +

(
∇TKu

)
L
}

dA

=
1
2

∫∫
A
{ζI− δJ− σK + νL}dA ≡ 1

2
A
{

ζI− δJ− σK + νL
}

(100)

which is seen to encapsulate four separate integral relations into its four matrix components. The four
overlined quantities on the right-hand side—ζ, δ, σ, and ν—are defined to be spatial averages, with A
in this expression indicating the area of the corresponding region. Separating the four distinct relations
in Equation (100) for greater clarity, we find that the I, J, K, and L components give, respectively,

(I)
∮

C
uTdx =

∫∫
A
∇TJTu dA = Aζ

∮
C

u · dx =
∫∫

A
k · (∇× u) dA = Aζ (101)

(J)
∮

C
uTJTdx =

∫∫
A
∇Tu dA = Aδ,

∮
C

u · (dx× k) =
∫∫

A
∇ · u dA = Aδ (102)

(K)−
∮

C
uTK dx =

∫∫
A
∇TLu dA = Aσ, −

∮
C

Ku · dx =
∫∫

A
∇ · Lu dA = Aσ (103)

(L)
∮

C
uTL dx =

∫∫
A
∇TKu dA = Aν,

∮
C

Lu · dx =
∫∫

A
∇ ·Ku dA = Aν (104)

which are written with our matrix-based notation on the left and standard notation on the right.
The first two relationships are recognized as the classical Stokes’ theorem and the divergence theorem,
respectively; note that the J and K relations appear in Equation (100) multiplied by negative one
from the way they are written here. For the divergence theorem, note that Ju · dx = uTJTdx =

u · JTx = u · (dx× k), where the vector dx× k ≡ dn is recognized as the exterior normal, and also that
∇× (Ju) = ∇TJTJu = ∇Tu = ∇ · u. The third and fourth relations, which we may call the reflectional
Stokes’ theorems, link the spatially-integrated strain to integrals of velocity along the region boundary.

The four components of the extended Stokes’ theorem link the IJKL-modified inner products,
appearing in Equation (98), with the IJKL-modified gradient operators that were seen in Equation (16)
to occur in

(
∇uT)T . Observe, however, that the matrices appearing in the contours integrals and those

appearing in the area integrals are not the same; this is due to the JT matrix in Equation (99). This leads
in particular to an unfamiliar appearance for the strain relations, the first of which involves −K on the
left and L on the right, and the second of which involves L on the left and K on the right.

An alternate presentation of the extended Stokes’ theorem is, with dn ≡ JTdx = dx× k being the
exterior normal, ∮

C
u dnT =

∫∫
A

(
∇uT

)T
dA. (105)

This has the advantage that the matrices appearing on the contour integral side and the area integral
side are the same. However, one may view u dxT as a more natural quantity than u dnT , as the
differential element dx appears to describe the curve C more directly than does the differential normal
dn. Moreover, the matrix u dxT places the vorticity, the most important physical quantity for most fluid
dynamics problems, in the most prominent location, i.e., along the trace, while u dnT has divergence
along the trace. Normally, one writes the circulation integral in terms of the differential element dx and
the contour integral for the divergence theorem in terms of the differential normal dn; here, however,
one must make a choice. As the two versions of the extended Stokes’ theorem contain equivalent
information, which version one uses can be determined by personal preference.
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The extended Stokes’ theorem may be proven as follows. For some area A bounded by a contour C,
the classical Stokes’ theorem states that the circulation is equal to the enclosed vorticity:∮

C
uTdx =

∫∫
A
∇TJTu dA,

∮
C

u · dx =
∫∫

A
k · (∇× u) dA. (106)

This relationship appears as the trace of Equation (100), due to the fact that tr
{

u dxT} = uTdx while

tr
{(

∇uT)T JT
}
= ∇TJTu = ∂

∂x v− ∂
∂y u. However, in this theorem, one can replace u with a modified

version, say GTu for some matrix G, to obtain the modified version∮
C

uTGdx =
∫∫

A
∇TJTGTu dA,

∮
C

GTu · dx =
∫∫

A
k ·
(
∇×GTu

)
dA. (107)

Now, multiplying both sides of Equation (99) from the right by GT and taking the trace, one obtains
Equation (107); this is so because tr

{
u dxTGT} = uTG dx on the left-hand side of Equation (99),

while on the right-hand side, we have tr
{(

∇uT)T JTGT
}
= ∇TJTGTu, as may be readily verified.

Thus, choosing GT successively as each of I, J, K, and L in Equation (107) proves the corresponding
component equation within Equation (100), which are then gathered together into Equation (99).

Returning to the case of an ellipse in a linear flow, we find that the circulation matrix N becomes,
on account of the extended Stokes’ theorem,

2πN =
∮

C
u dxT =

∫ π

−π
u

∂

∂ϕ
xTdϕ =

∫∫
A

(
∇uT

)T
JTdA =

1
2

πab {ζI− δJ− σK + νL} (108)

recovering the earlier expression for N given in Equation (97) and establishing that ellipse/flow
equivalence is a manifestation of Stokes’ theorem.

It should be emphasized that the extended Stokes’ theorem is not fundamentally new; it is simply
the classical Stokes’ theorem, or equivalently the divergence theorem, applied to four different vector
fields, the original velocity field together with three modified versions thereof. However, in the same
sense, the divergence theorem is not fundamentally different from Stokes’ theorem either. What is new
here is the extension or generalization of those results to establish a fundamental relationship between
a velocity field and all four components of its gradient, united into one simple equation.

6. Discussion

This paper has examined basic properties of a passive fluid ellipse advected by a linear flow.
While this problem would seem to be elementary, it turns out to be surprisingly rich. By approaching
the problem with a parametric model for the motion of a fluid particle in an ellipse, together with the
use of a new matrix-based notation, several new results have been obtained.

The main result is the equivalence between the Lagrangian perspective of an evolving ellipse
and the Eulerian perspective of a velocity field that depends linearly on the spatial coordinates. This
result, termed ellipse/flow equivalence, has important implications for our understanding of how spatial
information may be extracted from Lagrangian measurements, for example, in the study of coherent
eddies. In particular, it is natural to ask under what conditions ellipses diagnosed by Lagrangian
analysis methods such as that of Lilly et al. [36] correspond to physical structures in the flow and,
therefore, encode in principle information about all local gradients of the velocity field. Moreover,
it establishes that an evolving ellipse is fundamental to a Lagrangian perspective in the same way that
a linear approximation to a velocity field is fundamental to an Eulerian perspective.

Ellipse/flow equivalence was shown to be a manifestation of a more general result, called the
extended Stokes’ theorem. This theorem shows how the contour integral of a simple matrix-valued
quantity along the boundary of any region recovers the spatial average of all four elements of the
velocity gradient tensor within that region. This result incorporates integral relations regarding the
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two components of the strain field, relations that are rarely encountered. A main strength of this result
is its notational compactness, combining four different relationships into one simple equation.

Expressions for integrated physical properties of a fluid ellipse were derived using the parametric
model. A new expression was given for the average kinetic energy along an elliptical ring, which was
shown to have a partitioning into three distinct portions, associated respectively with the circulation,
the rate of change of the moment of inertia, and finally a simple quantity, which is nevertheless rarely
encountered, the variance of the angular velocity. This kinematic result was shown to have an intriguing
similarity to a dynamical equation for the evolution of the moment of inertia in shallow-water elliptical
vortices [26,30,31], a comparison that calls for a more thorough investigation.

There are several obvious directions for future research. The first is to use these results to
investigate solutions for Kida-type vortices, as well as for shallow-water elliptical vortices, work that is
currently underway. These results are also relevant to ellipsoidal vortices in three dimensions [20–23].
In those studies, a vortex is embedded in a two-dimensional linear flow that is allowed to vary with
height. As such, the ellipsoid evolves in a layer-wise fashion, with the ellipse within each layer advected
by a different linear flow; therefore, this work applies here just as it does to two-dimensional vortices.
Furthermore, the results herein point to a deeper and more direct connection between Lagrangian
and Eulerian properties than may commonly be appreciated. Understanding that connection more
fully may help to extract more information from Lagrangian data, and may also be relevant to active
research in the field of Lagrangian coherent structures (e.g., [41–43]).

Herein, we have assumed that the parametric model accurately describes the evolution of an initial
elliptical ring of fluid parcels. If the flow is linear, this will be the case. However, if the flow is not
linear, there is no reason to suppose that a material curve that begins as an ellipse will remain as an
ellipse. One would expect non-linear aspects of the velocity field (that is, higher-order terms in a local
Taylor series expansion) to introduce perturbations to the elliptical shape. The parametric model
would therefore require modifications in situations in which the flow is not linear.

An interesting direction would be to quantify the extent to which non-linear aspects of the velocity
field correspond to deviations from elliptical evolution. That is, if a flow is approximated as being
locally linear, to what extent can the nearby Lagrangian behavior be approximated as being such
that ellipses remain ellipses? The extended Stokes’ theorem points to a correspondence between
these two approximations, in the following sense. Take the contour integral over an elliptical region
within which the flow is not necessarily linear. From the extended Stokes’ theorem, one obtains
average values of the divergence, vorticity, and strain terms. Naturally, one conjectures that the initially
elliptical boundary will evolve primarily as if it were within a linear flow characterized by the average
values of the enclosed non-linear flow, together with a perturbation to this elliptical evolution from
higher-order components of the flow field. Formalizing this approximation would provide a still better
understanding of the local connection between the Eulerian and Lagrangian perspectives.

At the same time, it would be valuable to investigate the ellipse/flow correspondence for cases
in which the ellipse is not an actual material ellipse, but rather the moments of a distribution. It is
commonplace to attempt to describe an oceanic tracer distribution, or a vorticity distribution in
a numerical model, in terms of its area moments. This essentially describes a distribution as if it were
an ellipse, leading to a matrix similar to what is called the ‘moment matrix’ here. To what extent
will that distribution also evolve as if it were an ellipse, with its evolution dictated by the average
properties of the enclosed velocity field? Again, one would expect, based on the extended Stokes’
theorem, that there may be a close connection between the evolution of an actual ellipse and that of a
‘moment ellipse’, and that there may be an avenue for examining this connection in a rigorous manner.

For applications of stirring and mixing, it may be that the higher-order perturbations are actually of
greater interest, because these may dominate deformation of the boundary and therefore the potential
for small-scale exchange and diffusion. Because evolution under a locally linear, time-dependent flow
maps an ellipse into another ellipse, it is reversible and therefore cannot by itself account for mixing.
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For such problems, this work may be helpful in isolating the smoothly-deforming, reversible portion
of the flow from those processes driving higher-order deformation.

Finally, as pointed out by an anonymous reviewer, the classical Stokes’ theorem applies to any
curved surface in three dimensions, whereas the assumption of a flat domain has been used in the
derivation of the extended Stokes’ theorem. It seems intuitive that the extended Stokes’ theorem would
have an extension to curved surfaces, for which one would need to correctly account for metric terms
arising from the curvature. Such a result could have applications in planetary fluid dynamics, which
are often idealized as two-dimensional or shallow-water flows on the surface of a sphere.
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Appendix A. The Kinematic Boundary Condition

Here we verify that the kinematic condition for the motion of an elliptical boundary, Equation (43),
recovers the first three ellipse evolution equations presented in Equation (42). Whereas Neu [2] and
Ide and Wiggins [3] write out the entries of the matrix emerging from the derivative of the boundary
condition in terms of the rates of change of the ellipse parameters, we will show how the ellipse rates
of change express themselves in the IJKL basis decomposition of that matrix.

The matrix equation derived in the main text from the kinematic boundary condition for the
evolution of E, Equation (45), can be rearranged to become

−RT(θ)

{
E−1 dE

dt

}
R(θ) = RT(θ)

{
E−1UTE + U

}
R(θ) (A1)

which, for later convenience, has been rotated into the reference frame of the ellipse. With the ellipse
matrix E(t) defined as E(t) ≡ R(θ)D−1RT(θ) as in Equation (26), its derivative is found to be

dE
dt

=
(

JE + EJT
) dθ

dt
+ R(θ)

dD−1

dt
RT(θ),

dD−1

dt
= −D−1

[
I

d ln ρ2

dt
+ K

d ln η

dt

]
(A2)

making use of a = ρ
√

η and b = ρ/
√

η for the latter equation. Using the last two equations,
the left-hand side of Equation (A1) then becomes

−RT(θ)

{
E−1 dE

dt

}
R(θ) = I

d ln ρ2

dt
−
[
DJD−1 − J

] dθ

dt
+ K

d ln η

dt
. (A3)

Next, we rewrite the flow matrix U(t) by expressing it in a reference frame aligned with the
instantaneous ellipse orientation θ, leading to

U(t) =
1
2

R(θ) [δI + ζJ + γ cos 2α̃K + γ sin 2α̃L]RT(θ) (A4)

where α̃ ≡ α− θ as in the main text. The right-hand side of Equation (A1) is then

RT(θ)
{

E−1UTE + U
}

R(θ) = 1
2 D [δI− ζJ + γ cos 2α̃K + γ sin 2α̃L]D−1 + RT(θ)UR(θ)

= δI− 1
2
[
DJD−1 − J

]
ζ + 1

2
[
DKD−1 + K

]
γ cos 2α̃ + 1

2
[
DLD−1 + L

]
γ sin 2α̃

(A5)
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and to simplify this, we may note the following, readily verifiable identities:

DJD−1 − J =
η2 − 1

2η2

[
(J− L) η2 − (J + L)

]
(A6)

DKD−1 + K = 2K (A7)

DLD−1 + L = −η2 + 1
2η2

[
(J− L) η2 − (J + L)

]
. (A8)

The first and third of these combine to eliminate
[
DLD−1 + L

]
in favor of

[
DJD−1 − J

]
, leading to

RT(θ)
{

E−1UTE + U
}

R(θ) = δI− 1
2

[
DJD−1 − J

] (
ζ +

η2 + 1
η2 − 1

γ sin 2α̃

)
+ Kγ cos 2α̃ (A9)

and equating the coefficients of the I, K and
[
DJD−1 − J

]
matrices between Equations (A3) and (A9),

we recover the first three evolution equations given in Equation (42). Note that as
[
DJD−1 − J

]
contributes only to the J and L components, it does not interfere with the I or K components
and therefore need not be written out explicitly. This also means that the J and L components
contain equivalent information, resulting in only three equations, rather than four.
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