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Abstract: CO2 sequestration in saline aquifers and hydrocarbon reservoirs is a promising strategy to
reduce CO2 concentration in the atmosphere and/or enhance hydrocarbon production. Change in
subsurface conditions of pressure and temperature and CO2 state is likely to have a significant
impact on capillary and viscous forces, which, in turn, will have a considerable influence on the
injection, migration, displacement, and storage capacity and integrity of CO2 processes. In this
study, an experimental investigation has been performed to explore the impact of fluid pressure,
temperature, and injection rate, as a function of CO2 phase, on the dynamic pressure evolution
and the oil recovery performance of CO2 during oil displacement in a Berea sandstone core sample.
The results reveal a considerable impact of the fluid pressure, temperature, and injection rate on
the differential pressure profile, cumulative produced volumes, endpoint CO2 relative permeability,
and oil recovery; the trend and the size of the changes depend on the CO2 phase as well as the
pressure range for gaseous CO2–oil displacement. The residual oil saturation was in the range of
around 0.44–0.7; liquid CO2 gave the lowest, and low-fluid-pressure gaseous CO2 gave the highest.
The endpoint CO2 relative permeability was in the range of about 0.015–0.657; supercritical CO2

gave the highest, and low-pressure gaseous CO2 gave the lowest. As for increasing fluid pressure,
the results indicate that viscous forces were dominant in subcritical CO2 displacements, while
capillary forces were dominant in supercritical CO2 displacements. As temperature and CO2 injection
rates increase, the viscous forces become more dominant than capillary forces.

Keywords: CO2 sequestration; CO2-EOR; CO2 phase; differential pressure; capillary forces;
viscous forces

1. Introduction

The amounts of oil produced during primary and secondary oil recoveries are around one-third
of the original oil in place. The growing world energy demand, decline in the exploration of new
oil reservoirs, and maturity of oil fields that produce most of the hydrocarbons are motivating oil
companies to develop new enhanced oil recovery techniques [1]. Generally, enhanced oil recovery
techniques are categorized into three main methods: thermal, chemical, and gas recovery methods.
Thermal recovery methods have their limitations; they are not suitable for heavy oil reservoirs if the
formations are thin (<10 m) or too deep (>1000 m) due to heat loss to surrounding formations [2]; they
are also not suitable for reservoirs with low permeability and low oil saturation [3]. Chemical flooding
methods are a good candidate, but they are generally not implemented because of their high cost.

Recently, application of CO2 for CO2 enhanced oil recovery (CO2-EOR) has gained much
momentum as it can be used to enhance oil recovery with the added benefit of reducing CO2 emissions
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into the atmosphere [4] via CO2 sequestration processes [5]. It is estimated that about 80% of oil
reservoirs around the world are good candidates for CO2-EOR processes [6]. The injection of CO2 can
increase oil recovery through a number of different processes, firstly by displacing oil that is left behind
during water displacement. Moreover, it can enhance oil recovery gradually over years through a
number of different mechanisms, including oil swelling, viscosity reduction, capillary impact reduction
via CO2–oil interfacial tension (IFT) reduction [7], oil extraction [2,8–10], permeability alteration [11],
mass transfer through diffusion and dispersion, and miscibility [12]. Oil viscosity can drop significantly
by about 90% of its original value upon mixing with the injected CO2 [13,14], increasing its mobility.
Oil swelling due to CO2 dissolution can enhance oil recovery by expelling oil out of the matrix and
increasing oil volume above the residual saturation, leading more oil to flow. Reduction in residual oil
saturation can also be achieved by oil extraction upon exposing the oil to a sufficient flow of CO2-rich
gas [7]. However, the evaporation of light components of the oil into CO2 may cause oil to increase in
density [7]. It is worth mentioning that the extraction mechanism is inversely related to oil density.
Thus, the heavy crude oils are less influenced by this mechanism in comparison to light crude oils [2].
The contribution of each aforementioned mechanism to oil recovery is controlled by the pressure,
temperature, and CO2 solubility.

The injected CO2 can displace oils through miscible, near miscible, and immiscible CO2

flooding depending on the pressure and temperature conditions and oil reservoir characteristics [15].
Miscible CO2 processes are the most attractive scenario for oil recovery due to their high displacement
efficiency [2]. The dissolution of CO2 in the oil phase can substantially improve oil recovery [2]
by avoiding the adverse effect of gas–oil interfacial tension, i.e., eliminating trapping forces [2,14].
However, miscible displacements can only be achieved when the reservoir pressure is higher than
the minimum miscibility pressure (MMP), which is not the case for the mature oil fields due to
the depletion of energy and the low permeability formations due to the high-differential pressure
drop between injector and producer wells [15]. The MMP depends on CO2 purity, temperature,
and oil composition [16]; the MMP decreases when the reservoir pressure increases or the reservoir
temperature decreases [13]; Yellig and Metcalf observed that increasing CO2 temperature by 1 ◦F
(≈0.56 ◦C) over a temperature range from 95 to 192 ◦F (35–89 ◦C) caused the MMP to increase by
approximately 15 psi (1 bar) [13]. Near miscible flooding refers to the process of not having a full
miscibility and occurs when CO2 is injected at a pressure slightly below the MMP [15,17]. The main
displacement mechanisms are oil swelling, oil viscosity reduction, oil extraction, and IFT reduction
that leads to favourable conditions [17,18]. On the other hand, immiscible CO2 flooding is a promising
and a field-proven method [19] that occurs when reservoir pressure is less than the MMP. Maximum oil
recovery can be achieved with this method when the injected CO2 is sufficient to saturate the oil and
water. The key factor that governs the success of the CO2 immiscible displacement is the availability
of enough resources of CO2 at low cost [19]. This technique can be used for low-pressure reservoirs
(≤1000 m depth) and thin and heavy oil reservoirs (10–25◦ API and >3000 m depth [20] where
thermal recovery processes are generally unsuitable [3,20]), with moderately viscous oils [8], and for
some shallow-light oil reservoirs where the pressure needed for miscibility cannot be achieved [19].
This technique can also be deployed with gravity-assisted injection into the top of a reservoir [21].

Due to great variations in subsurface conditions of pressure and temperature, the injected CO2

can exist in a gaseous state in warm coal seams (e.g., Alabama Black Warrior Basin: ∼70 bar, 22.85 ◦C),
a liquid state in permafrosts and marine sediments (e.g., West Sak reservoir: ∼110–125 bar, 23.9 ◦C),
and a supercritical state in deep hot rocks (e.g., Weyburn oil field: ∼140 bar, 49.85 ◦C) [22–27], as shown
in Figure 1. An example where the injected CO2 can exist in both gaseous and liquid CO2 state is the
mature oil fields of the Illinois Basin (USA) that have underground reservoir temperature close to the
critical temperature (31.1 ◦C) [27].
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mechanisms associated with the injection of liquid CO2 and CO2-foam in heavy crude oil [2], (c) the 
relation between oil recovery and viscosity [42], (d) the effect of viscous forces, diffusive, and 
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were conducted under more than one CO2 state. Sankur [44] performed reservoir condition-gaseous 
displacements of oil by CO2 and refinery gas for the Wilmington Tar zone CO2 injection project. 
Their results showed that the injection of CO2 enhances the recovery to a greater extent than that of 
the refinery gas for continuous or low water alternating gas (WAG). Moradi [45] conducted a 
numerical simulation to investigate the impact of liquid CO2 injection on oil recovery. Liquid CO2 
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study the performance of CO2 miscible flooding in tight oil reservoirs. The average oil recovery 

Figure 1. The pressure and temperature ranges at which saline aquifers are found underground
adopted from Saraji et al. [24].

The displacement of oil by CO2 is controlled by viscous, capillary, gravitational, diffusive,
and inertial forces [20]. Some of these forces can be neglected based on the rock-fluid properties
and the configuration of the experimental model [20]. Changing CO2 phase is likely to have a strong
influence on capillary forces and viscous forces through its impact on the IFT between CO2 and
oil [28,29], the mass transfer at the interface, the wettability of the solid surface [30,31], and the
viscosity and density of CO2 [32,33]. Thus, the change in CO2 state is likely to have a strong impact
on the differential pressure across the sample, entry pressure, CO2 injectivity, CO2 displacement rate,
CO2 plume migration, CO2 storage capacity, and CO2 integrity as well as the efficiency of enhanced
hydrocarbon recovery [22,34,35]. The CO2 injectivity can help in determining the amount, pace,
and period of CO2 injection in subsurface formations [36]. The injectivity and performance of CO2

flood are highly influenced by underground conditions of pressure and temperature as well properties
of the rock and fluids in host formations [2,8,35,37]. Therefore, it is of great importance to investigate
the impact of CO2 phase as well as the operational conditions on CO2 behaviour during its injection
into an oil-saturated porous system.

Since CO2 has been in use for several decades, extensive laboratory studies [38,39], numerical
simulations, and field applications of CO2 flooding have been conducted in various light, medium, [40]
and heavy oil reservoirs [41]. A review of current literature showed that CO2–oil displacements have
been conducted to investigate different topics such as (a) oil displacement efficiency and mechanisms,
especially in relation to phase behaviour [10], (b) oil displacement efficiency and mechanisms associated
with the injection of liquid CO2 and CO2-foam in heavy crude oil [2], (c) the relation between oil
recovery and viscosity [42], (d) the effect of viscous forces, diffusive, and gravitational forces on the
CO2 slug (20% hydrocarbon pore volume (HCPV)) for heavy oil recovery processes [20], and (e) the
phenomena of reservoir blockage and oil production drop [43].

However, the literature review also revealed that CO2–oil displacements were conducted either
under gaseous, liquid, or supercritical CO2 conditions with the exception of a few experiments that
were conducted under more than one CO2 state. Sankur [44] performed reservoir condition-gaseous
displacements of oil by CO2 and refinery gas for the Wilmington Tar zone CO2 injection project.
Their results showed that the injection of CO2 enhances the recovery to a greater extent than that
of the refinery gas for continuous or low water alternating gas (WAG). Moradi [45] conducted a
numerical simulation to investigate the impact of liquid CO2 injection on oil recovery. Liquid CO2

injection yielded 14.79% oil recovery, which was higher than water flooding and natural depletion
by around 3.9% and 8.59%, respectively. Arshad [46] performed supercritical CO2 displacements to
study the performance of CO2 miscible flooding in tight oil reservoirs. The average oil recovery ranged
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from 87 to 96%. Chung [47] performed supercritical CO2 core flooding experiments to examine the
technical feasibility of the use of CO2 flooding to enhance the recovery of viscous oil under immiscible
displacements conditions. They found that CO2 injection resulted in a higher recovery (66% of original
oil in place (OOIP)) in comparison to waterflood (44% of OOIP). In addition, the CO2-alternate-brine
injection significantly delayed the breakthrough of gas, produced slightly more oil and was a more
efficient in CO2 utilization than continuous injection [47]. Huang [10] performed continuous immiscible
supercritical CO2 flooding, at 90 ◦F (32.2 ◦C) and 1250 psi (86.2 bar), into Texas oil (36◦ API) saturated
watered-out cores to determine the oil recovery efficiency and improve the understanding of oil
recovery mechanisms, especially in relation to phase behaviour. The data showed an oil recovery
of 69% and 66% of residual oil from a 6 ft Berea and 20 ft sand-packed core sample, respectively.
They attributed the oil recovery mainly to the CO2 swelling and CO2 extraction of oil.

On the other hand, Wang [40] carried out both gaseous and liquid CO2 oil recovery displacements
under immiscible and miscible conditions to examine oil recovery and permeability reduction in a
tight sandstone reservoir. They noticed that during immiscible flooding, the oil recovery was higher
when the fluid pressure was between the onset pressure of asphaltene precipitation and the MMP;
nonetheless, the effective permeability reduction of the oil was greater at higher fluid pressure. Cao [48]
conducted both immiscible and miscible CO2 floodings into light crude oil saturated tight sandstone
core plugs at gaseous and supercritical CO2 conditions. The oil recovery increased monotonically
as pressure increased during the immiscible flooding. Liu [5] conducted gaseous and supercritical
near-miscible CO2 floodings to examine the displacement front characteristics. The supercritical CO2

displacements gave higher oil recovery in comparison to gaseous displacements. Lashkarbolooki [49]
and Bayat [50] investigated the recovery efficiency during the injection of supercritical CO2 and
supercritical N2 into a live crude oil. The core-flood experiments showed that supercritical CO2

injection, compared with supercritical N2 injection (8.7% of OOIP), could result in a higher recovery
(15.8% of OOIP).

Despite the extensive research on CO2–oil displacements, the analysis of the pressure data in
core flooding has been widely overlooked despite its high importance [51]. To the best of the authors’
knowledge, there is no study that has been conducted to investigate the effect of CO2 phase on the
dynamic pressure evolution and the oil recovery performance during CO2–oil drainage core floodings.
In this study, drainage experiments were performed by injecting pure CO2 into an oil-saturated Berea
sandstone core sample to investigate the effect of fluid pressure, temperature, and injection rate on the
pressure and production behaviour under gaseous, liquid, and supercritical CO2 conditions, especially
focusing on the differential pressure profile, cumulative produced volumes, residual oil saturation,
and endpoint effective and relative permeabilities of CO2. The results of this study will provide deep
insights into the impact of CO2 phase on the injectivity, displacement efficiency, storage capacity,
and integrity of CO2 flooding.

2. Materials and Experimental Setup

A Berea sandstone core sample with a diameter of 2.54 cm and a length of 7.62 cm was used for
the unsteady state dynamic drainage experiments (CO2–oil displacements). The average porosity and
absolute water permeability of the core sample were about 20% and 28.9 mD, respectively. To calculate
the core sample pore volume and porosity, the weight difference between the dry and the wet core
sample was used. To calculate the absolute water permeability, the steady differential pressure and the
water injection rate was used. To alter the core sample wettability to an oil-wet state, the core sample
was aged inside the oil at 80 ◦C for more than eight months.

2.1. Experimental Setup

The schematic of the experimental core flooding setup for this study is shown in Figure 2.
It consists of two high-pressure syringe pumps (Teledyne ISCO, Lincoln, NE, USA) with flow rates
ranging from 0.0001 to 25 mL/min for the CO2 injection and the CO2 and oil collection, a water bath



Fluids 2018, 3, 23 5 of 30

(Grant Instruments GD 100) with a precision of ±0.02 ◦C for controlling the temperature, a core holder,
a pressure gauge fixed on the core holder for measuring the confining pressure, an overburden pressure
pump (CM400) for obtaining the confining pressure, a vacuum pump (Edwards, Model E2M5) for
removing the trapped gas, two pressure transducers (UNIK, 0–100 bar with a precision of ±0.1% of
BSL) for recording the pressure at the inlet and outlet side of the core sample, and LabVIEW software
(2015, National Instruments Cooperation, London, UK) that was built for acquiring the data from the
pressure transducers.
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2.2. CO2–Oil Displacement Procedure

The three phases (G, L, and Sc) CO2–oil drainage displacements were performed on an oil-wet
Berea sandstone core sample with the following steps:

(1) The core sample was wrapped into a shrinkable Teflon tube followed by a rubber sleeve and then
fixed inside the core holder. The core holder was mounted horizontally inside the water bath.

(2) To prevent fluid bypassing, a confining pressure of about 135 bar, which is always higher than the
pore pressure, was applied to the core with the confining pump. The temperature was controlled
by the heater.

(3) The vacuum pump was connected to the system to remove the trapped gas.
(4) To fully saturate the core sample with oil, about 40–60 pore volumes (PVs) of oil were injected at

a high-differential pressure of 80–90 bar.
(5) To obtain heat equilibrium, the water bath temperature was set to the required temperature and

the system was left overnight for the temperature to stabilize.
(6) Prior to each flooding experiment, a constant pressure was applied to the entire system using the

syringe pump at each end.
(7) After reaching the experimental pressure, the system was left for about 20 min to ensure that

temperature stabilization had been achieved throughout the system.
(8) The mode of the injected pump (ISCO pump CO2) was changed from a constant pressure mode

to a constant flow rate mode to inject CO2 into the core at a constant injection rate to displace the
saturated oil. The injected CO2 volumes and the collected volumes were recorded every 30 s.

(9) During the experiment, the inlet and outlet pressure transducer readings were recorded every 6 s,
using the LabVIEW software, in order to calculate the differential pressure across the core sample.

(10) When the experiment was finished, the produced volumes were measured to calculate the
residual oil saturation with mass balance. Later, the weight of the core sample was measured
using a Sartorius weighing scale with a resolution of 0.0001 g to confirm the residual oil
saturation measurements.
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3. Results and Discussion

To gain a deep understanding of the effect of CO2 phase on the two-phase flow characteristics
of CO2–oil drainage displacements, the inlet and outlet pressure, the outlet CO2 and oil flow
rates, the differential pressure profile, the cumulative injected and cumulative produced volumes,
the residual oil saturation, and the endpoint effective and relative permeabilities of CO2 were measured
and analysed.

The differential pressure profile was obtained by taking the difference between the readings
of the pressure transducers at the inlet and outlet sides of the core sample. The most influential
forces that govern the differential pressure of a drainage displacement during horizontal injection
are the capillary forces and the viscous forces [20]. The capillary forces are governed by the CO2–oil
interfacial tension, contact angle, and pore diameter and geometry [52–55] as well as the saturation
of the displacing and displaced fluids. The capillary forces arise from the presence of the interface
between the immiscible fluids [53]; they are responsible for the entrapment of one phase by another
during immiscible displacements in porous media [54,56]; and they govern the multiphase flow
in low permeability rocks and fractured reservoirs [57]. The viscous forces are controlled by the
viscosity contrast between the displacing and displaced fluids, injection rate of the injected fluid,
the permeability and length of the invaded porous media.

In the literature, various formulations have been suggested to account for the impact of
the capillary and viscous forces on the differential pressure profile. Recently, Espinoza and
Santamarina [22] proposed the following equation to account for these forces:

∆P = PCO2 − POil = 4
σCO2−Oil cosθ

d
+ v

32 L
d2

(
lCO2 µCO2 + lOilµOil

L

)
(1)

where ∆P is the differential pressure across the core sample (Pa). PCO2 and POil are the CO2 and bulk
oil pressures, respectively. σCO2–Oil is the CO2–oil interfacial tension (mN/m), d (m) is the diameter
of the largest effective pore [58–61], L (m) is the length of the core sample, l (m) is the length of the
CO2 or oil phase inside the core sample, v (m/s) is the fluid velocity in the pores, and µ (Pa·s) is the
viscosity of the fluids. The first and second terms on the right-hand side of Equation (1) refers to the
Young–Laplace equation and Poiseuille’s equation, respectively [22,62]. The Young–Laplace equation
can be used to determine the critical pressure point, which is the excess pressure required for the
displacing fluid to invade the core sample for the first time. The non-wetting fluid cannot invade the
core sample unless its differential pressure exceeds the critical pressure point [61].

In addition to the Young–Laplace equation, a number of analytical capillary pressure formulations
have been used to explain laboratory results [63,64]. Among them, the Leverett’s J-function has been
intensively used to convert all the capillary pressure (Pc) data, as a function of the invaded fluid
saturation, to a universal curve.

J
(
S∗

g
)
=

Pc

σcosθ

√
k
∅ = a

(
S∗

g
)−b (2)

where

S∗
g =

Sg − Sgr

1 − Sgr
(3)

where S*
g is the effective or normalized gas saturation. a and b are coefficients.

√
k
∅ is the pore

geometry factor or (hydraulic radius), which has a similar dimension to the pore radius and is used to
correlate petrophysical properties such as relative permeability and saturation.

In this study, the quasi-differential pressure refers to the differential pressure measured at the end
of the displacement experiment. The corresponding time represents the time required to achieve the
maximum-differential pressure at the start of the experiment. The data are categorized into three main
sections. The first main section deals with the impact of fluid pressure, experimental temperature,
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and injection rate on the differential pressure profile as a function of CO2 phase. The second and
the third sections deal with their impact on the production data profiles including the endpoint
effective and relative permeabilities of CO2 and the residual oil saturation as a function of CO2

phase, respectively.

3.1. The Pressure Behavior of CO2–Oil Displacements as a Function of CO2 Phase

This section deals with the impact of fluid pressure, experimental temperature, and injection rate
on the differential pressure profile of gaseous, liquid, and supercritical CO2 displacements.

3.1.1. The Effect of Fluid Pressure on the Differential Pressure Profile of CO2–Oil Displacements

Figures 3–6 present the impact of increasing fluid pressure on the differential pressure profile
of gaseous, liquid, and supercritical CO2–oil drainage displacements. During the experiments,
the experimental temperature and CO2 fluid rate were held constant. The data from Figures 3–6
reveal three important observations (A, B, and C) that can be identified as follows:

(A) For all fluid pressures, the differential pressure profile is characterized by a high increase
followed ba sharp decline; the rate and the magnitude of the increase in the differential pressure
profile are dependent on the CO2 phase as well as the fluid pressure for gaseous CO2 displacements.
The slope of the reduction in the differential pressure profile decreased over time and is dependent
on the CO2 phase and the fluid pressure for the gaseous CO2 displacements. Based on the shape
of the differential pressure profile, the data is discussed and analysed in two groups. The first
group deals with the low-fluid-pressure GCO2–oil displacements (fluid pressure ≤60 bar), while the
second group deals with the high-fluid-pressure GCO2–oil displacements, LCO2–oil displacements,
and ScCO2–oil displacements.

(A.1) Figure 3 shows the differential pressure profile of the low-fluid-pressure GCO2

displacements. The differential pressure profile is characterized by a slow but significant increase until
its maximum value is reached, after around 1.2 pore volumes (PV) of CO2 was injected; then, it is
characterized by a slow and slight reduction over time; with the slope of the reduction decreasing
over time. Increasing fluid pressure reduced the magnitude of the entry pressure and its associated
time before CO2 breakthrough. For illustration, as the fluid pressure increased from 40 to 60 bar,
the entry pressure decreased from 1.196 to 0.883 bar and the associated time reduced from around
12.5 to 7.2 min.

The initial increase in the differential pressure profile was to overcome the fluid entry pressure.
The reduction in the entry pressure and the associated time as fluid pressure increases can be related
to the reduction in the capillary forces due to the reduction in the interfacial tension, as shown in
Figure 7, and the increase in the contact angle, respectively. The slow and slight reduction in the
differential pressure over time might indicate a slight and slow change in the effective permeability
of CO2 and oil due to the low-efficiency displacement of the CO2–oil experiments performed at
low-pressure conditions. The low-efficiency displacement might arise from high capillary forces due
to high interfacial tension [65] and high mobility contrast at these conditions.

(A.2) Figures 4–6 presents the differential pressure profile of the high-fluid-pressure gaseous,
liquid, and supercritical CO2–oil displacements. For all displacements, the differential pressure profile
is characterized by a high increase until its maximum-differential pressure value is reached, after
the injection of around 0.08–0.155 PVs of CO2, and a steep reduction is then experienced until its
quasi-differential pressure value is achieved, after around 0.08–0.155 PVs. The maximum-differential
pressure varied with the phase of the injected CO2. Liquid CO2 phase gave the highest magnitudes,
while gaseous CO2 phase gave the lowest. The highest maximum differential pressure profile of the
LCO2 displacements might be attributed to the fact that liquid CO2 phase is less miscible with oil [2]
in comparison to gaseous and supercritical CO2 phases. The result of less miscibility of the liquid
CO2 was a lower reduction in the CO2–oil interfacial tension and the oil viscosity when the liquid
CO2 phase was injected; thereby, the highest differential pressure was obtained. Nonetheless, it might
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be proposed that the highest differential pressure of the LCO2–oil displacements was because LCO2

displacements were conducted at 20 ◦C, while GCO2 and ScCO2 displacements were performed at
33 ◦C; thus, the large temperature difference, 13 ◦C, which caused a sharp reduction in oil viscosity,
could be responsible for the difference in the differential pressure. However, we believe this is not the
reason because the LCO2 displacements performed at 29 ◦C, as shown in Figure 11, also show much
higher differential pressure profile than that of GCO2 and ScCO2 displacements performed at 33 ◦C,
despite the smaller temperature difference between these, which was only 4 ◦C.

The observed high increase in the differential pressure after the injection of CO2 into the core
sample can be associated with the increase in pore pressure due to CO2 invasion [66]. According to
Equations (1) and (2), the reduction in the differential pressure can be related to both capillary forces
and viscous forces. The reduction in the viscous forces can be related to the combined effect of the
relative permeability of CO2 and oil and the replacement of a highly viscous fluid (CO2) with a less
viscous one (CO2) [66,67]. The reduction in the capillary forces can be associated with the number of
pores that were opened to flow by CO2, as CO2 flooding continued after its breakthrough. This agrees
with the findings of Kwelle [68], who found that the resistance of capillary pore to two-phase flow
(CO2 and water) is much greater than its resistance to single-phase flow (water or CO2). Thus, as the
number of the opened pores increased, the two-phase flow is significantly reduced, and the pore
resistance to the injection of CO2 flow is significantly reduced. Therefore, the differential pressure is
sharply reduced [68].

(B) The differential pressure profile of the low-fluid-pressure GCO2 displacement is characterized
by oscillations that increased with increased fluid pressure; for illustration, as the fluid pressure
increased from 40 to 60 bar, the oscillations increased from one to three times over the duration of
the experiment, as shown in Figure 3. The appearance of the oscillations in the differential pressure
profile can be related to the impact of the capillary forces at the trailing end of the CO2–oil slug [67].
According to Nutt, the impact of capillary forces at the trailing end of a CO2–oil slug is dependent
on whether a non-wetting or a wetting fluid is flooded. If a non-wetting fluid (e.g., CO2) is flooded,
then the capillary forces will oppose the applied viscous forces. Later, with the diminishing of the
viscous pressure drop across the core sample due to the progress of oil depletion, it is possible to
reach a point at which the flow of CO2 through non-depleted capillaries is prevented by the capillary
forces [67]. Hildenbrand et al. observed that the reduction in the excess pressure in the non-wetting
phase after gas breakthrough will ultimately lead to a re-imbibition process for the wetting phase [69].
This re-imbibition process begins with the smallest pores and continues progressively to the larger
pores. Consequently, it causes a progressive reduction in the relative permeability of the non-wetting
phase because of the successive loss of the interconnected flow paths. In the end, when the last
interconnected flow path for the non-wetting phase is closed, the permeability of the non-wetting
phase will drop to zero [69]. Figure 8 exhibits this re-imbibition process.

The observed oscillations, in Figure 3 as an example, indicate that as the interconnected flow paths
for the non-wetting phase (CO2) were closed, the inlet pressure and hence the differential pressure
increased due to the continuous injection of CO2. Once the differential pressure became high enough
to overcome the capillary forces, the blocked pores opened to flow, leading to the quick release of
accumulated CO2, which, in turn, caused a quick reduction in the differential pressure.

However, increasing the frequency of differential pressure oscillations can be attributed to the
reduction in the capillary forces and the increase in gas density. An increasing gas density and
decreasing capillary forces mean less time was needed to reach a pressure value that is sufficient to
overcome the capillary forces, thus pushing the oil that blocks production out of the sample and in
turn increasing the differential pressure oscillation frequency.

Nonetheless, since the CO2–oil displacements can be strongly affected by the capillary end effect
and viscous instabilities [35], the appearance of the oscillations might be related to the impact of the
capillary retention due to the discontinuity of the capillary pressure [51]. The capillary end effect
arises at both the inlet and outlet faces of the core sample, but its severances increase at the outlet face.
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Müller [35] concluded that the impact of the capillary end effect can never be entirely prevented but
can be corrected for it. Rapoport and Leas [70] proposed a scaling coefficient for the minimization
of the capillary retention and viscous instabilities effects. According to their formula, the capillary
retention can be minimized if the scaling coefficient is greater than one:

Luµ ≥ 1 (4)

(C) Increasing fluid pressure led to an increase in the differential pressure profile for the
displacements conducted under subcritical conditions but caused a reduction for the displacements
performed at supercritical conditions; the magnitude of the change depends on the CO2 phase
and the pressure range for GCO2 displacements. The highest percentage increase occurred in the
low-fluid-pressure GCO2 displacements, whilst the lowest occurred in LCO2 displacements.

For low-fluid-pressure GCO2 displacements, increasing the fluid pressure from 40 to 60 bar
caused the maximum-differential pressure to increase by around 93% (from 1.196 to 2.306 bar), and the
differential pressure at the end of the displacements to rise by around 155% (from 0.411 to 1.049 bar),
as shown in Figure 3. However, for high-fluid-pressure GCO2 displacements, increasing the pressure
from 65 to 70 bar caused the maximum-differential pressure to increase by around 6% (from 3.248 to
3.438 bar), the quasi-differential pressure to rise by about 30% (from 0.536 to 0.699 bar), and the
corresponding time to increase by around 27% (from 1.5 to 1.9 min). For LCO2 displacements, as the
pressure increased from 70 to 90 bar, the maximum-differential pressure increased by around 49% (from
3.533 to 5.26 bar), the quasi-differential pressure increased by 37.5% (from 0.272 to 0.374 bar), and the
corresponding time increased by around 6.7% from (3 to 3.2 min). On the other hand, increasing
pressure from 75 to 90 bar for ScCO2 displacements caused the maximum-differential pressure to
decrease by 33.3% (from 2.345 to 1.564 bar), the quasi-differential pressure to decline by around 56%
(from 0.134 to 0.059 bar), and the corresponding time to decrease by 36% (from 2.5 to 1.6 min).

According to Equation (1), the observed increase in the differential pressure of the subcritical
displacements as fluid pressure increased means that the impact of viscous forces was higher than that
of capillary forces. The observed increase in the differential pressure is a combination of the increase in
the viscous forces and the reduction in the capillary forces. The increase in the fluid pressure leads to
an increase in the viscous forces owing to the increase in the CO2 and oil viscosities and the injection
rate inside the core sample due to the expansion effect. The reduction in the capillary forces with
increasing fluid pressure is because of the reduction in the CO2–oil interfacial tension [65] and the
increase in contact angle [71] due to increasing CO2 solubility [41,72,73]. The highest increase in the
differential pressure as pressure increases can be related mainly to the increase in the CO2 injection rate
due to expansion. The gas expansion occurs due to the temperature difference between the inside and
outside of the water bath [74,75]. The change in density leads to a change in the injection rate inside
the core sample. The density ratio (dr) [74] has been used to explain gas expansion and to calculate the
injection rate inside core samples. For instance, at an experimental pressure of 40 bar, an injection rate
of 1 cm3/min at 20 ◦C becomes 1.108 cm3/min at 33 ◦C.

dr =
dCO2

20
◦
C, 40 bar

dCO2
33 C, 40 bar . (5)

On the other hand, the reduction in the differential pressure of the supercritical CO2 displacements
as fluid pressure increased means that the reduction in capillary forces was higher than the increase
in viscous forces. According to the J-function (Equation (2)), the reduction in the capillary forces
can be related to the reduction in the IFT, the increase in contact angle, and the reduction of CO2

saturation, i.e., increase residual oil recovery. The data from Section 3.3 show that, as pressure increased,
the residual oil saturation decreased; therefore, CO2 saturation was not responsible for the reduction
in the differential pressure. The interfacial tension decreases with the increase in pressure and the
reduction in temperature [41], as shown in Figure 7. No reduction in the differential pressure was
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observed during the subcritical displacements, despite the reduction in their interfacial tension as
pressure increased. This indicates that the reduction in the IFT is not the main factor responsible for the
observed reduction in the differential pressure profiles of supercritical CO2 displacements. The only
possible factor that causes the reduction in the differential pressure is the contact angle. This agrees
with the findings by Yang [30], Liu [76], and Jung and Wan [77]. Yang [30] and Liu [76] observed that
supercritical CO2 has a higher ability than gaseous and liquid CO2 to alter reservoir rocks towards
less water-wetting. Jung and Wan [77] found that, at a pressure higher than the CO2 critical pressure
(larger than 73.8 bar), the contact angle increases sharply with a pressure rise up to 100 bar. Below the
critical pressure, or above 100 bar, the contact angle remained fairly constant.
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Figure 3. Effect of fluid pressure on the differential pressure profile of low-pressure GCO2–oil
displacements conducted at 0.4 mL/min and 33 ◦C.
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Figure 6. Effect of fluid pressure on the differential pressure profile of ScCO2–oil displacements
conducted at 0.4 mL/min and 33 ◦C.
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Figure 7. Interfacial tension (IFT) tension for CO2-crude oils (WO = Weyburn crude oil-CO2 system
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Figure 8. Re-imbibition process in fine-grained rocks (schematic re-imbibition): (A) drainage, (B) an
initially water-saturated sample, (C) gas breakthrough, and (D) re-imbibition [69].

3.1.2. The Effect of Temperature on the Differential Pressure Profile of CO2–Oil Displacements

Figures 9–12 show the effect of increasing experimental temperature on the differential pressure
profile of gaseous, liquid, and supercritical CO2–oil drainage displacements. The results reveal
that increasing temperature led to a reduction in the differential pressure for both subcritical and
supercritical displacements. The increase in temperature resulted in the appearance of differential
pressure (PD) oscillations for the gaseous and supercritical CO2 displacements but not for the liquid
CO2 displacements. The highest reduction in the differential pressure profile as temperature increased
occurred in the high-fluid-pressure and then low-fluid-pressure gaseous CO2 displacements, followed
by supercritical CO2 and then finally by liquid CO2 displacements.
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Figure 9. Effect of experimental temperature on the differential pressure profile of low-fluid-pressure
GCO2–oil displacements conducted at 0.4 mL/min and 40 bar.
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Figure 10. Effect of experimental temperature on the differential pressure profile of high-fluid-pressure
GCO2–oil displacements conducted at 0.4 mL/min and 70 bar.
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Figure 11. Effect of experimental temperature on the differential pressure profile of LCO2–oil
displacements conducted at 0.4 mL/min and 90 bar.

For low-fluid-pressure GCO2 displacements conducted at 40 bar, increasing the temperature
from 33 to 55 ◦C caused the maximum-differential pressure to decrease by around 69% (from
1.196 to 0.371 bar), the quasi-differential pressure to drop by around 81% (from 0.406 to
0.076 bar), and the corresponding time to decline by 67.5% (from 12.3 to 4 min). However,
for high-fluid-pressure GCO2 displacements performed at 70 bar, increasing the temperature from 33 to
55 ◦C caused the maximum-differential pressure to decrease by around 70.6% (from 3.438 to 1.01 bar),
the quasi-differential pressure to decline by 88% (from 0.684 to 0.082 bar), the corresponding time to
decrease by about 76% (from 2.9 to 0.7 min), and the differential pressure oscillations to appear for the
first time. It should be noted that, as the temperature increased from 45 to 55 ◦C, the quasi-differential
pressure increased slightly by around 17% (from 0.082 to 0.096 bar). This increase might be associated
with the appearance of the differential pressure oscillations. The appearance of the oscillations indicates
that the 55 ◦C displacement is characterized by a stronger impact of the capillary forces than the 45 ◦C
displacement; thereby, a high quasi-differential pressure occurred in the 55 ◦C displacements.
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Figure 12. Effect of experimental temperature on the differential pressure profile of ScCO2–oil
displacements conducted at 0.4 mL/min and 90 bar.

For LCO2 displacements, as the temperature increased from 20 to 29 ◦C, the maximum-differential
pressure decreased by around 7.6% (from 5.26 to 4.858 bar), the quasi-differential pressure declined
by around 58% (from 0.365 to 0.154 bar), and the corresponding time dropped by around 37.5%
(from 3.2 to 2 min). The slight reduction in the maximum-differential pressure of the liquid CO2

displacements as temperature increased is likely to be associated with the smaller increase in the
experimental temperature (20–29 ◦C), the dense-nature of liquid CO2, and the lower miscibility of
liquid CO2 with oil [2] in comparison to that of gaseous and supercritical CO2 displacements.

For ScCO2 displacements, increasing the temperature from 33 to 55 ◦C caused the
maximum-differential pressure to decrease by 28.7% (from 1.564 to 1.115 bar), the quasi-differential
pressure to decline by around 54% (from 0.059 to 0.027 bar), the corresponding time to decline by
around 56% (from 1.6 to 0.7 min), and the differential pressure oscillations to appear for the first time.
The appearance of the differential pressure oscillations as temperature increased can be related to the
reduction in the applied viscous forces and the increase in the capillary forces due to the increasing
interfacial tension [65,78] and the decreasing contact angle [71]. Importantly, the point at which the
capillary forces were insufficient to overcome the viscous forces occurred at 55 ◦C, leading to the
blockage of CO2 production during these oscillations.

According to Equation (1), the reduction in the maximum and quasi-differential pressures as
temperature increases is the net result of the increase in capillary forces and the reduction in viscous
forces. As temperature increases, capillary forces increase because of the increasing CO2–oil interfacial
tension [65,78] and the decreasing contact angle [71] due to the decreasing CO2 solubility [72,73],
while the viscous forces decrease because of the decreasing viscosities of oil and CO2. However,
the change in CO2 viscosity is likely to have little impact on the reduction in the viscous forces in
comparison to that caused by oil viscosity reduction as temperature increased. Increasing temperature
caused a large reduction in the viscosity of the oil used in these displacements. The oil sample was
provided by the BP Exploration Operating Company Limited, but, due to confidentiality, the specified
properties of the oil sample cannot be disclosed. Increasing temperature causes only a slight change in
CO2 viscosity; the highest reduction occurred with supercritical CO2 displacement. For illustration,
increasing the temperature from 33 to 55 ◦C causes the CO2 viscosity to (1) increase from 16.187 to
17.07 × [10−6 (Pa·s)] for the 40 bar GCO2 displacement, (2) decrease from 20.743 to 18.9 × [10−6 (Pa·s)]
for the 70 bar GCO2 displacement, and (3) decrease from 53.837 to 22.26 × [10−6 (Pa·s)] for the 90 bar
SCCO2 displacement. On the other hand, increasing temperature from 20 to 29 ◦C for the liquid CO2

displacements causes the CO2 viscosity to decrease from 81.56 to 63.902 × [10−6 (Pa·s)] [81].
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3.1.3. The Effect of Injection Rate on the Differential Pressure Profile of CO2–Oil Displacements

Figures 13–16 show the effect of increasing injection rate on the differential pressure profile of
gaseous, liquid and supercritical CO2–oil drainage displacements. The results reveal that the increase
in the CO2 injection rate led to a substantial increase in the differential pressure for the displacements
conducted at both subcritical and supercritical conditions. The magnitude of the increase in the
differential pressure depends on the CO2 phase as well as the fluid pressure range for the gaseous
CO2 displacements; the highest increase in the maximum-differential pressure occurred in the ScCO2

displacements, and the lowest in the high-fluid-pressure GCO2 displacements conducted at 70 bar.
For low-fluid-pressure GCO2 displacements (40 bar), increasing the injection rate from 0.4 to

1 mL/min caused the maximum-differential pressure to increase by around 34% (from 1.196 to
1.604 bar), the differential pressure at the end of the displacements to increase by around 166% (from
0.408 to 1.084 bar), and the corresponding time to reduce by around 57% (from 12.3 to 5.3 min).
However, for higher-fluid-pressure GCO2 displacements performed at 70 bar, increasing the injection
rate from 0.4 to 1 mL/min caused the maximum-differential pressure to increase only by around 4.6%
(from 3.438 to 3.597 bar), the quasi-differential pressure to decrease by about 31% (from 0.699 to
0.481 min), and the corresponding time to decrease by 72.4% (from 2.9 to 0.8 min). For LCO2

displacements, as the injection rate increased from 0.4 to 1 mL/min, the maximum-differential
pressure increased by about 94% (from 3.533 to 6.847 bar), the quasi-differential pressure declined
by around 14.34% (from 0.272 to 0.233 bar), and the corresponding time decreased by around 43.33%
(from 3 to 1.7 min). For ScCO2 displacements, increasing the injection rate from 0.4 to 1 mL/min
caused the maximum-differential pressure to increase by about 105% (from 1.564 to 3.211 bar),
the quasi-differential pressure to increase by 54.24% (from 0.059 to 0.091), and the corresponding
time to decline by 50% (from 1.6 to 0.8 min).

According to Equation (1), the increase in the differential pressure can be related to the increase in
the applied viscous forces due to the increase in the CO2 injection rate. The observed considerable
increase in the differential pressure profile with injection rate increased demonstrates the high impact of
viscous forces despite the large viscosity contrast between the displacing fluid (CO2) and the displaced
one (oil). The observed reduction in the quasi-differential for high-fluid-pressure GCO2 displacements
and LCO2 displacements is likely to be related to the increase in the endpoint relative permeability
with the increasing injection rate due to increasing viscous forces [66,82,83].
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Figure 13. Effect of injection rate on the differential pressure profile of low-pressure GCO2–oil
displacements conducted at 40 bar and 33 ◦C.
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Figure 14. Effect of injection rate on the differential pressure profile of high-pressure GCO2–oil
displacements conducted at 70 bar and 33 ◦C.
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Figure 15. Effect of injection rate on the differential pressure profile of LCO2–oil displacements
conducted at 70 bar and 20 ◦C.
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conducted at 90 bar and 33 ◦C.
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3.2. The Production Behaviur of CO2–Oil Displacements as a Function of CO2 Phase

This section deals with the impact of fluid pressure and experimental temperature on the
cumulative produced volumes and transient outflow rates of CO2 and oil of gaseous, liquid,
and supercritical CO2 displacements. To avoid repeatability, the impact of injection rate was not
presented as it was similar to that presented in the fluid pressure and temperature sections below.

3.2.1. The Effect of Fluid Pressure on Production Behaviour of CO2–Oil Displacement

Figures 17–19 show the impact of increasing fluid pressure on the cumulative produced
volumes. In general, increasing fluid pressure caused an increase in the cumulative produced
volumes of low-fluid-pressure GCO2 displacements but a reduction in the cumulative produced
volumes of high-fluid-pressure GCO2 displacements, LCO2 displacements, and ScCO2 displacements.
For GCO2 displacements, increasing fluid pressure reduced the time required to achieve most of the
oil production.
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Figure 17. Effect of fluid pressure on the cumulative produced volumes of oil and CO2 for
low-fluid-pressure GCO2–oil displacements conducted at 33 ◦C and 0.4 mL/min.

The data from Figure 17 show that the increase in fluid pressure results in an increase in the
cumulative produced volumes of the low-pressure GCO2–oil displacements. As the fluid pressure
increased from 40 to 60 bar, the ratio of the cumulative produced volumes to the cumulative injected
volumes at the end of the displacements increased from 0.65 to 0.95. The increase is likely to be related
to the increase in displacement efficiency and the impact of gas expansion.

The data from Figures 18–20 show that increasing fluid pressure resulted in a decrease in the
cumulative produced volumes of high-fluid-pressure GCO2 displacements, LCO2 displacements,
and ScCO2 displacements; the highest reduction occurred in the ScCO2 displacements, while the
lowest occurred in LCO2 displacements. The cumulative produced volumes of the high-fluid-pressure
GCO2 displacements at the end of experiment were higher than the total cumulative injected volumes.
On the other hand, the cumulative produced volumes of the LCO2 and ScCO2 displacements were
less than the total cumulative injected volumes. The observed reduction in the cumulative produced
volumes as fluid pressure increased can be related to the increase in gas compressibility and CO2

solubility [72,73]. As the fluid pressure increased from 65 to 70 bar for the high-pressure GCO2

displacements, the ratio of the total produced volumes to the total injected volumes at the end of
displacements decreased from 1.05 to 1.02%. As the fluid pressure increased from 70 to 80 bar and
then to 90 bar for the LCO2 displacements, the ratio of the total produced volumes to the total
injected volumes at the end of displacements decreased from 92.6 to 91.6% and then to around 90.6%.
This means that every 10 bar increase in fluid pressure led to about a 1% reduction in production
volumes. However, as the fluid pressure increased from 75 to 80 bar sand then to 90 bar for the
ScCO2 displacements, the ratio of the total produced volumes to total injected volumes at the end
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of displacements decreased from 99.5 to 97.5% and then to around 91.5%. It is worth noting that the
increase in the cumulative produced volumes occurred only during the first period, and later the
injection and production profiles became equal. The equality between the injection and production
profiles suggests that the produced CO2 shrinks to its normal volume after leaving the water bath,
causing no increase in the produced volumes. Thus, the increase in the cumulative produced volumes
can be related to oil production, which mainly occurred during the early stages of the experiments.
The equality between the injection and production profiles can be used as an indicator to show when
most of the oil production occurred.
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Figure 18. Effect of fluid pressure on the cumulative produced volumes of oil and CO2 for
high-fluid-pressure GCO2–oil displacements conducted at 33 ◦C and 0.4 mL/min.

The data from Figures 17 and 18 show that increasing fluid pressure results in a decrease in the
time required to achieve most of the oil production, from around 20–25 min for the low-fluid-pressure
GCO2 experiments (40 and 60 bar) to around 5 min for the high-fluid-pressure GCO2 experiments
(65 and 70 bar). After most of the oil production has occurred, the cumulative produced volumes and
the cumulative injected CO2 volumes show a constant linear trend with time. For the low-pressure
GCO2 experiments conducted at 40 bar, the production profile is characterized by a slight increase
during the first 25.5 min followed by a constant linear trend. On the other hand, the production profile
of the 60 bar GCO2 displacements is characterized by a continuous increase over time. The main reason
behind the highest reductions in the corresponding times and the increase in cumulative produced
volumes over time, with the increase in fluid pressure, is the increase in displacement efficiency and
CO2 density. Increasing CO2 density means less time was required to reach the differential pressure
required for the injected CO2 to enter the core sample at the first time.
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Figure 19. Effect of fluid pressure on the cumulative produced volumes of oil and CO2 for LCO2–oil
displacements conducted at 20 ◦C and 0.4 mL/min.
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Figure 20. Effect of fluid pressure on the cumulative produced volumes of oil and CO2 for ScCO2–oil
displacements conducted at 33 ◦C and 0.4 mL/min.

3.2.2. The Effect of Experimental Temperature on the Differential Pressure Profile of
CO2–Oil Displacements

Figures 21–24 show the impact of increasing temperature on the cumulative produced volumes.
The results reveal that increasing temperature caused an increase in the cumulative produced volumes.

The data from Figure 21 show that the cumulative produced volumes of low-fluid-pressure
GCO2 displacements (40 bar) were less than the cumulative injected volumes. On the other hand,
the cumulative produced volumes of high-fluid-pressure GCO2 displacements (70 bar) were higher
than the cumulative injected volume, as shown in Figure 22. The increase in temperature caused
an increase in the cumulative produced volumes. Increasing the temperature from 45 to 55 ◦C for
the low-fluid-pressure GCO2 displacements (40 bar) caused the ratio of the cumulative produced
volumes to the cumulative injected volumes at the end of the displacements to increase from 0.51 to
0.55; nonetheless, the displacement conducted at 33 ◦C showed the highest ratio (0.65), the reason
is not clear. As the temperature increased for the high-fluid-pressure GCO2 displacements (70 bar),
the ratio of the cumulative produced volumes to the cumulative injected volumes at the end of
the displacements were 1.02, 1.04, and 1.07 for the displacements conducted at 33, 45, and 55 ◦C,
respectively. The observed increase in the cumulative produced volumes as temperature increased can
be related to increases in displacement efficiency and decreases in gas compressibility and solubility.

The data from Figure 23 show that the cumulative produced volumes during LCO2 displacements
were less than the cumulative injected volumes. Nevertheless, the increase in temperature caused a
very slight increase in the cumulative produced volumes. At the end of the displacements, the ratio
of the cumulative produced volumes to the cumulative injected volumes were 0.914, and 0.918 for
the displacements performed at 20 and 29 ◦C, respectively. This slight increase might reflect the
lower sensitivity of liquid CO2 to pressure and temperature changes in comparison with gaseous and
supercritical CO2 displacements.
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Figure 21. Effect of experimental temperature on the cumulative produced volumes of oil and CO2 for
low-pressure GCO2–oil displacements conducted at 40 bar and 0.4 mL/min.
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Figure 22. Effect of experimental temperature on the cumulative produced volumes of oil and CO2 for
high-pressure GCO2–oil displacements conducted at 70 bar and 0.4 mL/min.

The data from Figure 24 show that, for ScCO2 displacements, increasing the temperature from
33 to 55 ◦C caused a substantial increase in the cumulative produced volumes. At the end of the
displacements, the ratio of the cumulative produced volumes to the cumulative injected volumes
were 0.915 and 1.06 for the displacements performed at 33 and 55 ◦C, respectively. As temperature
increased, the behaviour of supercritical CO2 became very similar to that of high-pressure gaseous CO2

displacements, as shown in Figure 22, as the cumulative produced volumes for both displacements
were much higher than the cumulative injected volumes.
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Figure 23. Effect of experimental temperature on the cumulative produced volumes of oil and CO2 for
LCO2–oil displacements conducted at 90 bar and 0.4 mL/min.
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Figure 24. Effect of experimental temperature on the cumulative produced volumes of oil and CO2 for
ScCO2–oil displacements conducted at 90 bar and 0.4 mL/min.

3.3. The Effect of Fluid Pressure, Temperature, and Injection Rate on Endpoint Effective (Relative) Permeability
and Residual Oil Saturation as a Function of CO2 Phase

Effective permeability of CO2 is of practical interest for CO2 sequestration in subsurface
formations [84]. Relative permeability of gas–oil is particularly important in reservoirs that are
characterized by gas drive, gas cap expansion, or gas injection [82]. Relative permeability data is
a key factor for the determination of the efficiency, integrity, injectivity, and plume migration of
CO2 sequestration process [35,85] as well as for the designing and making decisions for reservoir
improvement [86], fluid flow in porous media [87], breakthrough time [7], and mobility of the
displacing and displaced fluids [7,35]. The mobility of the fluids governs the injection rate and pressure
increase during CO2 injection, as well as the distance that the displacing fluid (CO2) and displaced (e.g.,
oil or brine) can travel from the injection point through the formation [35]. The change in CO2 state is
likely to change the mobility of the fluids due to its impact on viscosity and potentially its influence
on relative permeability. In this study, when the flooding experiment was finished, the volume of the
produced oil was measured, and the residual oil saturation was calculated. The average differential
pressure and the average CO2 outflow rate of the last period were used to calculate the endpoint
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effective (KfCO2) and relative permeabilities (KrCO2) of CO2 using Darcy’s law [66,83]. Then, the core
sample was weighed to confirm the calculated residual oil saturation (Sor). The CO2 viscosity at the
fluid pressure and the experimental temperature was calculated using the Peace software website [81].

The data from Table 1 shows that the Sor was in ranges of 0.65–0.7, 0.56–0.6, 0.49–0.59,
and 0.44-0.56 for the low-fluid-pressure GCO2–oil displacements, high-fluid-pressure GCO2–oil
displacements, ScCO2–oil displacements, and LCO2–oil displacements, respectively. The lowest
recovery occurred in the low-fluid-pressure GCO2–oil displacements, whilst the highest oil recovery
occurred in the LCO2–oil displacements. The data demonstrate the impact of CO2 phase and the
operational conditions on oil recovery. The amount of oil recovery depends on many factors, including
relative permeability, wetting conditions, viscous fingering, gravity tonguing, channelling, amount
of crossflow/mass transfer [86], mobility ratio, and capillary number [88]. The change in CO2 phase
and the operational conditions are likely to have an influence on most of the listed factors, leading
to their impact on the displacement efficiency. The highest recovery with liquid CO2 phase can be
associated with its highest capillary number (due to its highest viscous forces and lowest capillary
forces), lowest mobility ratio, and potentially its most stable front displacement in comparison to that
of gaseous and supercritical CO2 phases. The highest viscous forces and the lowest mobility ratio of
the liquid CO2 phase in comparison to that of gaseous and supercritical CO2 phases can be associated
with its highest viscosity, while the lowest capillary forces of the liquid CO2 phase can be related to its
lowest IFT, providing a constant contact angle for the three phases of CO2. For illustration, for LCO2

displacements conducted at 90 bar and 29 ◦C, GCO2 displacements performed at 70 bar and 33 ◦C,
and ScCO2 displacements conducted at 90 bar and 33 ◦C, the viscosity of the LCO2, GCO2, and ScCO2

phases is 63.902, 20.743, and 53.837 × [10−6 (Pa·s)], respectively [81]. The CO2–oil IFT decreases as
pressure increases due to increases in CO2 solubility and increases as temperature increases due to
decreases in CO2 solubility [41]. Therefore, the CO2–oil IFT of LCO2 displacement is less than that of
GCO2 displacements, due to its higher pressure and lower temperature, as well as less than that of
ScCO2 displacements due to its lower temperature.

On the other hand, Table 1 reveals that the KrCO2 was in ranges of 0.015–0.1, 0.034–0.412,
0.144–0.657, and 0.079–0.281 for the low-fluid-pressure GCO2–oil displacements, high-fluid-pressure
GCO2–oil displacements, ScCO2–oil displacements, and LCO2–oil displacements, respectively.
This data also demonstrates the impact of CO2 phase and the operational conditions on the endpoint
CO2 relative permeabilities. In general, the lowest KrCO2 was observed in the low-fluid-pressure
GCO2–oil displacements, whilst the highest was obtained in the ScCO2 displacements. The data show
also a wide range of endpoint CO2 relative permeabilities from low to high values. The change in
relative permeability with CO2 phase and operational conditions can be related to their potential strong
influence on the capillary number, viscous forces, capillary forces, flow regimes [82,89], and capillary
end effect; thus, in turn, the CO2 phase and operational conditions will have a strong impact on relative
permeability data [76,87,90]. Bennion and Bachu [90], Liu [76], and Parvazdavani [87] observed an
impact for the operational conditions on relative permeability.

On the other hand, the observed lowest endpoint relative permeabilities of the low-pressure
GCO2–oil displacements are likely to be related to the impact of high capillary forces and low
viscous forces, due to their higher interfacial tension and lower viscosity, in comparison to the other
displacements. Nevertheless, the highest KrCO2 of ScCO2–oil displacements is likely to be associated
with the highest ability of the supercritical CO2 phase to alter the wettability towards less water-wetting
status in comparison to gaseous and liquid CO2 phases [30,76] (for more information, see Section 3.1).
Generally, the observed low endpoint CO2 relative permeability and the wide range of the endpoint
CO2 relative permeabilities agree well with the findings of Moortgat et al. [7], Parvazdavani et al. [87],
and Müller [35]. The results of Moortgat et al.’s simulation study suggest that the KrCO2 of the CO2-rich
phase may be lower than that of the oil phase [7]. However, the results of Parvazdavani et al.’s
experimental and modelling study reveal a wide range of GCO2 endpoint relative permeabilities
depending on the pressure range and the core sample origin; for illustration, they found that increasing
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the pressure from 500 psi (34.5 bar) to 800 psi (55 bar) caused the KrCO2 to range from 0.34 to 0.68 for
the sandstone sample and from 0.25 to 0.56 for the dolomite sample [87]. The comparison of Müller for
relative permeabilities of SCO2–brine systems showed a wide range of relative permeability data that
vary between 0.07 and 1 [35].

The data from Table 1 show that increasing fluid pressure caused the KrCO2 of liquid CO2 to
decrease by about 0.017 and that of gaseous and supercritical CO2 to increase by 0.034 and 0.261,
respectively. On the other hand, increasing the fluid pressure resulted in a decrease in the residual
oil saturation of the subcritical CO2 phases by 0.12 and 0.11, respectively; however, this led to an
increase in the residual oil saturation of the supercritical CO2 phase by 0.04. It is worth mentioning
that, for the GCO2 experiments, the displacement conducted at 65 bar experienced the highest KrCO2,
which might be related to its highest gas expansion impact and low capillary forces in comparison to
low-fluid-pressure GCO2 displacements; the highest expansion impact is due to its highest density
reduction as CO2 entered the water bath (see Section 3.1.1). However, in the ScCO2 experiments,
the displacement conducted at 80 bar experienced the lowest endpoint CO2 relative permeability and
the lowest residual oil saturation; the reason for this is not entirely clear. The increase in the viscous
forces can explain the observed increase in the relative permeability for gaseous and supercritical
CO2 displacement, but not the reduction for liquid CO2 displacement. The reason for the reduction
might be related to the increasing dissolution of liquid CO2 in oil as pressure increased, which
could result in a reduction in the amount of the free movable liquid CO2, thus reducing its relative
permeability. The increase in gaseous permeability as fluid pressure increased agrees with the finding
of Parvazdavani et al. [87], who observed that increasing fluid pressure for GCO2–oil displacements
led to a high increase in the relative permeability of GCO2 [87]. On the other hand, the reduction
and increase in the residual oil saturation with subcritical CO2 phases and supercritical CO2 phase,
respectively, can be associated with the observed increase and decrease in the differential pressure,
as shown in

Figures 3–6. The increase and reduction in the differential pressure were related to viscous and
capillary forces (for more information, see Section 3.1.1). Therefore, the reduction in the residual oil
saturation as fluid pressure increased in the case of the subcritical CO2 phases can be associated with
the increase in the viscous forces and the reduction in mobility ratio. However, the increase in residual
oil saturation as fluid pressure increased in the case of the supercritical CO2 might be related to the
reduction in capillary forces; this indicates that capillary forces complemented viscous forces; thereby,
its reduction led to a reduction in oil production [67]. The results indicate that viscous forces were
dominant in subcritical CO2 displacements, while capillary forces were dominant in supercritical
CO2 displacements.

Increasing the experimental temperature caused the KrCO2 of the three CO2 phases to increase by
0.084, 0.085, 0.378, and 0.024 for the LCO2, the low-fluid-pressure GCO2, and the high-fluid-pressure
GCO2 and ScCO2 displacements, respectively. On the other hand, increasing the experimental
temperature caused the residual oil saturation to increase by 0.12 for LCO2 displacements.
Nevertheless, it led to a decrease in the residual oil saturation by 0.05, 0.02, and 0.06 for the
low-fluid-pressure GCO2 and high-fluid-pressure GCO2 and ScCO2 displacements, respectively.
It should be noted that, for the 70 bar GCO2 displacements, increasing temperature from 45 to 55 ◦C
reduced the endpoint CO2 relative permeability from 0.412 to 0.342; this reduction could be associated
with the appearance of differential pressure oscillations, as shown in Figure 10. The increase in relative
permeability as temperature increased could be associated with the increase in the CO2 injection
rate [82,89] due to expansion effect (see Section 3.1.2). Skauge [82] and Rostami [89] observed that the
increase in the displacement velocity leads to a higher gas relative permeability and can slightly affect
the oil relative permeability [82,89]. The reduction in the residual saturation of the LCO2 displacements
can be associated with the reduction in differential pressures due to increasing temperature, as shown
in Figures 9–12. That is, the increase in the residual oil saturation as temperature increased can
be associated with the reduction in the viscous forces in the case of liquid CO2 phase. However,
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the reduction in the residual oil saturation, i.e., increasing displacement efficiency, as temperature
increased in the case of gaseous and supercritical CO2 phases might be related to the reduction
in oil viscosity as well as the increase in CO2 injection rate inside the core sample because of the
gas expansion impact. Increasing displacement efficiency can be seen through the increase in the
cumulative produced volumes of gaseous and supercritical CO2 phases as temperature increased (see
Figures 22 and 24).

Increasing the injection rate caused the KrCO2 of the three CO2 phases to increase by 0.185,
0.09, and 0.252 for the LCO2 and high-fluid-pressure GCO2 and ScCO2 displacements, respectively.
In addition, increasing the injection rate led to the reduction of the residual oil saturation of the three
CO2 phases by 0.07, 0.02, 0.03, 0.1 for the LCO2, low-pressure GCO2, and high-fluid-pressure GCO2

and ScCO2 displacements, respectively. It should be noted that, as injection rate increased from 0.4 to
1 mL/min for the low-pressure GCO2 (40 bar), the KrCO2 experienced no change. The increase in
the differential pressure due to increasing viscous forces could be the reason behind the increase in
KrCO2 [66,83] and the reduction in the residual oil saturation with increasing injection rate [82].

Table 1. Effect of fluid pressure, temperature and injection rate on the endpoint CO2 effective (relative)
permeability and oil recovery as a function of CO2 phase.

Parameter Experiment KfCO2 (mD) KrCO2 Oil Recovery Sor

Fluid Pressure Effect

LCO2–oil; 70 bar; 0.4 mL/min; 20 ◦C 2.782 0.096 0.44 0.56
LCO2–oil; 90 bar; 0.4 mL/min; 20 ◦C 2.287 0.079 0.56 0.44

GCO2–oil; 40 bar; 0.4 mL/min; 33 ◦C 0.446 0.015 0.30 0.70
GCO2–oil; 60 bar; 0.4 mL/min; 33 ◦C 0.822 0.028 0.35 0.65
GCO2–oil; 65 bar; 0.4 mL/min; 33 ◦C 1.417 0.049 0.40 0.60
GCO2–oil; 70 bar; 0.4 mL/min; 33 ◦C 0.991 0.034 0.41 0.59

ScCO2–oil; 75 bar; 0.4 mL/min; 33 ◦C 4.996 0.173 0.45 0.55
ScCO2–oil; 80 bar; 0.4 mL/min; 33 ◦C 4.167 0.144 0.51 0.49
ScCO2–oil; 90 bar; 0.4 mL/min; 33 ◦C 11.717 0.406 0.41 0.59

Temperature Effect

LCO2–oil; 90 bar; 0.4 mL/min; 20 ◦C 2.287 0.079 0.56 0.44
LCO2–oil; 90 bar; 0.4 mL/min; 29 ◦C 4.710 0.163 0.44 0.56

GCO2–oil; 40 bar; 0.4 mL/min; 33 ◦C 0.446 0.015 0.30 0.70
GCO2–oil; 40 bar; 0.4 mL/min; 45 ◦C 1.572 0.054 0.33 0.67
GCO2–oil; 40 bar; 0.4 mL/min; 55 ◦C 2.895 0.1 0.35 0.65

GCO2–oil; 70 bar; 0.4 mL/min; 33 ◦C 0.991 0.034 0.41 0.59
GCO2–oil; 70 bar; 0.4 mL/min; 45 ◦C 11.906 0.412 0.40 0.60
GCO2–oil; 70 bar; 0.4 mL/min; 55 ◦C 9.870 0.342 0.43 0.57

ScCO2–oil; 90 bar; 0.4 mL/min; 33 ◦C 11.717 0.405 0.41 0.59
ScCO2–oil; 90 bar; 0.4 mL/min; 55 ◦C 12.413 0.430 0.47 0.53

Injection Rate Effect

LCO2–oil; 70 bar; 0.4 mL/min; 20 ◦C 2.782 0.096 0.44 0.56
LCO2–oil; 70 bar; 1 mL/min; 20 ◦C 8.120 0.218 0.51 0.49

GCO2–oil; 40 bar; 0.4 mL/min; 33 ◦C 0.446 0.015 0.30 0.70
GCO2–oil; 40 bar; 1 mL/min; 33 ◦C 0.420 0.015 0.32 0.68

GCO2–oil; 70 bar; 0.4 mL/min; 33 ◦C 0.991 0.034 0.41 0.59
GCO2–oil; 70 bar; 1 mL/min; 33 ◦C 3.599 0.125 0.44 0.56

ScCO2–oil; 90 bar; 0.4 mL/min; 33 ◦C 11.717 0.405 0.41 0.59
ScCO2–oil; 90 bar; 1 mL/min; 33◦C 18.992 0.657 0.51 0.49

4. Conclusions

In this paper, the effect of fluid pressure, temperature, and injection rate on CO2 behaviour during
the flooding of an oil-saturated Berea sandstone core sample has been investigated as a function of
CO2 phase. The results indicate that fluid pressure, experimental temperature, and injection rate
significantly influence the differential pressure profile, cumulative produced volumes, endpoint CO2

relative permeability, and oil recovery. The trend and the size of the changes depend on the CO2 phase
as well the pressure range for GCO2 displacements. The data indicate that, as fluid pressure increases,
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the capillary forces have a stronger impact on the differential pressure profile of supercritical CO2–oil
displacements than that on subcritical CO2–oil displacements. As temperature and injection rates
increased, the viscous forces become more dominant than capillary forces.

In summary, for all fluid pressures, temperature, and injection rates, the differential pressure
profile is characterized by a strong increase, followed by a high reduction until it reached the value of
quasi-differential pressure; the rate of the increase and reduction in the differential pressure depends on
the CO2 phase and the pressure range for the GCO2 displacements. In general, liquid CO2 phase gave
the highest differential pressure magnitude, while gaseous CO2 phase gave the lowest. Increasing fluid
pressure caused an increase in the differential pressure profile of subcritical CO2 displacements but a
reduction in that of supercritical CO2 displacements; the magnitude of the change in the differential
pressure depends on the CO2 phase and the pressure range of GCO2 displacements. The highest
percentage increase occurred in low-fluid-pressure GCO2 displacements, whilst the lowest occurred
in LCO2 displacements. In addition, increasing fluid pressure for low-pressure GCO2 displacements
increased the frequency of the differential pressure oscillations and reduced the entry pressure and
its associated time. Increasing temperature caused a reduction in the differential pressure profile for
the three CO2 phases along with the appearance of the pressure oscillations in the case of gaseous
and supercritical CO2 displacements. The magnitude of this reduction in the differential pressure
depends on the CO2 phase and the pressure range for the GCO2 displacements; the highest reduction
occurred in high-fluid-pressure GCO2 displacements, while the lowest occurred in LCO2 displacements.
The increase in injection rate caused a substantial increase in the differential pressure of the three CO2

phases with the highest percentage increase occurred in the ScCO2 displacements and the lowest in
the high-fluid-pressure GCO2 displacements conducted at 70 bar.

The increase in fluid pressure caused an increase in the cumulative produced volumes of
low-fluid-pressure GCO2 displacements, but a reduction in those of high-fluid-pressure GCO2, LCO2,
and SCO2 displacements; the largest reduction occurred in the ScCO2 displacements, while the lowest
occurred in the LCO2 displacements; increasing fluid pressure reduced the time required to achieve the
majority of the oil production. However, increasing temperature caused an increase in the cumulative
produced volumes; the lowest increase occurred in LCO2–oil displacements.

The residual oil saturation was in the range of around 0.44–0.7; liquid CO2 gave the lowest,
and low-fluid-pressure gaseous CO2 gave the highest. The endpoint CO2 relative permeability was
in the range of about 0.015–0.657; supercritical CO2 gave the highest, and low-pressure gaseous CO2

gave the lowest. Increasing fluid pressure caused the endpoint relative permeability of liquid CO2 to
decrease, but that of gaseous and supercritical CO2 to increase. However, increasing fluid pressure
caused the residual oil saturation to decrease for the subcritical CO2 displacements but to decrease for
the supercritical CO2 displacements. Increasing the experimental temperature caused the endpoint
relative permeability of the three CO2 phases to increase. However, increasing the experimental
temperature caused the residual oil saturation to increase for liquid CO2 displacements but to decrease
for gaseous and supercritical CO2 displacements. Increasing the injection rate caused the endpoint
relative permeability of the three CO2 phases to increase and the residual oil saturation to decrease.
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