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Abstract: The dynamics of a spherical particle in an asymmetric serpentine is studied by finite
element method (FEM) simulations in a physically unconstrained system. The two-way coupled
time dependent solutions illustrate the path of the particle along a curve where a secondary
flow (Dean flow) has developed. The simulated conditions were adjusted to match those of an
experiment for which particles were focused under inertial focusing conditions in a microfluidic
device. The obtained rotational modes inferred the influence of the local flow around the particle.
We propose a new approach to find the decoupled secondary flow contribution employing a
quasi-Stokes flow.
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1. Introduction

Inertial migration effects have long been observed in macroscopic systems in studies regarding the
flow of cells through capillaries and rheology experiments with suspensions of spherical particles [1–4].
Saffman later provided the theoretical basis that attributed this apparent migration of particles and
cells to the inner region of capillary tubes and blood vessels to non-linearities of the Navier-Stokes (N-S)
equations [5]. With the advent of microfluidic technologies, inertial migration has acquired significant
attention, thanks to its associated passive focusing capabilities in devices in which some form of
suspended particulate flows in a driving fluid [6,7]. Microfluidic devices composed of serpentines
or spiral channels are particularly suitable for experiments in which efficient conditions for inertial
focusing are sought, because transverse flows that spontaneously emerge in curved geometries assist
particles and cells in reaching stable positions faster [8–13]. Experimental and theoretical developments
in the physics of inertial migration have improved our understanding of this phenomena [14–16] and
have led to the study of the underpinning mechanics for real-life conditions with finite Reynolds
number (Re) and finite particle size approximations [17–20]. The Reynolds number (which is used in
fluid dynamics to quantify, in relative terms, the importance of viscous over inertial forces) is defined
as Re = ρUH/µ, where ρ is the fluid density, U its velocity, H is a characteristic length of the system,
and µ is the viscosity of the fluid.

In parallel to the development of the theory of inertial migration of particles, numerical methods
have emerged as a powerful tool to predict inertial forces and particle focusing positions. Aiming at
reducing the computational complexity of the simulated dynamics of particles in confined flows,
many authors have proposed the use of an iterative procedure according to which the variables of
the problem are referred to a moving frame of reference fixed to the moving sphere [21–25]. Since the
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sphere is stationary with respect to this frame of reference, the velocity of the backwards-moving walls
and the angular velocity of the particle are then iteratively updated until the particle moves force and
torque free. This method helps find the inertial force distribution over the particle in a section of the
channel. The use of such a physically constrained system, however, requires prior knowledge of the
velocity and spin direction of the analyzed particle, which makes it unsuitable for complex channel
geometries. Liu et al. proposed the use of an explicit formula for the lift force to predict the trajectories
of particles in complex geometries using a Lagrangian tracking method [26]. The coefficients of this
formula, however, need to be determined through computational fluid dynamics (CFD) simulations of
N-S equations solved for flows in straight channels.

Given the complexity of simulating particle migration conditions, some authors have proposed
the use of lattice Boltzmann methods (LBM) [27–30], due to their lower memory consumption with
respect to the more generally used finite element method (FEM) [31]. Nonetheless, LBM is prone
to cause instability issues in particle-fluid interaction simulations owing to its inherent inefficient
representation of the solid boundary interface [32]. Additionally, this method relies on analytical
solutions [28] that, in some cases, are only valid for very small Reynolds numbers. In order to improve
the treatment of particle-fluid interactions at the boundary level, a coupling between LBM and the
immersed boundary method (IBM) [33] was proposed (IB-LBM) [32]. Employing the IB-LBM method,
Jiang et at. studied the focusing conditions of spherical particles in a symmetric serpentine [34].
The drawback of the IB-LBM method is that the velocity field of the fluid and the particle are found by
including a body force term into the lattice Boltzmann equation. This body force is in turn deduced
from the deformation suffered by the boundary of the solid-fluid interface. Consequently, one must
provide the simulation code with an appropriate stiffness factor—not too small so that it prevents
flow perturbations caused by the deformation of the particle, but not too big so that no measurable
distortion is obtained preventing the simulation to converge [32]. The requirement for a measurable
deformation in the IB-LBM method may also be the cause for particles moving close to the center of
symmetry of a given channel geometry, remaining in those positions, even when inertial focusing
conditions are reached [34], a situation that is not reflected in the real experiment.

Fluid-structure interaction methods (FSI) are normally employed in systems in which
deformations of a solid structure are expected, given their interaction with some fluid [35–38]. Because
of computational restrictions, this method is rarely employed in simulations in which one of its
components translates a long distance, e.g., a particle moving through a microfluidic channel. However,
although scarce, previous work demonstrates the convenience of applying FSI methods for moving
particles [39–41]. The strength of this method is that it provides a solution that fully describes the
physics of the process since the particle and the flow are defined with unconstrained components
during the simulation—it can model how a moving object and the surrounding fluid affect each other.

In this paper, we propose a new two-way coupling FSI 3D model scheme for an asymmetric
serpentine to simulate the influence of drag and inertial forces of the fluid over a particle with
unrestricted degrees of freedom. In order to test the accuracy of this model, we obtained images of
focused fluorescent particles in a microfluidic device and then compared the luminous streak with the
obtained trajectory in the simulation process. The flow rate and geometry of the simulated domain
were adjusted to match the experimental values in the microfluidic device. The simulation results
from the free-rotating particle also allowed to find the angular velocity components of the particle,
providing a set of variables that are hardly attainable under postulated assumptions alone. Using a
provided definition for the transverse flow (Dean flow), we present a phenomenological relationship
about the behavior of the rotating particle and its interaction with the Dean and gradients of the
flow. We believe that the description about the evolution of the angular velocity of the particle
can be incorporated in a variety of systems, e.g., spirals [10,42,43], symmetric serpentines [44],
and expansion/contraction chambers [45], to name a few, in order to define pre-set angular velocity
components in less computation-intensive simulations like the ones we find in the literature for the
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more-simple straight channel case [21–25]. This would allow a substantial time improvement for
simulations involving complex microfluidic systems in which some form of transverse flow is present.

2. Model and Methods

In order to test the suitability of our simulation model, a microfluidic device with the
same serpentine geometry was created employing conventional photolithography techniques.
SU8 (SU8-2150, MicroChem Corp., Newton, MA, USA) was spun on a 3-inche silicon wafer at 3500 RPM
to obtain the desired channel height. The design of the serpentine was transferred from a chromium
mask onto the SU8 layer using a UV mask aligner (MG 1410, SÜSS MicroTec AG, Garching, Germany).
The microfluidic chip was elaborated in polydimethylsiloxane (PDMS) (Sylgard 184 from Dow Corning
Corp., Midland, MI, USA). In addition to the conventional channels, the PDMS device also incorporated
cavities to insert micromachined glass mirrors in the vicinity of the serpentine. The PDMS cavities
devoted to the mirror had to be casted from micromachined structures directly stuck onto the Si wafer
and placed very close to the fluidic channel. The mirrors were oriented at 45◦ and its field of view
covered the entire height of the fluidic channel. This allowed to visualize the two stable trajectories of
inertially focused fluorescent polystyrene particles (Figure 1).
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Figure 1. (a) Render that illustrates the position of the lateral mirror with respect to the serpentine;
(b) Zenithal (top) and lateral (bottom) views of the serpentine with an overlapped fluorescence streak
image (false color) from inertially focused particles at a flow rate of 130 µL/min; (c) The limited depth
of field of the employed objective allows the streak of particles reflected in the mirror to focus on
different focus planes (red planes).

For simulation involving only the fluid, which was used to find the solution for the transverse
flow, a 3D periodic unit of the serpentine (Figure 2) was used as the computational domain. Periodic
flow conditions were required to set a pressure difference between a source boundary, where the fluid
enters the domain, and a destination group through which the fluid exits the domain. The pressure
difference was set at 857 Pa so that the desired flow rate of 130 µL/min was obtained during the
simulation; the same used in the experiment with the fluidic device. We chose this geometry and
flow rate for the simulation because the experimental results showed very good focusing conditions
for particles that were optimal after 24 big-small curve doublets. The mesh also incorporated a finer
mesh region inside the small turn in order to improve the simulation results in the region around
which Dean vortex centers are expected to develop. The governing equations for momentum and mass
conservation solved during the computation step were:

ρ
∂
→
v

∂t
+ ρ

(→
v∇

)→
v = ∇[−pI + µ(∇→v +

(
∇→v

)T
)] (1)

ρ∇→v = 0 (2)

where
→
v is the velocity field of the flow, p the pressure, I the unit identity matrix, and ρ and µ the

density and viscosity of the fluid, respectively.
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Bounded flows with some degree of curvature may facilitate the emergence of a flow field
distribution that is perpendicular to the streamwise flow called Dean flow. These flows originate
from the difference in velocity at the inner region of the fluidic channel with respect to the near-wall
regions, which in comparison, due to the parabolic velocity profile, tend to be negligible. When the
flow rate is sufficiently low, the viscosity between the flow elements in a moving mass of fluid
suffices to force the streamlines of fluid to follow the curvature of the channel. The dimensionless
parameter used to characterize the strength of transverse flows is the Dean number, De = Re

√
Dh/2r;

where Dh = 2wh/w + h is the hydraulic diameter, where w and h are the width and height of the
channel, respectively, and r is the radius of the curved channel.
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Figure 2. (a) Geometry’s dimensions of the serpentine; (b) meshed simulation domain for the
CFD simulation represented as a periodic unit of the serpentine. The channel is 73 µm in height;
(c) inner region of the simulation domain. Part of the mesh has been removed to expose the insides
of the mesh, emphasizing the effects of the finer mesh regions in the small curve. Color scale (µm)
represents the mesh element size.

We propose a new approach by which the direction and magnitude of Dean flows can be
numerically calculated at the pointwise level inside a simulation domain employing a FEM. The flow
field is simulated at low and high flow rates and the differences between them are measured
point-by-point in order to infer the magnitude and direction of the resulting transverse (Dean) flow.
In our calculations, we chose the transverse components of the flow field at a given point to be the
velocity field in the z direction (w), and the velocity field components in the x-y plane (u and v for x and
y components, respectively). The latter coordinates are projected along a direction perpendicular to the
streamlines obtained for the simulation at low flow rates (Figure 3). This method can be applied to any
channel geometry, provided that the solutions for two different regimes, creeping flow, and regular
laminar flow, can be obtained.
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Figure 3. (a) Obtained streamlines for a flow with negligible Dean flow (black lines) and for
Q = 130 µL/min (red lines) for h = 73 µm measured at z = 36.5 µm. Dean flows at this height displace
the streamlines outwards in the central region of the curves; (b) decomposition, at any given point,
of a flow velocity vector (

→
v ) to a direction perpendicular to its corresponding negligible Dean flow

streamline at that point. The perpendicular direction (n̂) is found using the variables u0 and v0 from
the solution at low flow rates; (c) once the flow rate is increased, Dean flow appears and the velocity
vector, now with v and u components, can be projected along vector n̂.
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The analytical expression of the transverse flow field is then defined point-by-point and expressed
in terms of the variables obtained in a simulation involving a low flow rate (Q(v0 = 1 µm/s) ≈
1.8 × 10−4 µL/min), u0 and v0, and the variables obtained in the studied flow rate (Q(v0 = 0.67 m/s) =
130 µL/min) u, v and w:

→
v trans = (u sin θ − v cos θ)

→
n + w

→
z ; θ = tan−1

(
v0

u0

)
. (3)

Dean patterns are commonly represented as flow field projections in a section of a microfluidic
channel [26,34,45,46]. Such representation is indirectly based on the assumption that the streamlines of
a hypothetical creeping flow are perpendicular to the said plane because its tangent components are
taken as the Dean flow components. Reference cross-sectional planes (based on the geometry of the
channel) to represent such flows can yield inaccurate results since, in general, it cannot be guaranteed
that the streamlines of a flow, for which inertial effects can be neglected, are indeed perpendicular
to the reference plane at any point. This is particularly true for the case of channels with complex
geometries, such as serpentines or mixers, where new techniques have to be applied in order to
visualize the complicated flow patterns that emerge [47,48].

The FSI simulation (in addition to N-S equations) also incorporated a term for the load on the
solid boundary and a moving wall condition (displacement of the solid) for the fluid domain:

→
F solid = −n̂[−pI + µ(∇→v + (∇→v )

T
)] (4)

→
v wall =

∂
→
u solid
∂t

(5)

were n̂ is the normal vector to the boundary of the sphere,
→
v wall is the velocity of the fluid-solid

interface, which acts as a moving wall for the fluid, and
→
u solid is the structural displacement of

the solid.
Figure 4 depicts the 3D fluid domain employed during the FSI simulation process. Unlike the

stationary case, we opted not to use a periodic domain in the simulation involving the interaction
between the particle and the flow. The reason is that periodic flow conditions only allow the use of
pressure differences between the source and destination boundaries of the domain. The problem of
using a pressure difference as a driving source for the flow in a transient simulation is that the pressure
difference between the source and the destination boundaries—the pressure needed to obtain the
desired flow rate—fixes the time it takes the flow to achieve stationary conditions, a regime that is
expected as the particle travels through the region of interest (the small curve). Unfortunately, in our
geometry, the time it takes the flow to achieve such conditions is so long that the particle penetrates the
region of interest, while the flow hasn’t yet achieved stationary conditions (stationary flow rate and
velocity profiles). Instead, by fixing an inflow velocity field distribution as a boundary condition for the
inlet modulated by a smooth time dependent function, we can artificially set the time it takes the fluid
domain to achieve a fully developed flow, a time that will be short enough so that the particle enters
the small turn long after this condition is achieved. With this new boundary condition, we designed a
new domain that comprised of a straight channel section, where the flow first develops, followed by
a succession of big-small-big turns whose geometric parameters coincide with the microfluidic chip
used to focus Ø = 10 µm particles in the experimental section. Like in the CFD simulation, the flow
rate was set at 130 µL/min. The inlet velocity flow profile is approximated to that of a rectangular
section channel by the expression:

→
v
(→

r , t
)
= 16v0

x(x0 − x)z(z0 − z)
x2

0z2
0

step
(

t
[

1
s

])
ŷ (6)
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where step (t[1/s]) is a dimensionless smoothed step function included to improve the convergence at
the beginning of the time dependent simulation. 16/x2

0z2
0 is a normalizing factor at the inlet boundary

condition so that
→
v
(→

r , t
)
= v0 at the center of the inlet. Similarly, the expression in the numerator

ensures that
→
v
(→

r , t
)

decays from the center of the channel out down to 0 at the walls in accordance
with the no slip wall boundary condition for the flow introduced in the simulation. Notice that in
the selected reference frame

→
v
(→

r , t
)

has only a y-component at the inlet (Figure 4a). A 0 Pa pressure
condition is set at the outlet. v0 is chosen so that, after stationary conditions are achieved, the desired
flow rate is obtained in the channel (with our channel section, Q(v0 = 0.74 m/s) ≈ 130 µL/min).
The flow rate is monitored by integrating the obtained flow fields across an arbitrary section of the
channel. The length of the straight section ensures that the approximated velocity profile will have
enough time to be fully developed at its end, before entering the first of the two big turns. Likewise,
the big turn was completely included in the computational domain to ensure that the developed flow
at the entry of the small turn was as similar as possible to the periodic case.
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the different sized meshes. The upper one corresponds to the region of the domain where the particle
will translate through the curve; (c) zoomed section of the mesh showing the particle domain (green) at
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The mesh of the fluid domain was composed of two differentiated regions with two different mesh
sizes (Figure 4b). The finer mesh region was restricted to the upper half of the channel. It was devoted
to act as an “envelope” domain for a particle in the upper stable trajectory; it was placed in such a
way that, during the simulations, the particle would remain inside this domain at all times. The finer
mesh allows the solver to calculate the variables of the problem more precisely, since it can resolve the
gradients of pressure and velocity in the vicinity of the sphere more reliably. The domain also included
a spherical mesh 10 µm in diameter (Figure 4c), representing a particle, whose material properties
were adjusted to match those of polystyrene. The series of FSI simulations consisted of numerically
solving pathline trajectories of these spherical particles with different initial positions. The initial and
final positions in the resulting simulation were located well away from the entry and exit of the small
turn of the serpentine so that the particle’s behavior in this region was entirely captured. The mesh of
the sphere itself was customized with lower element sizes than the predefined ones in order to obtain
a reliable measurement of the calculated reaction forces.

Since the flow and pressure profiles solutions are symmetric in z, the study of one of the two
trajectories is enough to characterize the effects of the Dean flow when no interaction between particles
is considered. In order to reduce the computational complexity and the number of degrees of freedom
of the simulation, a coarser mesh was used in the rest of the fluid domain, a domain which only
contained fluid throughout the simulation. It has to be stressed that due to the geometry of the
problem and the complexity of the flow patterns arising in the channel, the 3D simulation could not
make use of symmetries that would speed up the convergence of the solutions. Likewise, inertial
terms in the N-S equations (which lead to non-linearities) could not be neglected in order for inertial
migration effects to arise in the solutions.
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In our problem, the FSI formulation couples the flow field and pressure solutions from N-S
equations for an incompressible flow to solid mechanics equations, namely, the reaction forces over the
solid boundary of the particle. The use of the FSI formulation for the time-dependent study in COMSOL
(version 5.0, COMSOL Inc., Stockholm, Sweden) incorporates an arbitrary Lagrangian-Eulerian (ALE)
method that takes into account the deformation of the mesh in the fluid domain caused by the
movement of the particle being displaced under the influence of the surrounding flow. No constraint
is applied on the particle, so it becomes a freely moving mesh. This circumstance imposes the use
of an automatic remeshing feature at the mesh surrounding the particle, otherwise the fluid domain
would be deformed indefinitely over time as the particle (the spherical mesh) moves along the channel
(Figure 5).Fluids 2018, 3, 62 7 of 15 
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Figure 5. Different stages of the movement of a Ø = 10 µm spherical domain (green sphere) through
the fine (rainbow) mesh. The last picture shows the remeshing of the fine mesh. Bluish facets in the
fine mesh represent low mesh quality regions.

3. Results and Discussion

3.1. Stationary Solution for the Transverse Flow Field

Figure 6 illustrates the simulation results for the velocity magnitudes of the flow at a given flow
rate and channel height (Q = 130 µL/min, h = 73 µm). The velocity magnitude distribution clearly
reveals the asymmetric character of the flow; the maximum values of the velocity tend to be displaced
in the streamwise direction.
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Figure 6. (a) Flow velocity magnitude for Q = 130 µL/min and h = 73 µm measured at z = 36.5 µm,
at the middle height of the fluidic channel; (b) Flow velocity magnitude for the same flow conditions
measured at the y-z plane halfway through the small curve.

The transverse flow was decoupled from the main flow so the contribution of the Dean vortices
can be inferred (Figure 7). In order to get a complete picture and to improve the understanding of the
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geometric complexity of the transverse flows, transverse velocity isosurfaces are also represented in
Figure 8. As expected, secondary flows direction and intensities vary along the height of the small
curve having its maximum intensity in the middle height region of the channel (corresponding to flow
moving radially outwards) and in opposite direction near the top and bottom boundaries (flow moving
inwards). No secondary Dean vortices were observed in the simulations of the small curve given their
moderate aspect ratio [49]. For heights near the middle of the channel, two well-defined boundaries of
negligible transverse flow between the small and big turns regions are visible. These boundaries are
the consequence of a flow transition in these regions due to a rotation inversion of the Dean vortices
between the small and big turns. For a region between the half height of the channel and its top wall
(z = 55.5 µm), a curved path with negligible transverse flow velocity is visible at the inner region of
the small turn (Figure 7b). At z = 17.5 µm, an additional null velocity path can be found. These paths,
which follow the curvature of the small turn, represent the position of the center of the upper and
lower Dean vortices generated in the small turn (Figure 8). Some authors have highlighted what
appears to be a tendency of focused particles to travel along vortices centerlines [34], which would
explain the emergence of two stable trajectories of focused particles in some curved geometries, one for
each upper and lower Dean vortices centerlines.
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Figure 7. Modulus of the transverse flow field calculated at different heights. The transverse flow
field strength is an order of magnitude weaker in the big curve. (a) At z = 36.5 µm (middle height),
the magnitude for an outwards-moving flow is maximum; (b) At z = 55.5 µm, a null velocity region
(the center of the upper Dean vortex) is visible in the central region of the small curve; (c) The magnitude
of the velocity in the small curve increases again as we move upwards. This time, the flow is moving
inwards, in the direction of the center of curvature.
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of the cut section. The null transverse velocity paths are visible at the center of the Dean vortices.

3.2. FSI Simulation

One of the purposes of the FSI simulation was to find the numerical solution that would best
describe the movement of a Ø = 10 µm particle along the trajectory found in the experimental section at
Q = 130 µL/min. An overlap between the averaged fluorescence streak image from the experiment and
an animation provided by the time dependent solution of the moving sphere was used as a comparison
method between the experiment and the simulation (Figure 9). Since no height information of the
particles can be extracted from a zenithal view of the fluorescence streak, lateral images of the small
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curve were taken using the inserted mirrors in the microfluidic device. This allowed to obtain the
approximate height of the trajectory and use it as a guess for the particles’ initial position in the
simulation. Since the height of the stream of particles could not be measured with enough precision,
slightly different initial positions for the spherical mesh were tested during the FSI simulations in
order to find the best fit with the experimental data.
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The particle, initially at rest at the beginning of the simulation, gradually starts to spin while 

being displaced by the drag in the streamwise direction producing an angular velocity vector 

contained in the x-y plane (Section 1 in Figures 10b and 11). Taking into account its proximity to the 

upper wall, the spin direction of the particle is the one that might be expected for an inertially focused 

Figure 9. (a) Overlapping of the experimental image for a focused streak of Φ = 10 µm particles
and positions of the particle calculated with the FSI simulation along the small (white circles).
The overlapped image is represented in false color to improve the visibility of the streak; (b) Composed
perspective of the 3D trajectory of the particle (red line).

3.3. Particle Rotational Velocity Components

Data from the FSI simulation was analyzed to obtain the angular velocity components of the
particle as it moves along its trajectory in the upper half region of the small curve (Figure 10a) under
the influence of the upper Dean vortex. Given the observed changes in the direction and strength of
the angular velocity vector in this region of the channel, we can distinguish between different particle
behavior regimes (Figure 10b–d). The obtained rotation rates are in the kilohertz range, the same that
has been observed in straight channels with conventional flow rates [21,50].
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Figure 10. (a) Angular velocity components of the particle as a function of the simulation time. ωTotal is
the total angular velocity magnitude; (b) Angular velocity vector along the trajectory of the particle as
seen from a zenithal view; (c,d) Angular velocity vector seen from different perspectives in COMSOL’s
frame of reference.
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The particle, initially at rest at the beginning of the simulation, gradually starts to spin while being
displaced by the drag in the streamwise direction producing an angular velocity vector contained in
the x-y plane (Section 1 in Figures 10b and 11). Taking into account its proximity to the upper wall,
the spin direction of the particle is the one that might be expected for an inertially focused particle
under the influence of a vertical parabolic shear gradient [22,23]. Viscous forces exerted by the fluid
located between the particle and the inner region of the channel (which moves faster than the particle)
and the fluid between the particle and the upper wall (moving slower than the particle) create a torque
that add up to the same direction, creating a net spin over the particle (ω1).
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of the Dean vortex [34]. As for the total angular velocity vector of the sphere, it gradually moves 

counterclockwise (Sections 2 and 3 in Figure 10b) under the influence of this new component. Since 

the particle translates along the centerline of the Dean vortices, the flow revolving around the particle 
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component tangent to its trajectory pointing upstream (Figure 12c) along the regions where Dean 

flows are stronger. This is reflected by the fact that the resulting angular velocity vector is no longer 

perpendicular to the trajectory (Section 3 in Figure 10b). A side-effect of the rotation of the particle 

due to the shear gradient (causing a strong ω1 component), while being under the influence of a 

secondary flow, is that the interface between the outward- and inward-moving flow suffers a 

distortion caused by the no-slip boundary condition of the rotating particle; the surface of the rotating 

Figure 11. (a) Velocity magnitude at the half height of the channel; (b) Vertical section of the fluidic
channel at the inlet region of the small curve showing the velocity magnitude distribution. The shear in
the vertical direction induces an angular velocity vector,ω1, contained in the x-y plane pointing away
from the small curve center.

Right after entering the small curve, the angular velocity vector momentarily deviates downwards,
indicating the emergence of a clockwise spin rotation around the z axis (if we look at the particle from
above). This component reaches its maximum in the transition boundary between the inward and
outward lateral moving flow (Section 2 in Figures 10b and 12a,b) at the plane where the particle is
moving. Once the particle leaves this region, the velocity vector returns to the x-y plane.
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Figure 12. Simulated transverse velocity magnitude and sense of the flow in the x-y plane.
Reddish regions correspond to an outward-moving flow (moving away from the center of curvature of
the small curve) and vice versa for the bluish regions. (a) General view of the channel with marked cross
sections; (b) Transverse flow field gradients in the x-y plane induce particle’s rotation,ω2; (c) The flow
around the particle in the center of the Dean vortex further induces a change in the particle’s rotation
with aω3 component in the x direction; (d) The rotating particle causes a disturbance (yellow arrows)
at the interface between the outward and inward lateral flows with Vt components, which in turn
causes a modification in the angular velocity of the particle yielding to theω4 component.

In the next region of the trajectory, as the particle approximates halfway of the small turn,
the influence of the upper Dean vortex starts to show up as the particle is forced to rotate in the
direction of the Dean vortex [34]. As for the total angular velocity vector of the sphere, it gradually
moves counterclockwise (Sections 2 and 3 in Figure 10b) under the influence of this new component.
Since the particle translates along the centerline of the Dean vortices, the flow revolving around the
particle (a flow that is perpendicular to the streamwise flow) forces it to acquire an angular velocity
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component tangent to its trajectory pointing upstream (Figure 12c) along the regions where Dean
flows are stronger. This is reflected by the fact that the resulting angular velocity vector is no longer
perpendicular to the trajectory (Section 3 in Figure 10b). A side-effect of the rotation of the particle due
to the shear gradient (causing a strongω1 component), while being under the influence of a secondary
flow, is that the interface between the outward- and inward-moving flow suffers a distortion caused
by the no-slip boundary condition of the rotating particle; the surface of the rotating sphere drags
the surrounding fluid altering this interface. This distortion causes the torque to suffer a change on
its balance that causes the velocity vector to move downwards (Figure 12d), increasing its negative
z-component (clockwise rotation of the particle as seen from above).

Simultaneously, as the particle moves along the curve and this clockwise rotation in the z direction
increases in magnitude, it further induces a distortion of the Dean flow in the z direction around the
particle modifying the torque balance again (Figure 13).
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Figure 13. (a) z-component of the transverse flow field. Reddish regions correspond to flow moving
upwards and vice versa for bluish regions; (b)The vertical rotational component of the particle (ω4−z)
induces a disturbance in this component of the lateral flow field (yellow arrows) that modifies the
behavior of the rotating particle (ω5 component).

This additional distortion modifies the angular velocity vector by forcing it to move inwards to
the center of curvature (Section 3 in Figure 10b). Apparently, this induced torque is strong enough to
counteract the effect of the shear-inducedω1 component, inverting its original spin direction.

As the particle approaches the end of the small curve, the strength of the Dean flow gradually
decreases and the distortions of the flow are greatly attenuated. As can be seen in Figure 14b,
the interface between the inward- and outwards-moving flow remains relatively unaltered. However,
similarly to what is observed at the inlet of the small curve, the gradients that the particle encounters
as it exits the small curve induce a strong counterclockwise rotation around the z-axis (Figure 14c).
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Figure 14. Transverse velocity magnitude and sense of the flow in the x-y plane. (a) General view of
the channel with marked cross sections; (b) The interface between the outward- and inward-moving
flow is no longer distorted so no modification of the angular velocity vector is produced in this region;
(c) A strong induced angular velocity (ω2, with positive z direction) is observed at the vicinity of the
transverse inwards-outwards transition region.
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At the outlet of the small curve, the particle also encounters regions with big velocity magnitudes,
hence, stronger gradients in the vertical direction. The cumulative effect of the reduction in Dean
intensity and the pronounced streamwise flow gradient increase in the vertical direction causes a
restitution of the original particle spin pointing outwards (Figure 15, Section 4 in Figure 10b). Like in
the case of the particle entering the small curve: since the particle is moving far from the lateral walls,
the shear-induced rotation effect is expected to be stronger in the vertical direction; because of the
parabolic velocity profile, the lagging-leading flow differences at each side of the particle are expected
to be much greater in the vertical direction. As the particle enters the big curve, the angular velocity
vector gradually moves to the x-y plane again.
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in the vertical direction induces an angular velocity vector contained in the x-y plane.

4. Conclusions

We presented CFD and FSI simulation results for the flow in an asymmetric serpentine and
an unrestricted free spherical particle. A custom-made microfluidic device was fabricated in
order to compare the numerical results with the experiment conducted at the same conditions.
The micro-mirrors inserted in the microfluidic device were useful to verify the existence of two
stable trajectories, mirrored in z, for the focused particles and to make an estimation of the height of
the streak to use it as the initial conditions in the FSI time-dependent simulation.

We also introduced a new methodology, based entirely on the results of numerical simulations,
to obtain the transverse flow magnitude in a curved geometry. The fact that this method is based
on the measurable differences between a creeping flow and the flow containing transverse lateral
flows helps find the direction and magnitude of the transverse flow at any point in the fluidic domain
without any geometric bias such as the ones that may be introduced by section planes when Dean
patterns are represented.

FSI results suggest that particles focused under inertial focusing conditions tend to be entrained
in the centerlines of the Dean vortices, something already observed by Jiang et al. [34] with the IB-LBM
method. This fact seems to be relativizing the importance of Dean drag contribution to inertial focusing
conditions in curved channels; particles appear to have a preference to be focused at regions with
small local lateral flow intensities. The comparison between the trajectory found in the simulation
and the experimental one shows good agreement between them validating the join application of
FSI + ALE + remeshing features in COMSOL.

The obtention of the rotational components of the translating sphere revealed the complexity
of the particle’s dynamics as it moves along its trajectory. This behavior clearly differs from the one
observed in straight channels due to the presence of Dean flows in the small curve. Provided that
particles seem to be translating along Dean vortices centerlines under focusing conditions, this fact
can already be used as a simplification of the simulation by means of constrained variables because
centerlines can be obtained with conventional CFD simulations alone. The elucidation of the theory
behind the apparent movement and focusing of particles through vortices’ centerlines will require
further studies (its response to flow rate changes and particle’s confinement ratio, among others).
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We believe that our analysis on angular velocity components can be incorporated to simpler simulation
models to infer, at least as a first approximation, the evolution of the angular velocity of the particle
on its path through a curved geometry, suppressing the need to perform computationally intensive
simulations with coupled solvers. The use of a complex structure (the asymmetric serpentine) has
probably improved our understanding of the particle’s behavior in a way that it probably couldn’t be
achieved if we had simulated focusing conditions in a simpler geometry (a spiral or a curved channel
for instance), for which Dean inversions and abrupt gradient changes hardly occur.
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