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Abstract: The theoretical background for entropy generation and exergy destruction in the flow of
fluids is reviewed briefly. New experimental results are presented on the quantification of exergy
destruction rates in flows of emulsions (oil droplets dispersed in a polymeric liquid), suspensions
(solid particles dispersed in a polymeric liquid), and blends of emulsions and suspensions (dispersions
of oil droplets and solid particles in a polymeric liquid). A new model is proposed to estimate the
exergy destruction rate, and hence power loss, in the flow of multi-phase dispersions of oil droplets,
solid particles, and polymeric matrix.

Keywords: exergy; entropy; irreversibility; multiphase; dispersion; emulsion; suspension; rheology;
non-Newtonian; thermodynamics

1. Introduction

Two-phase dispersions (such as oil/water emulsions and solid particles/liquid suspensions)
and three-phase dispersions (such as blends of oil droplets, solid particles, and aqueous phase) are
encountered in a number of industrial applications [1–10]. A major portion of all the commercial
products produced in a modern industrial society are multi-phase dispersions. For example, many food,
cosmetic, household, pharmaceutical, and other products of industrial significance, are manufactured
and sold in the form of multi-phase mixtures. The manufacturing of these multi-phase products
involves mixing, pumping, and flow of multi-phase dispersions in pipelines and other process
equipment. Each of these operations are irreversible in nature, and consequently, exergy destruction
and power loss occurs in these operations. In order to minimize the power loss and to improve the
thermodynamic efficiency of the process, it is important to quantify the irreversibilities in terms of
exergy destruction [11,12]. It should be noted that the irreversibility in flow of multi-phase dispersions
is due to frictional effects, that is, viscous dissipation of mechanical energy. The viscous dissipation
effect in the flow of dispersions is responsible for entropy generation and exergy destruction.

In this paper, new experimental results are presented on rheology and exergy destruction rates
in flows of two-phase and three-phase dispersions. The systems investigated are emulsions of oil
droplets dispersed in a polymeric liquid, suspensions of solid particles (glass beads) in a polymeric
liquid, and three-phase blends of oil droplets, solid particles, and polymeric liquid. The theoretical
background necessary for the analysis of exergy destruction in flow of fluids is also reviewed.

This work is in continuation of our earlier studies on the production of entropy and destruction
of exergy in flow of dispersions [13–16]. Our earlier studies were restricted to only two-phase oil and
water emulsions, where the matrix phase was a Newtonian fluid. This is the first study on the second
law analysis (entropy production and exergy destruction) of multi-phase dispersions of droplets and
particles suspended in a non-Newtonian polymeric matrix.
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2. Theoretical Background

2.1. Entropy Balance in Fluid Flow

Entropy is an equilibrium property. It can be expressed as a function of other state variables (such
as temperature, volume, pressure, internal energy, etc.), provided that the system is in thermodynamic
equilibrium. The state variables do not vary with space and time when the system is in thermodynamic
equilibrium. There are no gradients or driving forces present in the system that cause the changes.
The fluid under flow condition, however, is not in thermodynamic equilibrium. In general, there are
present velocity gradients, temperature gradients, and concentration gradients (if two or more chemical
components are present) in fluid, causing transports of momentum, heat, and mass, respectively from
one region to another.

Although the bulk fluid under flow conditions is not in thermodynamic equilibrium, it is often
necessary to assume that local equilibrium exists everywhere in the fluid. In other words, it is assumed
that all the variables defined in equilibrium are defined locally under non-equilibrium condition as
well. This is the key hypothesis of classical irreversible thermodynamics (CIT). The CIT assumes
that there exists local equilibrium everywhere in the system, and that the state variables vary with
space and time. One way to imagine local equilibrium in a system is to subdivide the system into a
large number of tiny cells. The size of the cells is selected such that it is large enough for microscopic
fluctuations to be negligible, but small enough for local equilibrium to be realized within the individual
cells [17]. Although equilibrium exists locally within each cell, the state of equilibrium varies from one
cell to another, so that mass, momentum, and energy exchanges are permitted between neighboring
cells. Furthermore, the state of equilibrium within a given cell is allowed to vary with time.

Consider an arbitrary volume V, fixed in space and bounded by surface A. The amount of entropy
in that portion of the fluid instantaneously occupying the volume V is given by the integral

S =
∫
V

ρsdV (1)

where S is the total entropy of the system (fluid) instantaneously occupying the volume V, ρ is the local
density of the fluid which may vary from one position to another, and s is the local specific entropy of
the fluid. The rate of increase of entropy of the system is the sum of two terms: one term that represents
the rate at which entropy enters the system through its bounding surface A due to presence of some
gradient, and the other term that represents the rate of production of entropy within the system. Thus,
entropy balance over the fluid instantaneously occupying the volume V could be expressed as

DS
Dt

=
D
Dt

∫
V

ρsdV = −
∫
A

n̂ ·
→
J sdA +

∫
V

.
σsdV (2)

where n̂ is a unit vector normal to the bounding surface of the system pointing outwardly,
→
J s is the

entropy flux at the bounding surface of the system (
→
J s is the rate at which entropy enters the system

through the bounding surface per unit area),
.
σs is the rate of entropy production within the system per

unit volume, and D/Dt represents material or substantial time derivative.
Using the Reynolds transport theorem, it can be readily shown that

D
Dt

∫
V

ρsdV =
∫
V

∂

∂t
(ρs)dV +

{

A

n̂ · ρ→v sdA (3)

where
→
v is the fluid velocity vector. Converting the second integral on the right-hand side of

Equation (3) to a volume integral with the help of the Gauss divergence theorem, one can re-write
Equation (3) as
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D
Dt

∫
V

ρsdV =
∫
V

[
∂

∂t
(ρs) +∇ · ρ→v s

]
dV (4)

Combining Equations (2) and (4) gives

∫
V

[
∂

∂t
(ρs) +∇ · ρ→v s

]
dV = −

∫
A

n̂ ·
→
J sdA +

∫
V

.
σsdV (5)

Converting the first integral on the right-hand side of Equation (5) to a volume integral with the
help of the Gauss divergence theorem and rearranging gives

∫
V

[
∂

∂t
(ρs) +∇ · ρ→ν s +∇ ·

→
J s −

.
σs

]
dV = 0 (6)

Because this equation holds for an arbitrary volume V, the integrand must be zero. Thus,

∂

∂t
(ρs) +∇ · ρ→v s = −∇ ·

→
J s +

.
σs (7)

Using the following continuity (mass balance) equation along with the definition of the substantial
derivative given below,

∂ρ

∂t
+∇ · ρ→v = 0 (8)

D
Dt

=
∂

∂t
+
→
v · ∇ (9)

it can be readily shown that
∂

∂t
(ρs) +∇ · ρ→v s = ρ

Ds
Dt

(10)

Combining Equations (7) and (10), it follows that

ρ
Ds
Dt

= −∇ ·
→
J s +

.
σs (11)

According to the second law of thermodynamics,
.
σs ≥ 0, and therefore,

.
σs = ρ

Ds
Dt

+∇ ·
→
J s ≥ 0 (12)

The “greater than” sign in the above relation is valid for real (irreversible) processes and the
“equal to” sign is valid for reversible processes.

2.2. Momentum and Energy Balance Equations for Fluid Flow

According to Newton’s second law of motion, the time rate of change of linear momentum
of a fluid instantaneously occupying an arbitrary volume, V, fixed in space, is equal to the sum of
forces acting upon the fluid occupying V. This principle leads to the following equation of motion for
fluids [18]:

ρ
D
→
v

Dt
= ∇ · π + ρ

→
g (13)

where
→
g is acceleration due to gravity and π is total stress tensor that can be expressed as

π = −pδ + τ (14)
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where p is the local thermodynamic pressure, δ is the unit tensor, and τ is the extra or deviatoric stress
tensor (often referred to as viscous stress tensor). Upon substitution of the expression for π from
Equation (14) into Equation (13), the equation of motion becomes:

ρ
D
→
v

Dt
= −∇p +∇ · τ + ρ

→
g (15)

Applying the first law of thermodynamics (energy balance) to fluid flow, the following total
energy equation for fluids can be obtained:

ρ
De
Dt

= −∇ ·→q ′′ +∇ · π ·→v = −∇ ·→q ′′ −∇ · p→v +∇ · τ ·→v (16)

where e is the specific total energy of the fluid and
→
q
′′

is the heat flux.
The mechanical energy equation can be obtained from the equation of motion (Equation (15)) by

taking the scalar (dot) product between Equation (15) and the fluid velocity vector as

ρ
D
Dt

(
v2/2

)
= −→v · ∇p +

→
v · ∇ · τ + ρ

→
v ·→g (17)

where v is the magnitude of the velocity vector
→
v . Upon subtraction of the mechanical energy equation,

Equation (17), from the total energy equation, Equation (16), the following internal energy equation
(also referred to as thermal energy equation) is obtained:

ρ
Du
Dt

= −∇ ·→q ′′ − p∇ ·→v + τ : ∇→v (18)

where u is the specific internal energy of the fluid.

2.3. Application of the Gibbs Equation to Fluid Flow

For a single-component fluid (pure substance), the relationship between entropy and other state
variables is expressed by the Gibbs equation given below:

ds = T−1du + pT−1dυ (19)

where T is the absolute temperature, and υ is the specific volume of fluid. Strictly speaking, this
relationship is valid for a system in thermodynamic equilibrium. It can be used to calculate entropy
changes when the system traverses from one equilibrium state to another. However, in classical
irreversible thermodynamics (CIT), it is assumed that the local state variables are related to each other
by the same equations of state as in equilibrium. Thus, the Gibbs relation (Equation (19)) can be applied
to systems locally, even though the systems are in non-equilibrium state.

The Gibbs relation, Equation (19), could be re-written in terms of rates as follows:

Ds
Dt

= T−1 Du
Dt

+ pT−1 Dυ

Dt
(20)

At any given point in the flow field, this equation describes the time rate of change of specific
entropy of a fluid element instantaneously located at that point. Combining Equations (18) and (20),
the following relation is obtained:

ρ
Ds
Dt

= T−1[−∇ ·→q ′′ − p∇ ·→v + τ : ∇→v ] + ρpT−1 Dυ

Dt
(21)

Using the second law of thermodynamics (Equation (12)) and Equation (21), it follows that
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.
σs = T−1[−∇ ·→q ′′ − p∇ ·→v + τ : ∇→v ] + ρpT−1 Dυ

Dt
+∇ ·

→
J s ≥ 0 (22)

Using the continuity equation (Equation (8)), Equation (22) further simplifies to

.
σs = T−1[−∇ ·→q ′′ + τ : ∇→v ] +∇ ·

→
J s ≥ 0 (23)

In a single-component fluid (pure substance), the entropy flux
→
J s is due to temperature gradient

in the fluid. The entropy flux
→
J s is related to the heat flux

→
q
′′

as follows

→
J s =

q′′

T
(24)

Using Equations (23) and (24), the rate of entropy production per unit volume of fluid can be
expressed as

.
σs =

→
q
′′ · ∇(T−1) + T−1(τ : ∇→v ) ≥ 0 (25)

Thus, the rate of entropy production in flow of single-component fluids (or multi-component
fluids of uniform composition, without any concentration gradients) is due to two mechanisms:
irreversible heat transfer caused by temperature gradient, and viscous dissipation of mechanical
energy caused by velocity gradient. In the absence of temperature gradients in the fluid, Equation (25)
reduces to

.
σs = T−1(τ : ∇→v ) ≥ 0 (26)

2.4. Exergy Destruction in Fluid Flow

The exergy of a fluid per unit mass (ψ) is given as

ψ = (h− ho)− To(s− so) +
ν2

2
+ gz (27)

where h is the specific enthalpy of fluid, ho and so are specific enthalpy and specific entropy of fluid in
the dead state, respectively, To is the absolute temperature of the environment (surroundings), ν is the
magnitude of velocity vector of fluid, g is the magnitude of acceleration due to gravity, and z is the
elevation of the fluid stream with respect to the dead state. In this expression of exergy, it is assumed
that the chemical composition of the fluid is constant.

Using the Gouy–Stodola theorem of thermodynamics [12], one can calculate exergy destruction
in flow of fluids as

.
ψD = To

.
σs = ToT−1(τ : ∇→v ) ≥ 0 (28)

where
.
ψD is the rate of exergy destruction per unit volume during the flow of fluid.

3. Experimental Work

3.1. Experimental Set Up

In this work, the entropy generation, and hence exergy destruction, in torsional flow of multiphase
dispersions is investigated experimentally using a parallel plate geometry. The multiphase dispersions
consisted of oil droplets and solid particles (glass beads) dispersed in a continuum of polymeric
matrix fluid.

Figure 1 shows a schematic diagram of the parallel plate geometry used in the experiments.
The fluid (multiphase dispersion) is placed in the gap between the parallel plates. The upper plate is
rotated at an angular velocity Ω, and the bottom plate is kept stationary. The torque required to rotate
the upper plate at Ω is measured.
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Figure 1. Schematic diagram of a parallel plate geometry.

In order to calculate the rate of exergy destruction or the rate of entropy production, the term
τ : ∇→v is needed. In cylindrical coordinates, τ : ∇→v is given as [19]

τ : ∇→ν = τrr

(
∂νr
∂r

)
+ τrθ

(
1
r

∂νr
∂θ −

νθ
r

)
+ τrz

(
∂νr
∂z

)
+ τθ r

(
∂νθ
∂r

)
+ τθθ

(
1
r

∂νθ
∂θ + νr

r

)
+τθz

(
∂νθ
∂z

)
+ τz r

(
∂νz
∂r

)
+ τzθ

(
1
r

∂νz
∂θ

)
+ τzz

(
∂νz
∂z

) (29)

The velocity distribution in the gap between the parallel plates of Figure 1 is given as [19]

νθ = Ω
rz
H

(30)

where r is the radial position coordinate from the origin fixed at the center of the bottom plate, and z is
the vertical position coordinate from the origin. Using the above velocity distribution, Equation (29)
reduces to

τ : ∇→ν = τθ z

(
Ωr
H

)
(31)

The shear rate (
.
γ) at any radial location is given as [19,20]

.
γ = Ω

r
H

(32)

Thus,
τ : ∇→ν = τzθ

.
γ (33)

Thus, the rate of energy dissipation in frictional heating of the fluid per unit volume of fluid,
that is, the term τ : ∇→v , at any location in the gap between the parallel plates can be determined

from the knowledge of shear stress τzθ and shear rate
.
γ at that location. Note that the term τ : ∇→v is

always positive, and that the stress tensor τ is symmetric. In the present work, Bohlin controlled-stress
rheometer (Bohlin CS-50) was used with a parallel plate geometry. The parallel plate geometry
consisted of a stainless steel upper plate (diameter 25 mm) and an aluminum lower plate (diameter
40 mm). The gap width between the plates was kept at 1 mm. The rheological measurements were
carried out at 25 ◦C. From the measurement of the torque required to rotate the upper plate at Ω,
the shear stress τzθ is determined at the edge of the upper plate, where the shear rate is given as
.
γ = ΩR/H [19,20].
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3.2. Preparation of Multiphase Dispersions

The multiphase dispersions of droplets and particles in a polymeric liquid were prepared
by blending emulsions and suspensions gently in different proportions, while keeping the total
volume fraction of the dispersed phase (φ) the same. The emulsions and suspensions were prepared
individually with the same dispersion medium (aqueous polymer–surfactant solution) using a
Gifford–Wood homogenizer. The dispersion medium of emulsions and suspensions and their blends
consisted of 1.02 wt % polymer and 2 wt % surfactant dispersed in deionized water. The polymer
used was Hercules cellulose gum (type 7H4F PM), which is purified sodium carboxymethyl cellulose.
The molecular weight of the polymer was 7 × 105 approximately. The cellulose gum is an anionic
water-soluble polymer used in a number of applications in various industries. The surfactant used was
Triton X-100, which is a non-ionic water-soluble surfactant supplied by Union Carbide. The oil used
in the preparation of emulsions was odorless kerosene supplied by Fisher Scientific. The viscosity of
the oil was 1.5 mPa·s at 25 ◦C. The emulsions prepared were of oil-in-water (O/W) type consisting
of oil droplets dispersed in the aqueous polymer–surfactant dispersion medium. The glass beads
used in the preparation of suspensions were supplied by Flex-O-Lite Inc. (Crestwood, MO, USA).
The Sauter mean diameters of glass beads and oil droplets were 92 µm and 3.45 µm, respectively.
The typical photomicrographs of glass beads and oil droplets are shown in Figure 2. The emulsions
and suspensions, and their blends, were prepared with four different volume fractions of the dispersed
phase: φ = 0.176, φ = 0.289, φ = 0.377, and φ = 0.449.
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4. Results and Discussion

4.1. Two-Phase Dispersions

4.1.1. Rheology of Two-Phase Dispersions

Figure 3 shows the shear stress versus shear rate plots of suspensions of spherical glass beads
in polymeric matrix. The experimental data for suspensions with different concentrations of solid
particles follow a power-law behavior described by the following equation:

τ = K
.
γ

n (34)
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where K is the consistency index and n is the flow behavior index. According to the power-law model,
Equation (34), the shear stress versus shear rate plots are linear on a log–log scale, with slopes of n.
Table 1 summarizes the statistical information regarding the power-law fit of shear stress versus shear
rate data for suspensions of glass beads in a polymeric matrix.
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Table 1. Goodness of fit of power-law model and confidence intervals for the power-law parameters
related to suspensions of glass beads in a polymeric matrix.

Volume
Percent of

Glass Particles

Regression
Correlation

Coefficient, R2

Flow Behavior
Index, n

Consistency
Index, K

(Units of Pa.sn)

95%
Confidence
Interval of n

95%
Confidence

Interval of K

0 0.9863 0.540 6.05 [0.507, 0.573] [5.45, 6.73]
17.6 0.9884 0.557 9.76 [0.527, 0.587] [8.94, 10.58]
28.9 0.9866 0.518 16.91 [0.479, 0.558] [15.10, 18.94]
37.7 0.9908 0.524 26.85 [0.488, 0.560] [24.61, 29.26]
44.9 0.9913 0.468 55.09 [0.452, 0.484] [53.36, 56.88]

Interestingly, the suspension plots with different volume fractions of the dispersed phase (glass
beads) are nearly parallel to each other, indicating that the flow behavior index n does not change
appreciably with the introduction of particles in the polymeric matrix. The average flow behavior
index is 0.52, indicating that the suspensions and the matrix phase are pseudoplastic non-Newtonian
fluids. However, the suspensions become more viscous with the increase in the particle concentration,
as reflected in the increase in the K value (upward shift in the shear stress versus shear rate plots).

Figure 4 shows the shear stress versus shear rate data for O/W emulsions with different volume
concentrations of oil droplets. The same data are also shown as viscosity versus shear rate in Figure 5.
Emulsions of oil droplets behave very differently from the suspensions of rigid particles. The emulsion
data for different oil concentrations closely matches the matrix behavior. Thus, the addition of oil
droplets to the polymeric matrix does not cause any appreciable change in the consistency (K value)
and flow behavior (n value). This is not surprising as emulsion droplets are deformable in nature, and
undergo internal circulation when subjected to shear flow. The increase in flow resistance due to the
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introduction of interfaces in emulsions is balanced by the low viscosity of dispersed phase (oil) as
compared with the matrix fluid. All the emulsion data could be described by the power-law model
(Equation (34)) with K = 6.84 Pa.sn and n = 0.52. The 95% confidence intervals of K and n are as follows
[6.53, 7.16] and [0.506, 0.533], respectively.
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Figure 6 compares the power-law parameters of suspensions and emulsions. The figure reveals
the following points: (a) the flow behavior index n of emulsions and suspensions does not differ from
that of the polymeric matrix; (b) the consistency index K of emulsions is nearly constant with respect
to oil concentration variation; (c) the consistency index of suspensions rises sharply with the increase
in the particle concentration; and (d) the suspensions are much more viscous than the emulsions as
reflected in the values of the consistency index.
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4.1.2. Exergy Destruction in Flow of Two-Phase Dispersions

From Equations (28) and (33), it follows that the rate of exergy destruction per unit volume of the
fluid is given as

.
ψD = τ

.
γ (35)

Note that in our experiments T = To = 298.15 K. Using the shear stress versus shear rate data
obtained from the rheometer, the rate of exergy destruction per unit volume of the fluid was calculated
as a function of shear rate from Equation (35).

Figure 7 shows the plots of
.
ψD versus

.
γ for suspensions of glass particles in polymeric matrix.

The plots of exergy destruction rate for suspensions with different volume fractions of the dispersed
phase (glass beads) are nearly parallel to each other, as expected from the shear stress versus shear rate
plots of Figure 3. Note that Equation (35) in conjunction with the power law model yields

.
ψD = K

.
γ

n+1 (36)

Thus, the slope of the exergy destruction rate plot is simply (n + 1). The average value of the
slopes of different lines shown in Figure 7 is 1.52 (average value of n was 0.52, as noted earlier). At any
given shear rate, the exergy destruction rate increases with the increase in the particle concentration.

The
.
ψD versus

.
γ data for emulsions of oil droplets in polymeric matrix are shown in Figure 8

for different concentrations of oil droplets. The data for the emulsions and matrix overlap with each
other indicating that for a given shear rate, the exergy destruction rate is independent of the oil
droplet concentration. This is because the consistency of emulsions, and hence viscous dissipation of
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mechanical energy in emulsions, does not vary to any appreciable extent with the increase in the oil
concentration at any given shear rate.Fluids 2018, 3, x FOR PEER REVIEW  11 of 18 
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4.2. Multi-Phase Dispersions of Oil and Water in a Polymeric Matrix

4.2.1. Exergy Destruction in Multi-Phase Dispersions

As noted earlier, the multiphase dispersions of droplets and particles in a polymeric liquid were
prepared by blending emulsions and suspensions gently in different proportions, while keeping
the total volume fraction of the dispersed phase (φ) the same. Figures 9 and 10 show the typical
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exergy destruction behavior of blends of emulsions and suspensions at given total volume fractions
of dispersed phase. The total volume percent of the dispersed phase (oil droplets + glass beads) is
37.7% in Figure 9, and 44.9% in Figure 10. Upon dilution of the suspension with emulsion of the
same dispersed-phase concentration, the exergy destruction rate decreases. The data for blends, with
different proportions of emulsion in the blends, fall in between the lines for pure suspension and pure
emulsion. However, the variation in the exergy destruction rate with the increase in the proportion
of emulsion, keeping total volume fraction fixed, is not linear. This can be seen more clearly in
Figures 11 and 12, where the exergy destruction rate is plotted as a function of emulsion content of the
blend of emulsion and suspension, keeping the total volume fraction of the dispersed phase (glass
particles and oil droplets) and shear rate fixed. The experimental data show negative deviation from
the linear behavior.
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fraction of dispersed phase of 0.377.

The exergy destruction rate as a function of the total volume fraction of the dispersed phase (glass
beads + oil droplets) is plotted in Figure 13 for different contents of emulsion in the blend of emulsion
and suspension, at a fixed shear rate of 10 s−1. As the suspension is diluted with an emulsion having
the same volume fraction of the dispersed phase, the exergy destruction rate decreases. In other words,
the substitution of solid particles with oil droplets, keeping the total volume fraction of dispersed
phase constant, results in a decrease in the exergy destruction rate. This is not unexpected, as the
emulsion is relatively much less viscous than the suspension at the same value of the dispersed phase
concentration. Also note that for a given content of emulsion in the blend, the exergy destruction rate
of the blend increases with the increase in the total volume fraction of the dispersed phase.
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4.2.2. Model for Calculation of Exergy Destruction in Multi-Phase Dispersions

The droplets of emulsion are much smaller in size as compared with the solid particles (glass
beads) of suspension. The Sauter mean diameter of solid particles is approximately 27 times larger than
that of emulsion droplets. Furthermore, the rheology of emulsions is not significantly different than that
of the polymer matrix alone. Thus, it is reasonable to treat oil droplets and polymeric matrix together
as an effective matrix for the solid particles. This is shown schematically in Figure 14. The three-phase
system of oil droplets/glass beads/polymeric matrix is equivalent to a two-phase system consisting
of solid particles dispersed in an effective matrix of polymeric liquid and oil droplets. Based on this
reasoning, it is expected that the relative exergy destruction in three-phase blends is a unique function
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of the concentration (volume fraction) of solid particles alone, where the relative exergy destruction is
defined as a ratio of the exergy destruction rate in three-phase blend to exergy destruction rate in the
effective matrix composed of oil droplets and polymeric liquid (that is, the emulsion phase).
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Figure 14. Three-phase blend of oil droplets, solid particles, and polymeric liquid can be treated as
equivalent to a two-phase system consisting of solid particles dispersed in an effective matrix composed
of oil droplets and polymeric liquid, that is, the emulsion phase.

The experimental data of Figure 13 are re-plotted in Figure 15 as relative exergy destruction rate
versus volume fraction of solid (glass beads) particles in the blend. Clearly all the data of three-phase
blends with different emulsion contents fall on the same curve. Also note that the pure suspension
data, with polymeric liquid as the matrix, also fall on the same curve. The relative exergy destruction
data can be described by the following model, shown as solid curve in Figure 15:

.
ψD,r =

.
ψD,blend

.
ψD,emulsion

=

(
1− φS

φm

)−2.5φm

(37)

where φS is the volume fraction of solid particles in the blend, and φm is the maximum packing volume
fraction of solid particles where jamming of suspension takes place. In the model prediction curve
shown in Figure 15, φm is taken to be 0.64. At φm, the suspension viscosity, and consequently, the
relative exergy destruction rate, is expected to diverge. The value of φm where jamming of particles,
and hence, divergence of suspension viscosity takes place, is still an open question in the literature.
However, a large number of experimental studies [21–26] available on the viscosity of suspensions of
spherical particles have used φm of 0.64 to successfully correlate the relative viscosity versus particle
concentration data. It should be noted that φm of 0.64 corresponds to random close packing of uniform
spheres. As discussed in Section 4.1.2, the exergy destruction rate in emulsions can be expressed as

.
ψD,emulsion = Ke

.
γ

n+1 (38)

where Ke is the consistency index of emulsion and n is the flow behavior index of emulsion.
From Equations (37) and (38), it follows that

.
ψD,blend = Ke

.
γ

n+1
(

1− φS
φm

)−2.5φm

(39)
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This equation can be used to calculate the exergy destruction rate in three-phase blends of this
study at any given shear rate, and volume fraction of solid particles in the blend. Note that for the
system under consideration, Ke = 6.84 Pa.sn; n = 0.52 ; and φm = 0.64.
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5. Practical Implications of This Work

The rate of exergy destruction is a measure of level of irreversibility in the process. According
to the Gouy–Stodola theorem, the power loss in a process due to irreversibilities is equal to the rate
of exergy destruction in the process. Thus, the mechanical energy dissipation rate (power loss) due
to frictional effects in fluid flow can be quantified in terms of the exergy destruction rate. For a finite
control volume, the global rate of exergy destruction can be calculated once the local rate of exergy
destruction is known, using the following integration:

.
ΨD,CV =

∫
CV

.
ψD,localdV (40)

where
.

ΨD,CV is the global or overall rate of exergy destruction in the finite control volume, and
.
ψD,local

is the local rate of exergy destruction per unit volume of the fluid. In the present work, the local rate of
exergy destruction in three-phase blends is given by Equation (39). Thus,

.
ΨD,CV =

∫
CV

Ke
.
γ

n+1
(

1− φS
φm

)−2.5φm
dV

= Ke

(
1− φS

φm

)−2.5φm ∫
CV

.
γ

n+1dV
(41)

The constant terms are taken outside the integral. As the shear rate may vary with position in the
control volume, it is kept inside the integral. From the knowledge of the velocity field, the local shear
rate and its variation inside the control volume can be calculated. Hence, the global or overall rate of
exergy destruction can be determined for a given finite control volume using Equation (41).
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6. Conclusions

Based on the experimental work and analysis, the following conclusions can be made:

(a) The addition of oil droplets to a polymeric matrix does not alter the consistency index and flow
behavior index of the system to any appreciable extent.

(b) The addition of solid particles to a polymeric matrix does not alter the flow behavior index
significantly, but the consistency index increases sharply with the increase in the particle
concentration.

(c) The exergy destruction rate in flow of emulsions of oil droplets and polymeric matrix does not
change to any appreciable extent with the increase in the concentration of oil droplets.

(d) The exergy destruction rate in flow of suspensions of solid particles and polymeric matrix
increases with the increase in particle concentration.

(e) Three-phase blends of oil droplets, solid particles, and polymeric matrix, can be modelled as
two-phase blends of solid particles dispersed in an effective matrix composed of oil droplets and
polymeric matrix.

(f) A model is proposed to estimate the exergy destruction rates in flow of three-phase dispersions
of oil droplets, solid particles, and polymeric matrix.
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