
fluids

Article

Steady Flux Regime During Convective Mixing in
Three-Dimensional Heterogeneous Porous Media

Christopher P. Green 1,*,† ID and Jonathan Ennis-King 1,† ID

CSIRO Energy, Private Bag 10, Clayton South, Victoria 3169, Australia; jonathan.ennis-king@csiro.au
* Correspondence: Chris.Green@csiro.au; Tel.: +61-3-9545-8371
† These authors contributed equally to this work.

Received: 31 July 2018; Accepted: 14 August 2018; Published: 14 August 2018
����������
�������

Abstract: Density-driven convective mixing in porous media can be influenced by the spatial
heterogeneity of the medium. Previous studies using two-dimensional models have shown that
while the initial flow regimes are sensitive to local permeability variation, the later steady flux
regime (where the dissolution flux is relatively constant) can be approximated with an equivalent
anisotropic porous media, suggesting that it is the average properties of the porous media that affect
this regime. This work extends the previous results for two-dimensional porous media to consider
convection in three-dimensional porous media. Through the use of massively parallel numerical
simulations, we verify that the steady dissolution rate in the models of heterogeneity considered also
scales as

√
kvkh in three dimensions, where kv and kh are the vertical and horizontal permeabilities,

respectively, providing further evidence that convective mixing in heterogeneous models can be
approximated with equivalent anisotropic models.

Keywords: convection; heterogeneity; CO2 sequestration

1. Introduction

Density-driven convective mixing of CO2 in a saline aquifer is a fascinating phenomena that can
accelerate the dissolution of CO2 into the resident formation brine, reducing the risk of any leakage to
the shallower subsurface. Understanding the fundamental characteristics of density-driven convective
mixing is important in order to establish its role in long-term geological storage of CO2.

Many theoretical, numerical and experimental studies examining the important features of
density-driven convective mixing and its importance to CO2 storage in saline aquifers have appeared
in the scientific literature (e.g., References [1–13]), see Reference [14] for a detailed review of the
published scientific literature regarding convective dissolution of CO2 in saline aquifers. For a typical
storage scenario, CO2 injected into a saline aquifer will rise under buoyancy and spread beneath an
impermeable caprock, forming a thin, laterally extensive plume. Diffusion-driven dissolution of CO2

into the resident brine slightly increases its density, resulting in a gravitational instability. After a finite
incubation time, the instability leads to convective mixing, characterised by the complex downward
motion of fingers of dense CO2-rich brine.

A large proportion of the theoretical studies concerning density-driven convective mixing in
porous media that have appeared in the scientific literature have focussed on understanding the
critical time for the onset of convection and the associated critical wavelength of fingers at the onset of
convection in idealised homogeneous models (e.g., References [1–5,7,10,13,14]). One significant feature
of density-driven convective mixing that has also received attention is the establishment of a steady
long-term mass flux during the period after the fingers stabilise and before they reach the base of the
aquifer, see Figure 1. Despite the complicated nature of the flow, only modest fluctuations in the rate
of dissolution are observed in numerical simulations in this regime [9,10,15].
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Figure 1. Dimensionless dissolution flux over the top boundary as a function of dimensionless time for
Rayleigh number Ra = 20,000 in an isotropic homogeneous two-dimensional model. The dashed line is
the purely diffusive profile; the horizontal short-dashed line is the dimensionless average flux in the
steady flux regime (0.017) [9]; the vertical dashed line indicates the approximate start of the steady flux
regime. For details of the scalings used, see Section 2, and for details of the numerical solution, see
Section 3.

Solutal convection in realistic geological formations is typically a fine-scale process that occurs
at a length scale several orders of magnitude below the typical computational resolution possible
in field-scale simulations. For example, high-resolution simulations of convective mixing may use
computational domains that are only a few metres in size, with spatial resolution at the cm or mm
scale necessary in order to accurately model the complicated convective mixing process. The size and
resolution of these models is in stark contrast to field-scale simulations of CO2 storage, where the
computational expense commonly constrains the size of computational grid blocks to metres to tens of
metres. The consequence of this disparity is to inhibit, and therefore delay, the onset of convective
mixing in simulation studies with large grid blocks, which results in an underestimate of the total
dissolved CO2 fraction [3].

Comparatively few studies have attempted to include the effect of enhanced dissolution due to
density-driven convective mixing at the fine scale in large-scale simulation studies using coarse grid
blocks. Initial attempts to include convective mixing in a coarse-scale model have included using
a rudimentary sink term in the uppermost portion of the model to remove an amount of mobile
CO2 equal to the theoretical estimate of the long-term average mass flux in order [16], or including
the effect of convection through an upscaled representation of the mass transfer rate in a vertical
equilibrium model [17,18]. Common to both of these studies are the assumptions that the onset time
of the convective mixing process is small in comparison to the total simulation time, and that the
dissolution rate can be approximated with the estimate of the steady flux. Using these models, it was
found that including the enhanced dissolution due to sub-grid convective mixing reduced the up-dip
migration of the gas-phase CO2, and therefore the total time that the plume is mobile.
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It is clear that the presence of a steady flux regime is likely to be significant in the development
of an appropriate upscaling scheme for enhanced dissolution due to convective mixing, enabling
this fine-scale process to be included in much larger grid blocks through some suitable mechanism.
The availability of accurate theoretical estimates of the mass flux in the steady flux regime therefore
underpins the establishment of upscaled models. For isotropic homogenous models, detailed numerical
simulation studies have verified the functional form of the average dissolution rate in the steady flux
regime, for both two-dimensional and three-dimensional models [9]. In practice, coarse simulation
models are often constructed by upscaling fine-scale heterogeneous geological models to representative
anisotropic homogeneous models with effective permeabilities. In this anisotropic case, a theoretical
estimate of the average dissolution rate in the steady flux regime was shown to scale as

√
kvkh

for two-dimensional porous media only, where kv and kh are the effective vertical and horizontal
permeabilities, respectively [15].

In this study, we consider the effect of anisotropy on the average long-term mass flux of CO2

in a three-dimensional saline aquifer, extending the work of Green and Ennis-King [15] for two
dimensions. Numerical simulations of anisotropic porous media are used to verify that the scaling
result for two-dimensional anisotropic porous media is also valid for three-dimensional porous media,
despite the increased degrees of freedom present in three dimensions in comparison to two dimensions.
Using high-resolution numerical simulations of heterogeneous three-dimensional porous media,
we demonstrate that the average long-term mass flux is adequately represented by an equivalent
anisotropic homogenous model, even though the vertical connectivity of these models is highly
complex. Finally, we discuss how these results may be used as part of an upscaling method to
incorporate the effects of subgrid-scale enhanced dissolution due to convective mixing in coarse-scale
simulations of CO2 storage in saline aquifers.

2. Background Theory

In this section, we present a brief overview of the theoretical background to the problem of
density-driven convective mixing in porous media in three dimensions. For simplicity, we consider a
cuboid model of height H and lengths Lx and Ly in the x and y directions, respectively, see Figure 2.
The solute concentration, C, at the top surface (z = 0) is fixed at equilibrium saturation C0.
All parameters used in this analysis and their units are described in the table of nomenclature, Table 1.

Figure 2. Schematic illustration of the three-dimensional model. The top surface (z = 0) is initially at
saturated concentration, while the remaining fluid is unsaturated. Note that z is positive downwards.
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Table 1. Nomenclature.

Symbol Definition SI Units

C Solute concentration (kg solute/kg solvent) -
D Effective diffusion coefficient m2 s−1

F Dissolution flux kg m−2 s−1

g Gravity m s−2

H Height of model m
kh Horizontal permeability m2

kv Vertical permeability m2

Lx Length of model in x direction m
Ly Length of model in y direction m
P Pressure Pa
t Time s
u = (u, v, w) Fluid velocity m s−1

γ = kv/hh Permeability anisotropy -
µ Viscosity kg m−1 s−1

ρ Fluid density kg m−3

φ Porosity -

Density-driven convective mixing of dissolved CO2 in porous media is a complex phenomenon
governed by coupled partial differential equations, namely Darcy’s law and the convection-diffusion
equation for transport of the dissolved solute. They are commonly expressed as

u = − k
µ

(
∇P− ρ f g

)
, (1)

and
φ

∂C
∂t

+ u · ∇C = φD∇2C, (2)

where u is the Darcy velocity, k is permeability, µ is the dynamic viscosity, P is the pressure, ρ f is the
fluid density, g is the acceleration due to gravity, φ is the porosity of the porous medium, C is the
solute concentration, t is time, and D is the effective diffusion coefficient (the product of diffusivity
and tortuosity [2]). We also assume that the fluid is incompressible, whereby

∇ · u = 0. (3)

Equations (1) and (2) are coupled by the change in fluid density as a result of the dissolved solute,
which is typically provided using a relation of the form

ρ f = ρ0

(
1 +

∆ρ

ρ0C0
C
)

, (4)

where ρ0 is the density of the unsaturated fluid, C0 is the maximum solute concentration
(i.e., the concentration at solute equilibrium), and ∆ρ = ρ − ρ0 is the maximum density increase
with concentration. We restrict our study to the case where ∆ρ > 0, i.e., the density of the fluid
increases monotonically with increasing solute concentration, as is the case for CO2 dissolved in brine.

In order to simplify the problem, we invoke the Boussinesq approximation [19], in which case
the dependence of ρ f on C is only retained in the buoyancy term in Equation (1). This simplifying
assumption effectively linearises the dependence of density on concentration, which is appropriate for
CO2 dissolved in brine due to the weak dependence of partial molar volume on concentration [2].
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The governing equations are closed with appropriate boundary and initial conditions. Assuming
that the porous media is an infinitely long, horizontal reservoir of fixed height H, the boundary
conditions at the top (z = 0) and bottom (z = H) surfaces are given by

w(x, 0, t) = 0, w(x, H, t) = 0, (5)

C(x, 0, t) = C0,
∂C(x, z, t)

∂z

∣∣∣∣
z=H

= 0, (6)

respectively, where w is the vertical component of velocity. These boundary conditions correspond to
a Dirichlet boundary at the upper surface (where the concentration is fixed at its equilibrium value),
and a no-flux boundary at the lower surface. The presence of a fixed concentration boundary at the
upper surface is supported by previous studies, where it was observed that the interface between
the supercritical CO2 and brine remains sharp despite the presence of fingers of CO2 saturated brine
sinking into the less dense unsaturated brine [3,20]. In reality, this assumption is a simplification of the
true interface at the boundary layer, where two phases coexist. The initial conditions are

u(x, z, 0) = 0, C(x, z, 0) = 0, (7)

which correspond to no initial velocity and zero initial solute concentration in the reservoir (apart from
the top boundary).

Significant insight into the problem can be obtained by non-dimensionalising the governing
equations using suitable scales. As we are primarily interested in the steady flux regime during
convective mixing in porous media, we only consider cases where the height of the model is much
larger than the vertical distance over which convective instability forms [2]. Consequently, we scale
lengths with the length over which convection and diffusion balance, so that horizontal lengths
are scaled by φµD/(kvγ1/2∆ρg) and vertical lengths are scaled by φµD/(kv∆ρg) [2], where kh and
kv are the horizontal and vertical permeabilities, respectively (We only consider the case where
permeability is the same in both horizontal directions for simplicity), and γ = kv/kh is the permeability
anisotropy. Similarly, horizontal velocities are scaled by kv∆ρg/(µγ1/2) while vertical velocity is scaled
by kv∆ρg/µ. Concentration C is scaled by C0, time is scaled by (φµ)2D/(kv∆ρg)2, and pressure is
scaled by φµD/kv. The governing equations, boundary conditions and initial conditions become

u∗ = −∇P∗ + C∗ ẑ, (8)

∂C∗

∂t∗
+ u∗ · ∇C∗ = γ∇2

hC∗ +
∂2C∗

∂z∗2
, (9)

w∗(x∗, 0, t∗) = 0, w∗(x∗, Ra, t∗) = 0, (10)

C∗(x∗, 0, t∗) = 1,
∂C∗(x∗, z∗, t∗)

∂z∗

∣∣∣∣
z∗=Ra

= 0, (11)

u∗(x∗, z∗, 0) = 0, C∗(x∗, z∗, 0) = 0, (12)

where the superscript asterisk denotes a dimensionless variable, ∇h = ∂/∂x + ∂/∂y, and Ra is the
Rayleigh number, given by

Ra =
kz∆ρgC0H

φµD
. (13)

This dimensionless number is a measure of the relative importance of density-driven convection
to purely diffusive motion. When Ra is sufficiently large, convection may occur. Using stability
analysis, it has been shown that no convection is possible for Ra < 32.5 [10]. For 32.5 < Ra < 75,
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convection is possible, with a minimum onset time depending on Ra [10]. When Ra > 75, the earliest
possible time for the onset of a convective instability is independent of Ra [10].

We note that the Rayleigh number does not appear in the dimensionless governing equations,
Equations (8) and (9). Rather, it appears only in the boundary condition at the base of the model,
Equation (11), where the lower boundary is at a dimensionless depth Ra. This is due to the length
scale used in the parameterisation being the length at which diffusion and advection balance, rather
than any geometrical length present in the model [21]. We choose this scaling as we are primarily
interested in the steady flux regime, where the presence of a lower boundary does not influence the flux
(a semi-infinite model) [21]. This is convenient for numerical models, as Ra can be varied by simply
changing the height of the model, with no scaling of the spatial resolution required as Ra is varied.

Significant research effort has been undertaken to determine critical properties of density-driven
convective mixing, such as the time for the onset of convection, and the wavelength of the initial
perturbations for tractable cases of homogeneous porous media, both isotropic [3–5,10,20] and
anisotropic [2–4,13]. A detailed review of these studies and the estimated values for critical parameters
has been provided by Emamai-Meybodi et al. [14], to which the reader is referred for more information.

One of the most interesting features of solutal convection is the establishment of a steady flux
regime, where the mass flux over the top boundary is relatively constant, with only small fluctuations
about an average value observed despite the complex interaction between the fingers of saturated fluid
and the unsaturated background fluid. High resolution numerical simulations have shown that the
mass flux oscillates about a constant value in the long term, with temporal variations of the order of
15% (e.g., References [9,12,21]). This phenomena has also been observed experimentally in Hele-Shaw
cells (e.g., References [8,22,23]).

The functional form of this long-term mass flux of CO2 per unit width in a two-dimensional
model, Fm, is given by [9]

Fm ≈ 0.017
kC0∆ρg

µ
, (14)

where the constant 0.017 is calculated from numerical results. Analogous results for three dimensions
have demonstrated that the mass flux exhibits similar long-term behaviour as the two-dimensional
case, albeit with a slightly increased prefactor [9,24].

Following Neufeld et al. [8], Green and Ennis-King [15] developed a simple theoretical scaling for
the average dissolution flux in the steady flux regime in anisotropic two-dimensional porous media,
which we provide here for completeness. The conceptual model is as follows: Downward moving
plumes of CO2-rich water are interspersed with upwelling plumes of fresh water. Once the upwelling
plumes reach the top of the reservoir, they are forced laterally into a mixing region [8]. The lateral flow
in the mixing region acts to stabilise the diffusive boundary layer, which has thickness δ = (Dl/u)1/2,
where l is the width of the upwelling plume, and u is the lateral fluid velocity in the mixing region.

When the porous media is isotropic, the lateral fluid velocity is equal to the vertical velocity
of fluid in the upwelling plume [8]. If the porous media is anisotropic, however, the principle of
conservation of mass dictates that the ratio of the thickness of the horizontal mixing region to the
width of the upwelling plume is equal to γ. It then follows that ratio of the vertical fluid velocity in
the upwelling plume to the lateral fluid velocity in the mixing region must scale as γ−1. The width
of the upwelling plume is inversely proportional to kv to first order [2], while vertical velocity in the
upwelling plumes scales as kv. The total flux into the porous media across the upper boundary, which
is equal to the flux across the boundary layer Fbl ∼ φD∆ρ/δ [8], therefore scales as (kvkh)

1/2 in an
anisotropic porous media.

This result suggests that it is the geometric mean of the vertical and horizontal permeabilities
that should be used in the estimate of the mass flux in the steady flux regime [15], in which case the
average long-term mass flux for a two-dimensional anisotropic porous media is
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Fm(γ) ≈ 0.017 γ1/2 khC0∆ρg
µ

, (15)

i.e., Equation (14) scaled by γ1/2 and replacing k with kh. This functional relationship has been verified
through two-dimensional numerical simulations of anisotropic homogeneous porous media [15,25].

Green and Ennis-King [26] demonstrated through numerical simulations that the average mass
flux in the steady flux regime during solutal convection in a two-dimensional heterogeneous porous
medium was well represented by an anisotropic homogeneous porous medium with equivalent
permeabilities in the vertical and horizontal directions. Several subsequent studies have also observed
that the steady flux rate is dependent on the average properties of the porous medium, suggesting
that heterogeneous porous media may be suitably modelled using anisotropic homogeneous porous
media [15,27–30].

3. Numerical Method

To date, the scaling relationship for the average mass flux in the steady flow regime,
Equation (15), has not been demonstrated for anisotropic and heterogeneous three-dimensional
models. It is important to verify (or otherwise disprove) the theoretical scaling presented
by Green and Ennis-King [15] for two-dimensional convective mixing in the three-dimensional case.
To that end, we have undertaken a series of high-resolution simulations of density-driven convective
mixing in both anisotropic and heterogeneous porous media.

High-resolution numerical simulations were performed using Numbat [31] (https://github.
com/cpgr/numbat), an open-source application developed by the authors using the Multiphysics
Object-Oriented Simulation Environment (MOOSE) software framework [32] (http://www.
mooseframework.org). Numbat solves either the dimensional (Equations (1)–(4)) or dimensionless
(Equations (8) and (9)) form of the governing equations using the finite element method, and leverages
powerful features of the open-source MOOSE framework, such as adaptive mesh refinement, automatic
parallelism, and both continuous and discontinuous Galerkin methods to enable massively parallel
simulations of density-driven convective mixing in porous media. In this study, numerical simulations
using both the dimensional and dimensionless forms are used to determine the average mass flux in
the steady flux regime in three-dimensional models. Fully unstructured computational meshes were
used in this study, with a fine discretisation near the top boundary to adequately resolve the initial
fingers, and a coarser discretisation towards the base of the model where fingers are large. At least
several million elements are used in each of the three-dimensional meshes. Due to the large number of
elements, each simulation was run using between 100 and 1000 cores on a large computational cluster.

The dimensionless form of the governing equations, Equation (8) and (9), are solved using a
stream function formulation [21,33]. For details, see Appendix A.

Numbat has been benchmarked against previously published results in two and three dimensions,
detailed by Pruess and Zhang [34] and Pau et al. [9]. Qualitatively, the results obtained using Numbat
are consistent with those studies. The steady flux values in these cases are similar to those reported by
Pruess and Zhang [34] and Pau et al. [9]. Small differences in the onset time are observed, but these
are likely the result of the difference in the random noise used to seed the instability. Full details are
provided in the Numbat user manual [31].

It is well known that the onset time of convection is sensitive to the initial disturbance used to
seed the gravitational instability that is the driver of convective mixing [14], whereas the steady mass
flux is insensitive to the choice of initial disturbance [14]. In this study, the gravitational instability is
seeded by perturbing the model in a controlled manner. For dimensional simulations, a random noise
of amplitude 1% is added to the initial porosity field [26], while for the dimensionless simulations,
a reproducible random noise is added to the initial diffusive concentration field [21].

No-flow boundaries are imposed on the upper and lower faces of the model, while lateral
periodicity is imposed through periodic boundary conditions. The upper boundary is fixed at a given

https://github.com/cpgr/numbat
https://github.com/cpgr/numbat
http://www.mooseframework.org
http://www.mooseframework.org
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concentration, either C = 1 for the dimensionless model, or C = C0 for the dimensional case, for some
equilibrium concentration C0.

Anisotropy is imposed through varying the anisotropy ratio γ in the dimensionless model.
The computational models used in these anisotropic simulations have a dimensionless length of
3000 in each of the horizontal directions, and a dimensionless length of 5000 in the vertical direction.
The height of the model corresponds to a Rayleigh number of Ra = 5000 [10]. The horizontal lengths
are chosen so that a sufficiently large number of fingers are present in the model. The wavelength of the
fingers at the onset of convection has the functional form λc = c(γ)φµD/(k∆ρg), where the parameter
c(γ) has been estimated by various authors as 95γ−0.758 [2], 96.23γ−0.849 [4], or 115.3γ−0.83 [13]. These
estimates suggest that there will be at least one hundred fingers in the model at the onset of convection
for the smallest value of anisotropy ratio, and up to several hundred for the isotropic case.

Two models of reservoir heterogeneity are considered in this study. Following the use of horizontal
flow barriers as a simplified proxy for realistic heterogeneity (such as shale filled reservoirs) in
two-dimensional studies of convective mixing [15,26–28,30], we extend this idea to three dimensions
using flat elliptical disks of various aspect ratios to represent flow barriers. The major and minor axes
of the elliptical disks are drawn from Gaussian distributions N(250, 75) and N(100, 25), respectively,
where N(µ, σ) refers to a Gaussian distribution with mean µ and standard deviation σ. Barrier
dimensions were chosen so as to be larger than the typical finger length in the upper region of the
computational mesh to provide a significant impediment to downwards flow. The distribution of
barriers used in this study is depicted in Figure 3. The mesh was suitably refined in the vicinity of the
barriers to accurately capture their geometry. The distribution of barriers shown in Figure 3 results in
a permeability anisotropy of γ = 0.25. As for the anisotropic models, the dimensionless forms of the
governing equations are solved in this case. The horizontal dimensions again have a dimensionless
length of 3000, while the model has a dimensionless height of 5000.

Figure 3. Randomly distributed elliptical flow barriers in the otherwise homogeneous 3D model.
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The second model of heterogeneity uses fractional Lévy motion (fLm) to generate a
spatially-varying permeability field, as non-Gaussian structure has been observed in sedimentary
formations [35–37]. A model with fLm structure was generated using a midpoint displacement
algorithm with successive random additions [38] drawn from a Lévy distribution with width parameter
α = 1.25 and Hurst parameter H = 0.1 [39]. A heterogeneous permeability field was then constructed
as k = k0 exp[L(α, H)], where k0 = 4× 10−13 m2 is a mean permeability (approximately 400 mD),
and L(α, H) is a random number sampled from the Lévy distribution with width parameter α and Hurst
parameter H. This results in a heterogeneous model with permeability varying over three orders of
magnitude, see Figure 4. Within each cell, the vertical permeability was scaled so that the overall
permeability anisotropy was γ = 0.5. All other reservoir properties are representative of a low salinity
aquifer at a depth of approximately 1 km, and are given in Table 2. The dimensions of the model are
10 m in all directions.

Table 2. Parameters used in the dimensional simulations (representative of a low salinity aquifer at a
depth of approximately 1 km).

Pressure, P 11.4 MPa
Temperature, T 59 ◦C
Salt mass fraction, Cs 0.01
Porosity, φ 0.25
Viscosity, µ 0.485× 10−3 kg m−1 s−1

Unsaturated brine density, ρ0 994.8 kg m−3

Saturated brine density, ρ 1004.7 kg m−3

Saturated CO2 mass fraction, C0 0.0455
Effective diffusion coefficient, D 2× 10−9 m2 s−1

Figure 4. Fractional Lévy motion model of permeability heterogeneity. Width parameter α = 1.25,
Hurst parameter H = 0.1.

In contrast to the two-dimensional case, where multiple statistical realisations of heterogeneity
are used to investigate their effect on solutal convection [15,26], the computational expense of
three-dimensional simulations precludes a probabilistic study. As a result, only two statistical
realisations of each permeability heterogeneity are considered.
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4. Results

4.1. Anisotropic Porous Media

Numerical simulations of three-dimensional convective mixing in homogeneous but anisotropic
porous media were performed for permeability anisotropies γ = 1, 0.75, 0.5 and 0.25 using the
dimensionless form of the governing equations. Figure 5 presents a comparison of an isotropic model
(γ = 1) with an anisotropic model (γ = 0.5). As this comparison shows, we observe that anisotropy
delays the onset of convection in comparison with the isotropic case, as evidenced by the slower
formation of downwelling fingers in the anisotropic case, see Figure 5. This is in line with previous
findings for convective mixing in two-dimensional porous media [2,15].

Figure 5 also demonstrates that the lateral dimension of the fingers at the onset of convection
is larger for γ = 0.5 in comparison for γ = 1 (remembering that lateral dimensions scale as γ−1/2).
This can be observed by comparing the initial finger pattern at t = 3000 for the isotropic case with the
finger pattern for the anisotropic case at a similar finger depth (at a later time t = 10,000 due to the
delayed onset of convection in the anisotropic case in comparison to the isotropic case), where fewer
fingers can be seen.

The effect of permeability anisotropy can be quantified by comparing the temporal evolution of
the flux across the top boundary for the isotropic and anisotropic cases, which is calculated as

F(t) =
φρD
LxLy

∫ Lx

0

∫ Ly

0

∂C
∂z

∣∣∣
z=0

dxdy, (16)

where Lx and Ly are the lengths of the computational model in the x and y directions, respectively,
see Figure 2.

As Figure 6 demonstrates, decreasing γ delays the onset of convection, which results in a smaller
average flux in the steady flux regime.

For the isotropic case (γ = 1), the average flux in the steady flux regime was calculated as
0.018, slightly larger than the accepted value for two-dimensional models (0.017). This finding
is commensurate with the previous observations of steady flux in isotropic homogeneous porous
media in three dimensions [9]. Likewise, we observe smaller oscillations about this average
flux in three dimensions, which is likely the result of the increased number of fingers in the
three-dimensional model.
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t = 3,000

t = 30,000

t = 10,000

Figure 5. Comparison of the evolution of convective mixing in isotropic and anisotropic porous
media. (i) γ = 1 (left); and (ii) γ = 0.5 (right). Only concentrations greater than 0.1 are shown.
Time is dimensionless.
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Figure 6. Dimensionless flux across the top boundary for anisotropic homogeneous porous media in
three dimensions. The dashed horizontal lines show the estimated steady flux 0.018

√
γ.

4.2. Heterogeneous Porous Media

One of the important results presented in earlier studies of density-driven convective mixing
in two-dimensional heterogeneous porous media is that the steady flux in a heterogeneous model is
well-approximated by the flux in an equivalent anisotropic homogeneous model [15,26], which implies
that a heterogeneous model of the porous media can be replaced with a simpler anisotropic
homogeneous model. We now present numerical results to verify this in three dimensions using
the two examples of permeability heterogeneity discussed earlier.

The temporal evolution of the concentration in the heterogeneous model with elliptical flow
barriers is presented in Figure 7. Initially, small fingers form around the barriers, with an increased
concentration observed on the upper surface of the barriers. As time increases, the downwelling fingers
merge to form larger fingers which totally encapsulate the barriers. These then flow downwards until
they reach the next barrier, and the process is repeated.

It is clearly evident from Figure 7 that the barriers have a significant effect on the dynamics of
the fingers, impeding their downward motion and resulting in extremely complex finger patterns.
Nevertheless, the average flux in the steady flux regime for this complex model is well approximated by
the average flux in an equivalent anisotropic homogeneous model, see Figure 8. In contrast, we observe
that the onset time for convection is much earlier for the heterogeneous barrier model in comparison to
the equivalent anisotropic model, providing more evidence that the onset time is sensitive to the local
permeability whereas the steady flux is governed by the global average permeability [15,26]. In fact,
comparing the onset time for the heterogeneous model in Figure 8 with the onset time for the isotropic
porous medium in Figure 6, we find that they are nearly identical. As both models use an equivalent
formulation, with the permeability in the background of the heterogeneous model equivalent to the
isotropic case, this result provides further evidence for the hypothesis that it is the local permeability
that influences the onset of convective mixing in heterogeneous porous media [15,26].
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t = 2,000 t = 6,000

t = 20,000t = 10,000

Figure 7. Evolution of convective mixing in heterogeneous model with elliptical barriers.
Barrier distribution shown in Figure 3. Only concentrations greater than 0.1 are shown. Barriers
are removed from the figure. Time is dimensionless.
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Figure 8. Dimensionless flux across the top boundary for the heterogeneous model with elliptical
barriers (solid line) and the equivalent anisotropic model with γ = 0.25 (dashed line).
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In the second case of heterogeneity, the dimensional form of the governing equations are solved
for the case of permeability heterogeneity constructed using a fractional Lévy motion model. In this
case, convective fingers are observed to form in the higher permeability regions initially, with no fingers
observed in the regions of lower permeability, see Figure 9. At this early time, we conclude that it is
the local permeability that controls the onset and growth of fingers. As time increases, these initially
small fingers merge to form larger fingers, as usual. Eventually, the fingers become large enough, after
which it is the average permeability that governs their motion, and we observe that fingers are now
present throughout the porous media, even in those regions where the permeability is low.

t = 3e6 s
t = 1e7 s

t = 8e7 st = 3e7 s

Figure 9. Evolution of convective mixing in the heterogeneous fractional Lévy motion model
(permeability heterogeneity illustrated in Figure 4. Time in seconds.

This is clearly illustrated in the temporal progression depicted in Figure 10, where the contours
of concentration are provided along a horizontal slice a distance of 0.5 m from the upper surface of
the model. After 107 s, fingers can be observed in the regions of higher permeability, with no fingers
present in the regions of lower permeability. As time increases, we can observe that the fingers join
into laterally extensive plumes that begin to include the lower permeability region.

The flux across the top boundary for the fractional Lévy motion model of permeability
heterogeneity is presented in Figure 11, alongside the flux in an anisotropic homogeneous model with
equivalent effective permeabilities in the vertical and horizontal directions. Again, the steady flux in the
heterogeneous model is well approximated by the flux in the equivalent anisotropic model, providing
further evidence that the complex motion in the steady flux regime of density-driven convective mixing
in heterogeneous porous media can be adequately modelled using simpler anisotropic homogeneous
models with effective permeabilities.
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t = 1e7 s

t = 3e7 s t = 8e7 s

Figure 10. Evolution of convective mixing in the heterogeneous fractional Lévy motion model for a
horizontal slice 0.5 m below the top boundary. Time in seconds.
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Figure 11. Dimensionless flux across the top boundary for the fractional Lévy motion model of
permeability heterogeneity (solid line) and the equivalent anisotropic model with γ = 0.5 (dashed line).
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The calculated steady fluxes for all three-dimensional cases considered are summarised in
Figure 12, where the average flux is calculated from the numerical results in the steady-flux regime.
These results clearly demonstrate that the theoretical scaling for the steady flux in anisotropic porous
media presented by Green and Ennis-King [15] for two-dimensional porous media is also applicable to
density-driven convective mixing in three-dimensional porous media, but with the prefactor increased
to 0.018:

Fm(γ) ≈ 0.018 γ1/2 khC0∆ρg
µ

. (17)

This is despite the increased complexity observed in three-dimensional porous media in contrast
to two-dimensional porous media due to the added degrees of freedom. Importantly, these results
demonstrate that this scaling may also be appropriate in heterogeneous three-dimensional porous
media, suggesting that the long-term dissolution in a heterogeneous model may be well approximated
with a simple anisotropic model.

0.0 0.2 0.4 0.6 0.8 1.0

γ

0.0

0.2

0.4

0.6

0.8

1.0

F
m

(γ
)/
F
m

(1
)

γ1/2

Anisotropic

Heterogeneous (barriers)

Heterogeneous (fLm)

Figure 12. Steady flux Fm(γ) scaled by Fm(1) = 0.018khC0∆ρg/µ. Simulation results for anisotropic
porous medium with γ = 0.75, 0.5 and 0.25. Solid line is the analytical model Fm(γ)/Fm(1) = γ1/2.
Dashed line is Fm(γ)/Fm(1) = γ for reference. Note that the results for the barrier model (square) and
the anisotropic media at γ = 0.25 are almost coincident.

5. Discussion

High-resolution numerical simulations of density-driven convective mixing in three-dimensional
porous media have been undertaken to examine the applicability of the theoretical scaling for the
steady flux in two-dimensional models developed by Green and Ennis-King [15] to three-dimensional
models. In so doing, it was demonstrated that the average mass flux in the steady flux regime also
scales as

√
khkv in three dimensional anisotropic porous media.

Two models of permeability heterogeneity were considered, and in each case, it was demonstrated
that the magnitude of the average flux in the steady flux regime for these models of permeability
heterogeneity were well represented by anisotropic homogeneous porous models with effective
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permeabilities that provide an equivalent Darcy flux. This finding extends the earlier findings for
two-dimensional heterogeneous porous media [15,26] to the more realistic case of three-dimensional
models. Qualitatively similar behaviour between heterogeneous and homogeneous three-dimensional
models were obtained by Soltanian et al. [29] for different models of heterogeneity when comparing
the dynamics of convection using a different measure of convection to the steady flux considered here.

In both cases of heterogeneity studied here, we observed that the onset time of convection
was shorter in the heterogeneous model in comparison to the equivalent anisotropic model.
This lends further support to the hypothesis that local regions of comparatively high permeability
can influence the critical onset time and wavelength of the fingers in heterogeneous media [15].
These regions of high local permeability are not present in the anisotropic model, having been
averaged out through upscaling to effective permeabilities. As a result, the onset time is delayed in
anisotropic models in comparison to heterogeneous models. This is in contrast to the steady flux,
which appears to be insensitive to local permeability and is instead governed by the large-scale effective
permeability [15,26].

The observation that convection occurs much sooner in heterogeneous models in comparison to
an equivalent anisotropic homogeneous model while still exhibiting similar average flux in the steady
flux regime over the long term suggests that it may be possible to incorporate the enhanced dissolution
due to convection at the fine-scale in coarse-scale simulations, by assuming that convection begins
immediately and that the rate of mass flux into the liquid phase is constant while a gas phase remains
present. This lends support to initial attempts to include enhanced dissolution due to convection at the
sub-grid scale using these simplifying assumptions [16–18].

Due to the fundamental importance of convective mixing on the rate of dissolution and hence the
total amount of CO2 that is immobilised in the denser liquid phase, upscaled models that implement
this accelerated dissolution are necessary for reliable numerical predictions of the long-term fate of
CO2 storage in saline aquifers. These upscaled models must be informed by theoretical estimates of
the dissolution events, such as average dissolution in the steady flux regime [9,15,21]. As previously
discussed, results such as those presented here, as well as earlier studies [15,26,27,29], suggest that
it may be possible to approximate the steady flux regime in heterogenous porous media using an
upscaled model with effective parameters. Additionally, if the onset time for convection is small in
comparison to the total simulation time, then the dissolution flux may, to first order, be approximated by
the steady flux for all time (as implemented in previous attempts to incorporate enhanced dissolution
due to convection in large-scale models as discussed above [16–18]). This implies that it may be
possible to adequately represent a heterogeneous model with an anisotropic model with equivalent
effective permeabilities, even though the onset time in the heterogeneous model is likely to be earlier
than in the anisotropic model. This follows from the observation that if the rate of dissolution in
both heterogeneous and anisotropic models is similar, then the relative difference between the total
dissolved solute due to the difference in onset time in both cases becomes smaller as time increases.
If the total simulation time greatly exceeds the onset time, then the difference due to the delayed onset
time in the anisotropic model is likely to be small in comparison to the total dissolved amount.

The results presented in this study have been obtained using an idealised representation of
the physics involved. Only a single fluid phase has been considered, with an unlimited supply of
saturated fluid provided using a constant concentration boundary condition at the top surface. This is
a commonly used simplification of the more realistic two-phase boundary that would exist at the
interface of the saturated and unsaturated fluids. The presence of a capillary transition zone has also
been ignored, as has the possibility of geochemical reactions. Different realisations of permeability
heterogeneity may result in cases where the steady flux regime is not adequately represented using an
equivalent anisotropic model. A detailed review of the impact that these complicating factors may
have on the convective mixing process can be found in Emami-Meybodi et al. [14], to which the reader
is referred for further details.
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Appendix A. Streamfunction Solution to Non-Dimensional Governing Equations

The details of the solution method for the dimensionless form of the governing equations is
presented here. For brevity, notation is simplified by removing any asterisks used to denote a
dimensionless quantity.

Appendix A.1. Two-Dimensional Formulation

Following Slim [21], Equations (8) and (9) are solved in two dimensions by introducing the
streamfunction ψ(x, z, t)

u = −∂ψ

∂z
, w =

∂ψ

∂x
. (A1)

Immediately, the continuity equation, Equation (3), is satisfied.
The pressure P is removed from Darcy’s equation, Equation (8), by taking the curl of both sides

and noting that ∇×∇P = 0 for any scalar P, and Darcy’s equation reduces to

∇2ψ = − ∂c
∂x

. (A2)

Substituting the streamfunction into the convection-diffusion equation, Equation (8), we obtain

∂c
∂t
− ∂ψ

∂z
∂c
∂x

+
∂ψ

∂x
∂c
∂z

= γ
∂2c
∂x2 +

∂2c
∂z

. (A3)

Similarly, the boundary conditions become

∂ψ

∂x
= 0, z = 0, Ra,

∂c
∂z

= 0, z = Ra,

c = 1, z = 0,

(A4)

while the initial condition remains unchanged.
Equations (A2) and (A3) are then solved numerically using ψ and C as the variables.

Appendix A.2. Three-Dimensional Formulation

To solve these governing equations in three dimensions, a different approach must be used as
the streamfunction ψ is not defined. Instead, we define a vector potential Ψ = (ψx, ψy, ψz) following
Hewitt et al. [33] such that

u = ∇×Ψ. (A5)

It is important to note that the vector potential is only known up to the addition of the gradient of
a scalar ζ

∇× (Ψ +∇ζ) = ∇×Ψ ∀ζ, (A6)
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as∇×∇ζ = 0 for any scalar ζ. This uncertainty is referred to as gauge freedom [33] Taking the curl of
Equation (8) and introducing Ψ, we have

∇(∇ ·Ψ)−∇2Ψ =

(
− ∂c

∂y
,

∂c
∂x

, 0
)

, (A7)

where we have again used the fact that∇×∇P = 0 to eliminate pressure from the governing equations.
If we choose ∇ ·Ψ = 0 to specify the gauge condition, this simplifies to

∇2Ψ =

(
∂c
∂y

,− ∂c
∂x

, 0
)

. (A8)

The condition ∇ ·Ψ = 0 is satisfied throughout the domain if [40]

ψx = ψy = 0, z = 0, Ra,

∂ψz

∂z
= 0, z = 0, Ra.

(A9)

The governing equations are then

∇2Ψ =

(
∂c
∂y

,− ∂c
∂x

, 0
)

, (A10)

∂c
∂t

+ u · ∇c = γ

(
∂2c
∂x2 +

∂2c
∂y2

)
+

∂2c
∂z2 , (A11)

where the continuity is satisfied automatically, because ∇ · (∇×Ψ) = 0 for any Ψ.
Finally, it is straightforward to show that ψz = 0 in order to satisfy ∇2ψz = 0 and ∂ψz

∂z = 0,
which means that the vector potential has only x and y components,

Ψ = (ψx, ψy, 0), (A12)

and therefore the fluid velocity u = (u, v, w) is

u =

(
−

∂ψy

∂z
,

∂ψx

∂z
,

∂ψy

∂x
− ∂ψx

∂y

)
. (A13)

Note that if there is no y dependence, Equation (A10) and Equation (A11) reduce to

∇2Ψ =

(
0,− ∂c

∂x
, 0
)

,

∂c
∂t

+ u · ∇c = γ
∂2c
∂x2 +

∂2c
∂z2 .

(A14)

It is simple to show that ∇2ψx = 0 and ψx = 0 at z = 0,−Ra are only satisfied if ψx = 0 in
the entire domain. In this case, the governing equations reduce to the two-dimensional formulation,
as expected.
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