
fluids

Article

Optimal Perturbations of an Oceanic Vortex Lens

Thomas Meunier 1,* , Claire Ménesguen 2, Xavier Carton 3 , Sylvie Le Gentil 2

and Richard Schopp 2

1 Departamento de Oceanografía Física, Centro de Investigación Científica y de Educación Superior de
Ensenada, 22860 Ensenada, Baja California, Mexico

2 Laboratoire d’Océanographie Physique et Spatiale, Ifremer, 29280 Plouzané, France;
Claire.Menesguen@ifremer.fr (C.M.); Sylvie.Le.Gentil@ifremer.fr (S.L.G.); Richard.Schopp@ifremer.fr (R.S.)

3 Laboratoire d’Océanographie Physique et Spatiale, Institut Universitaire Européen de la Mer,
29280 Plouzané, France; xcarton@univ-brest.fr

* Correspondence: meunier@cicese.mx; Tel.: +52-646-175-0500

Received: 27 June 2018; Accepted: 15 August 2018; Published: 31 August 2018
����������
�������

Abstract: The stability properties of a vortex lens are studied in the quasi geostrophic (QG) framework
using the generalized stability theory. Optimal perturbations are obtained using a tangent linear
QG model and its adjoint. Their fine-scale spatial structures are studied in details. Growth rates
of optimal perturbations are shown to be extremely sensitive to the time interval of optimization:
The most unstable perturbations are found for time intervals of about 3 days, while the growth rates
continuously decrease towards the most unstable normal mode, which is reached after about 170 days.
The horizontal structure of the optimal perturbations consists of an intense counter-shear spiralling.
It is also extremely sensitive to time interval: for short time intervals, the optimal perturbations are
made of a broad spectrum of high azimuthal wave numbers. As the time interval increases, only low
azimuthal wave numbers are found. The vertical structures of optimal perturbations exhibit strong
layering associated with high vertical wave numbers whatever the time interval. However, the latter
parameter plays an important role in the width of the vertical spectrum of the perturbation: short
time interval perturbations have a narrow vertical spectrum while long time interval perturbations
show a broad range of vertical scales. Optimal perturbations were set as initial perturbations of the
vortex lens in a fully non linear QG model. It appears that for short time intervals, the perturbations
decay after an initial transient growth, while for longer time intervals, the optimal perturbation keeps
on growing, quickly leading to a non-linear regime or exciting lower azimuthal modes, consistent
with normal mode instability. Very long time intervals simply behave like the most unstable normal
mode. The possible impact of optimal perturbations on layering is also discussed.

Keywords: vortex lenses; intrathermocline eddies; instability; optimal perturbations

1. Introduction

1.1. Meddies

Vortex lenses (also known as Intrathermocline Eddies [1] or Submesoscale Coherent Vortices [2])
are interior oceanic eddies. They commonly form in the vicinity of major intermediate water outflows
off concentration basins: Meddies in the Mediteranean outflow ([3–5] among many), Peddies in
the Persian Gulf outflow [6–8] or Reddies in the Red sea outflow [9,10], but were also observed in
many marginal seas such as the Mediterranean [1], Beaufort [11], Tasman [12] seas or in the Gulf
of Mexico [13]. They usually have strong spice signatures as the water they carry is warmer and
saltier than the surroundings. The associated density field is characterized by stretched isopycnals
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near the eddy core and squeezed isopycnals above and below. This results in a baroclinic tripole
potential vorticity anomaly (PVA) structure, with a negative PVA core surrounded by two positive
PVA lobes [2,14–16]. This PVA distribution induces a vertically sheared anticyclonic circulation.

Among all vortex lenses, meddies have without a doubt been the most observed, and are likely
the most common both in the literature and in the ocean. The reader can refer to [3–5,17,18], for more
details on meddies hydrographic and dynamic properties.

Meddies were identified as the principal source of transport of Mediterranean Outflow Water
(there after MOW) [3,19]. The mixing of this warm and salty water mass in the North Atlantic has
a major climatic impact as it modifies dramatically the basin’s heat and salt content which drives
the meridional overturning circulation. The occurrence of layering above and below meddies was
identified as a crucial step of the MOW mixing process by lowering the vertical scale of thermohaline
anomalies down to a few metres, where vertical mixing becomes important [17,20,21]. Several
processes were proposed to explain the formation of such layers around meddies (and vortex lenses
in general): Double diffusive processes [22], critical layer instability [21] and tracer stirring [23,24].
In the latter process, the vertical shear of the azimuthal velocity field of meddies generates high
vertical wave number variability from any azimuthal variability. Baroclinic instability of meddies
was studied by [21,25] and was shown to be a source of azimuthal variability by breaking the
vortex symmetry and might therefore play a primary role in the formation of layering, hence the
diffusion of the vortex’s thermohaline properties. Baroclinic instability was also shown to be able
to split and trigger filamentation of vortex lenses [21,26] and could thus drive the production of
small horizontal scales, which would in turn feed the vertical scale cascade through differential
advection [24,27,28]. The stability properties of vortex lenses is thus an important topic as they strongly
influences the production of small scale variance and possibly favour the mixing of a climatically
important water mass.

The linear and non-linear stability of barotropic or surface intensified vortices has been extensively
studied from the 70s ([29–31] among many). Though the stability of vortex lenses may have received
less attention, works from [21,25,26,32] provide valuable information on the normal mode instability
of these structures. Meddies are typically unstable to low azimuthal mode perturbations. The most
unstable azimuthal modes are sensitive to the meddy’s local Burger number: in the case of wide,
strongly baroclinic lenses, baroclinic instability dominates [32] and the lowest azimuthal wave
numbers (modes 1 and 2) emerge while for less stratified or taller lenses, higher modes take over
(modes 3 and 4), consistent with mixed baroclinic-barotropic instability [25,32,33]. Carton et al. [26]
determined that for a typical Burger number (O(10−1)), the Rossby radius was the critical vortex
radius above which baroclinic instability dominates over barotropic instability. They also showed that
the PVA distribution of the vortex lens had a strong impact on its stability properties. Using idealized
PVA profiles based on observed Rossby and Burger numbers, Hua et al. [21] finally showed that a
typical meddy would preferentially be baroclinically unstable, with growth rates significantly slower
than the vortex rotation period. However, all the aforementioned studies were restricted either to the
normal mode linear instability, or to the long term non linear evolution of the vortices.

1.2. Optimal Perturbations

Normal modes only represent a subset of the possible perturbations, and only on particular
occasions are they the fastest growing perturbations: Farrell [34] showed that even though the normal
modes dominate the long term destabilization of a flow, transient growth of non-normal perturbations
at short time scales can be large enough for the disturbances to reach amplitudes where non-linear
effects become important before the normal modes emerge. Indeed, while normal modes grow
exponentially with time at a constant rate, there may exist other perturbations with faster growth rates
during a finite time interval. This notion of time interval is crucial as an optimal perturbation is only
optimal for a given finite time. This theory, referred to as the generalized stability theory and further
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formalized in [35] consists in searching the fastest growing perturbation regardless of any hypothesis
on the perturbation’s spatial and temporal structure and will be detailed in Section 2.1. It received
much attention in the atmospheric community, and was successfully implemented in data assimilating
forecasting models [36–38], confirming that at short term, non-modal perturbations grow faster than
normal modes and can trigger explosive cyclogenesis.

Though it was less widely spread in the oceanic community, the methods was applied in a
QG model of the Gulf Stream [39] showing that in an intense baroclinic oceanic jet, the optimal
perturbations are not of the normal mode type, and should then be considered when aiming to describe
the stability of coherent oceanic structures. This is particularly true for some flows (such as the Orr flow)
that are stable to normal modes and were found to be unstable to non-modal perturbations [40].

The application of the generalized stability theory to the case of coherent vortices was so
far almost restricted to very high Rossby number atmospheric structures such as Hurricanes and
tornadoes [41,42]. One recent and notable exception to this is the study of non-modal instability of
two layer QG baroclinic vortices and its sensitivity to the stratification and PVA distribution by [43].
They showed that slow geostrophic vortices also could be more unstable to non-modal perturbations
than to normal modes, but the study was performed in an idealistic 2-layered framework, and could
not reveal the detailed spatial structure of the optimal perturbations nor its extreme sensitivity to the
time interval.

The present study describes the growth and detailed spatial structure of the optimal perturbations
of an oceanic vortex lens and their sensitivity to the chosen time interval using the adjoint
methods of [39,44] in a very high resolution QG model. Though several aforementioned studies
showed that both stratification and PVA distribution could impact the stability properties of vortex
lenses, here, we will restrain ourselves to the realistic and well studied Cauchy-Lorentz vortex
profile of [21].

A brief summary of the generalized stability theory and of its application in the QG framework to
compute optimal perturbations is described in Section 2.1. Details of the numerics of the model are
given in Section 2.2 and a definition of the vortex parameters can be found in Section 2.3. The results
are given in Section 3: In Section 3.1, we show the convergence properties of the adjoint methods and
describe the obtained optimal perturbations in terms of growth rate, and their dependencies on the
time interval. The fine-scale spatial structures of the optimal perturbations are detailed in Section 3.2.
In Section 3.3, we show the evolution of the optimal perturbations in a fully non-linear QG model,
their effective growth rates and the time evolution of their azimuthal and vertical structures. Finally,
these results are summed up and discussed in Section 4

2. Methods

2.1. Adjoint Methods

The theory and methods used here to obtain the optimal perturbations of the vortex lens
are entirely based on the work of [39,44] in the QG framework. While we will sum up a brief
overview of the methods restricted to optimal perturbations in the sense of energy maximization for
time-independent mean flows (autonomous operators) with constant Coriolis parameter and Brünt
Väisälä frequency, we strongly recommend the reader to refer to [44,45] for a general and detailed
description of the theory and methods along with an inspiring discussion.

In the QG framework, PV (q) relates to the stream function (ψ) through the linear operator L:

q = Lψ, (1)

L = ∇2 ·+∂z(
f 2

N2 ∂z·), (2)

where ∇2 is the Laplacian operator, z is the vertical coordinate, and f and N are the Coriolis and the
Brunt-Váisálá frequencies, respectively.



Fluids 2018, 3, 63 4 of 20

In the QG model used here, PV evolution reads:

∂tq + J(ψ, q) = −ν∇6ψ, (3)

where ∇6 is a bilaplacian operator associated with the viscosity ν and J is the Jacobian operator.
When studying the instability of a geophysical flow, one is primarily interested in the influence of

initially small disturbances on the flow. It is thus convenient to decompose the variables [ψ, q](r, θ, z, t)
into a mean, stationary, azimuthally symmetric part [ψ, q](r, z) and a time-varying perturbation part
[ψ′, q′](r, θ, z, t) with ψ′

ψ
<< 1 and q′

q << 1. The latter hypothesis allows to drop the perturbation
products in the advection terms of Equation (3) (i.e., the Jacobian operator), yielding to the tangent
linear PV evolution equation:

∂tq′ + J(ψ, q′) + J(ψ′, q) = −ν∇6ψ′. (4)

Using (2), one can link the perturbation stream function to its temporal derivative through a
single linear operator A:

∂ψ

∂t
= Aψ, (5)

A = L−1[J(L·, ψ) + J(q, ·) + ν∇6·], (6)

where the primes have been dropped as we will now only consider the perturbation itself.
The operator A is associated with a unique propagator Rτ that links the solution of (5) at a time

t = τ to the initial conditions t = 0:

ψ(t = τ) = Rτψ(t = 0). (7)

To measure the magnitude of a perturbation at time t = τ, and thus its growth compared to the
initial conditions, it is necessary to define a norm. As discussed by [44,45], the choice of this norm
will dramatically impact the structure and growth of the optimal perturbations. A perturbation that is
optimal for a given norm will likely not be for another one. Here, we will restrain ourselves to the
study of perturbations that maximize the growth of the total energy. In the QG framework, the total
energy is defined as:

Etot = −
1
2

∫∫∫
ψqdxdydz (8)

dropping the 1
2 factor, we can define a convenient inner product associated with the energy norm:

〈·, ·〉 = −
∫∫∫

·L · dxdydz (9)

Using (5), the total energy of the perturbation at time τ is thus measured by 〈ψ(τ), ψ(τ)〉 and the
amplification factor of the perturbation is:

λ =
〈ψ(τ), ψ(τ)〉
〈ψ(0), ψ(0)〉 (10)

=
〈Rτψ(0), Rτψ(0)〉
〈ψ(0), ψ(0)〉 (11)
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By definition of the inner product, the adjoint operator A∗ of the linear operator A and the adjoint
propagator R∗τ of the propagator Rτ satisfy:

〈Aψ, Aψ〉 = 〈A∗Aψ, ψ〉 (12)

〈Rτψ, Rτψ〉 = 〈R∗τRτψ, ψ〉 (13)

where A∗ is defined as:

A∗ = J(ψ, ·) + L−1 J(·, Lψ) + ν∇6L−1· (14)

The amplification factor at time t = τ reads:

λ =
〈R∗τRτψ(0), ψ(0)〉
〈ψ(0), ψ(0)〉 , (15)

and the adjoint of the tangent linear QG model is

∂ψ

∂t
= −A∗ψ (16)

Noting that the adjoint of the propagator of a linear operator is the propagator of the adjoint
operator, Equations (5) and (16) immediately yield to the propagator and its adjoint and thus an explicit
form of the perturbations amplification factors:

Rτ = eAτ (17)

R∗τ = eA∗τ (18)

λ =
〈eA∗τeAτψ(0), ψ(0)〉
〈ψ(0), ψ(0)〉 . (19)

The fastest growing (optimal) perturbation is simply the eigenvector ψ associated with the
largest eigenvalue of the operator R∗τRτ and the growth rate of the optimal perturbation is given by
this eigenvalue.

In practice, integrating an initial perturbation in the QG tangent linear model during a time
interval τ is equivalent to computing Equation (5). The model input is ψ1(0) and the output ψ1(τ) =

Rτψ1(0). Integrating the latter output as an initial condition in the QG adjoint model is equivalent to
computing Equation (16), where the input is ψ1(τ) and the output is ψ2(0) = R∗τψ1(τ) = R∗τRτψ1(0).
Following the power method principle [46], iterating the latter operation until a satisfying convergence
is obtained is an efficient way of determining the largest eigenvalue and associated eigenvector. The
optimal perturbations for a given time interval t = τ are thus obtained integrating successively N
times the tangent linear and adjoint QG models during this time interval τ.

In the case of normal modes, the perturbation stream function has the form ψ(r, θ, z, t) =

φ(r, z)eim(θ−ct), where m is the azimuthal wave number, the amplification factor simply reads λ = e2σt,
where σ = Re(−imct) is the growth rate of the perturbation. For the clarity of the discussion, equivalent
growth rates will be favoured over amplification factors. The optimal perturbation’s equivalent growth
rates are computed as σ = log(λ)/2τ.

2.2. The Numerical Models

The tangent linear and adjoint numerical models are derived from [47]’s pseudo spectral
non-linear QG model, which is also used in Section 3.3 to study the non-linear evolution of optimal
perturbations. The models are run with horizontal and vertical grid steps of respectively dx = 976 m
and dz = 9.35 m in a doubly periodic 250 km wide and 2400 m deep parallelepipoid domain. The time
step is dt = 300 s. The non-linear, tangent linear and adjoint models respectively solve Equations (3),
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(4) and (16). Time integration of the latter equations requires the inversion of PV to compute the
advection terms (i.e., the Jacobian operators). The model being pseudo spectral, this operation is
performed in the Fourier space where integration of the Laplacian falls down to a simple multiplication
by the squared wave number. A decomposition into vertical modes is also used. Dissipation is only
used at very small scale to avoid numerical instability and is set as small as possible.

2.3. Parameterisation of the Vortex Lens

Throughout this study, we use a Cauchy-Lorentz stream function defined as:

ψ = ψ̃0(1 + d2 + d4)−1, (20)

d =

√
(

r
L
)2 + (

z
H
)2, (21)

where ψ̃0 is a dimensionless intensity parameter, r is the radial coordinate centred at the vortex rotation
axis, L is the vortex radius, z is the vertical coordinate and H is the half vortex thickness at the rotation
axis. H and L are chosen to satisfy the low local Burger number (Bu =

N2
0

f 2
0

δ2 where δ = H
L is the vortex

aspect ratio) value typical of meddies (here, Bu = 0.15). The Coriolis and Brünt Väisälä frequencies are
kept constant with typical Canary basin values: f0 = 8 × 10−5 s−1 and N0 = 3.2 × 10−3 s−1.

This stream function is the same as in [21,24,25], helping the comparison between normal and
non-normal modes and the linking with layering and further non-linear processes described in [21,24].

3. Results

3.1. Growth Rates of the Optimal Perturbations

Optimal perturbations were computed running iteratively the tangent linear and adjoint models
80 times for a set of time intervals ranging from τ = 1 to τ = 174 days. The growth rates σ of
the perturbations are shown for each iteration in Figure 1a. Convergence of the growth rate is a
good indicator that the solution shown really is the optimal perturbation. For short time intervals,
the convergence of the solution appears to be much slower than for longer time intervals. For the
τ = 1 day and τ = 2 days runs, the solutions don’t seem to have converged after 80 iterations so the
optimal perturbation is still not obtained, while 1 iteration is enough for long time interval optimal
perturbations to emerge (52 to 174 days). Note however that the meddies simulated here have low
Rossby numbers (Ro = ∇2ψ/ f <0.1), and rotation periods of about 5 days, so that a time scale of
1 or 2 days is likely not in the range where the QG approximation is valid, and these particular cases
were only computed as an asymptotic limit of the study.

The slow convergence of the perturbation’s growth rate for small time intervals may be related
with their larger azimuthal spectra which will be discussed in Section 3.2. The rate of convergence
of the solution is inherently linked to the convergence properties of the power matrix method [46].
In particular, the rate at which the largest eigenvalue will emerge depends on the ratio of the latter
and the rest of the spectrum. Namely, if the second largest eigenvalue is much smaller than the largest,
convergence is quick, while if they are of comparable magnitude, convergence is slow.

The growth rates σ of the optimal perturbations after 80 iterations are shown against τ in Figure 1b.
From τ = 3 to 174 days, σ decreases with growing τ from σ = 2.81 × 10−6 s−1 for τ = 3 days to
σ = 0.55 × 10−6 s−1 for τ = 174 days, converging towards the most unstable normal mode’s growth
rate σ0 = 0.454 × 10−6 s−1 (discontinuous black line). Note however that the growth rate of optimal
perturbations for τ = 1 and 2 days does not comply with this general decrease of the growth rate with
increasing time interval. Several numerical issues may explain this result: The first is the possibility of
a non-convergence of the solutions, as the convergence rate was shown to decrease with decreasing
time intervals (Figure 1). The model’s viscosity could also play a role in damping quickly the short
wavelengths associated with short time intervals. Finally, the Cartesian geometry of the model’s
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numerics, while the natural coordinates of the vortex are cylindrical, may lead to inhomogeneous
numerical discretization errors that could be particularly severe for short azimuthal waves. Note
however that, as discussed above, time scales of 1 to 3 days are not of particular interest here, as they
lay at the limit of the QG framework’s validity.

Figure 1. (a) Growth rate of the perturbation (σ =
log(λ)

2τ ) against the number of iteration through the
tangent linear and adjoint models for different time intervals τ. The additional discontinuous black
line represents the growth rate of the most unstable normal mode (m = 2). (b) Growth rate of the
optimal perturbation against time interval after convergence of the solution (80 iterations through the
tangent linear and adjoint models). The discontinuous black line represents the growth rate of the most
unstable normal mode (m = 2).

3.2. Spatial Structure of the Optimal Perturbations

3.2.1. Horizontal Structure

The horizontal structures of the τ = 4, 10, 17 and 174 days optimal perturbations are illustrated
respectively in Figures 2–5. Panels (a) and (b) show PV sections respectively through the vortex core
and lobes.
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Figure 2. Optimal perturbation for the time interval τ = 4 days. (a) PVA horizontal section through the
vortex core. (b) PVA section through the vortex lobes. (c) PVA vertical section. (d) Energy distribution
on the azimuthal modes.

Figure 3. Optimal perturbation for the time interval τ = 10 days. (a) PVA horizontal section through the
vortex core. (b) PVA section through the vortex lobes. (c) PVA vertical section. (d) Energy distribution
on the azimuthal modes.
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Figure 4. Optimal perturbation for the time interval τ = 17 days. (a) PVA horizontal section through the
vortex core. (b) PVA section through the vortex lobes. (c) PVA vertical section. (d) Energy distribution
on the azimuthal modes.

Figure 5. Optimal perturbation for the time interval τ = 174 days. (a) PVA horizontal section through
the vortex core. (b) PVA section through the vortex lobes. (c) PVA vertical section. (d) Energy
distribution on the azimuthal modes.

All 4 examples show intense cyclonic rolling of the perturbation around the vortex core.
This spiralling against the mean flow’s velocity shear is similar to that observed by [41,42] for very
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high Rossby number barotropic vortices. A straightforward comparison can also be made with the
results of [40] who showed that optimal perturbations of a linearly sheared parallel flow tend to tilt
against the mean shear. This spiralling is much less intense in the vortex lobes, except for long time
intervals (τ = 174 days). The minimum of spiralling is coincident with the minimum of radial shear of
azimuthal velocity, suggesting that spiralling could result from the stirring of PV anomalies by the
strain field of the mean flow, corresponding to the adjoint advection term J(ψ, ψ∗) in the adjoint model.
The increased spiralling for long time intervals supports this hypothesis: the perturbation is advected
for a longer time in the adjoint model, resulting in increased stirring.

To describe in details the horizontal structure of optimal perturbations, it is convenient to
decompose them as a sum of Na azimuthal modes ψm and to define the total energy associated
with each mode:

ψ(r, θ, z) = ∑Na
m=1 ψm(r, z)eimθ (22)

Em = 〈ψm, ψm〉 (23)

An example of the spatial structure of the azimuthal modes is shown in Figure 6 for the
τ = 17 days optimal perturbation. Note that each azimuthal mode has its own vertical structure.
The azimuthal energy distribution is shown in detail as pie charts in Figures 2c, 3c, 4c and 5c.
It suggests that optimal perturbations can have a variety of azimuthal structures depending on the
time interval.

Figure 6. Projection of the optimal perturbation for the time interval τ = 17 days on the 3 most energetic
azimuthal modes (m = 3, 4, 5). The top panels show PVA horizontal sections through the vortex core;
the middle panels show PVA horizontal sections through the vortex lobes and the bottom panels show
PVA vertical sections.

A sensitivity analysis of the azimuthal structure of optimal perturbations was performed for time
intervals ranging from 1 to 174 days. Results are shown in Figure 7; panel (a) shows the azimuthal
distribution of the optimal perturbation energy for the whole range of time intervals and panel
(b) shows the evolution of the energy contribution of each azimuthal mode. For short time intervals,
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the optimal perturbations are dominated by high azimuthal modes. As τ increases, the dominant
azimuthal modes decrease; for time intervals longer than 52 days, only the mode m = 2 can be found
in the optimal perturbation.

Figure 7. (a) Distribution of the perturbation energy on the 20 first azimuthal modes for time intervals
ranging from 1 to 174 days. For short time intervals, the spectrum is broad and high wave numbers
dominate. As the time interval increases, the spectrum becomes narrower and low azimuthal modes
dominate. (b) Relative energy of the azimuthal wave numbers against time interval τ. (Energy of each
mode normalized by the total energy of the optimal perturbation for each computed time interval). Each
azimuthal mode occupies a specific time interval band. High azimuthal modes occupy narrow time
interval bands overlapping one another while low azimuthal modes occupy larger time interval bands.
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The width of the azimuthal spectrum also strongly depends on the time interval: for τ = 3
days, energy is widely spread between modes 10 and 19. As τ increases, the spectrum becomes
narrower, with only three azimuthal modes found in the τ = 17 days optimal perturbation. For time
intervals longer than 28 days, the optimal perturbation becomes mono-chromatic, with a transition
from azimuthal modes 3 to 2. The range of time intervals in which each azimuthal mode can be found
can be inferred from Figure 7b which shows the evolution of each azimuthal mode energy against time
interval: high azimuthal modes are only found in narrow ranges of time intervals and as the modes
lower, they are found in broader time interval ranges.

3.2.2. Vertical Structure

The vertical structures of the optimal perturbations are shown in panels (c) of Figures 2–5. For all
time intervals, they show intense PVA layering in the form of a succession of thin PVA anomalies
with alternating signs. This layering is concentrated at the edges of the lens and totally absent in the
vortex core. This distribution is reminiscent of the typical layering observed with CTD and seismic
data around meddies and is strikingly similar to [24]’s results of layering formation from passive tracer
advection. This suggests that the layered structure of optimal perturbations could result from the
stirring of the perturbation by the vertically sheared mean flow in the adjoint advection operator.

The optimal perturbation ψ was projected onto a base of vertical modes Fl(z) following [47]:

ψ(r, θ, z) =
Nv

∑
l=0

ψl(r, θ)Fm(z) (24)

where, in the case of a constant N2, the vertical modes Fl are defined as:

Fl(z) =
√

2cos(lπz/H) (25)

l ∈ [0 Nv] (26)

Figure 8 shows the distribution of energy on the vertical modes for τ = 4, 10, 17 and 174 days.
Because of the vertical symmetry of the vortex, even modes (continuous lines) largely dominate over
odd modes (dashed lines). For all time intervals computed, the energy distribution against vertical
modes has a bell shape. The spectral peak defined by the maximum of the curve does not seem to
have a strong dependence on τ. In all 4 cases, this peak is centred between vertical modes 26 and 34.
However, τ has a stronger impact on the width of the spectrum: for short time intervals (τ = 4 days),
the energy is concentrated near vertical mode 30 and the narrow distribution indicates little energy
at very low or very high vertical modes. As time interval increases, the spectrum widens, resulting
in a more homogeneous distribution of the energy at all vertical scales for the long time intervals
(τ = 174 days), contrary to the azimuthal distribution which was shown to have a broader spectrum
for short time intervals.
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Figure 8. Energy distribution on the vertical modes of the optimal perturbations for time intervals
τ = 4, 10, 17 and 174 days (Energy of each vertical mode normalized by the total perturbation energy).
As an effect of the vertical symmetry of the vortex lens, even modes have much more energy than odd
modes. Whereas the time interval does not have a clear effect on the most energetic vertical modes
(centre of the spectral peak), it clearly affects the width of the spectral peak. The longer the time interval,
the wider the energy spectrum.

3.3. Evolution of the Optimal Perturbations in the Non Linear Model

Optimal perturbations were implemented in the QG non-linear model to assess their impact on the
destabilization of a vortex lens in a more realistic framework. The vortex velocity field was initialized
as a sum of a mean flow and a perturbation: ψ(r, θ, z, t = 0) = uθ(r, z) + εu′θ(r, θ, z, t = 0) and then

integrated during 70 days. Time evolution of the energy amplification factor λ = 〈ψ′(t),ψ′(t)〉
〈ψ′(0),ψ′(0)〉 is shown

on Figure 9a for the τ = 4, 10, 17 and 174 days optimal perturbations. The τ = 174 days optimal
perturbation (yellow line) has an exponential growth, as expected from a normal mode perturbation,
confirming that this time interval is long enough for the optimal perturbation to converge towards the
most unstable normal mode. This results in a time independent growth rate σ = log(λ)

2t (Figure 9c),
consistent with a normal mode-like exponential amplification.

Figure 9. Cont.
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Figure 9. Time evolution of the optimal perturbations for time intervals τ = 4, 10, 17 and 174 days
implemented in the non-linear QG model. (a) Amplification factor (non-dimensional) against
time (days); (b) Zoom of (a) between 0 and 25 days; (c) Growth rate (s−1) against time(days).

For shorter time intervals (τ = 4, 10 and 17 days), the amplification factor has a clearly different
behaviour. In all three cases, it reveals a transient growth of energy during an initial phase, followed
by an almost symmetric decay. The time position of the maximum amplification factor grows with
τ: for the τ = 4 days optimal perturbation, the amplification is maximum at t = 3.4 days, 6.9 days for
τ = 10 days and 11.8 days for τ = 17 days. The transient growth and decay of the optimal perturbations
results in time dependent growth rates. The latter are larger than the time independent normal mode’s
growth rate during a finite time. After the amplification factor and the growth rate have reached their
maximum, two behaviours arise: for small time intervals (τ = 4 and 10 days) the growth of optimal
perturbations drops rapidly towards negative growth rates (decay of the perturbation) while the
τ = 17 days optimal perturbation keeps on growing, as its growth rate eventually converges towards
the fastest growing normal mode (approximated here by the τ = 174 days optimal perturbation).
Figure 9 also reveals some inconsistencies between the linear and the non-linear results: At time
t = 4 days, the time interval τ = 4 days optimal perturbation does not have the largest amplification
factor. Similarly, at t = 10 days, the τ = 17 days optimal perturbation has grown faster than the
τ = 10 days one. These somehow unexpected results might result from enhanced stirring and mixing
of high azimuthal mode (small horizontal scale), yielding rapid dissipation in the fully non-linear
model. This could explain why the τ = 4 and 10 days optimal perturbations, which are made of high
azimuthal modes, decay instead of exciting normal modes.

Of the four non-linear runs discussed above, the τ = 17 days case is of special interest, as it is
the only computed non-modal perturbation that does not decay after its transient growth maximum.



Fluids 2018, 3, 63 15 of 20

The non-linear evolution of its spatial structure is shown at t = 0, 17, 40 and 62 days on Figure 10 while
the time evolution of the energy of azimuthal modes is shown on Figure 11. The colour scale on each
panel of Figure 10 was normalized by its maximum value, and the evolution and growth of energy
is to be inferred from Figure 11. After 17 days, the perturbation has started to roll anticyclonically
as modes 3 and 4 have grown significantly and dominate over all other modes, in good agreement
with the linear predictions. The anticyclonic rolling is accompanied with an increase of the vertical
scales of the perturbation, consistent with PV perturbation stirring by the vertically sheared mean
azimuthal flow. Indeed, while advection in the adjoint model resulted in a cyclonic stirring, and the
formation of small vertical scales, the first 17 days of advection in the direct non linear model first act
to undo both the intense horizontal rolling and vertical layering. After 20 days, energy of mode 4 has
decayed significantly, contrarily to mode 3. After 40 days, mode 3 triggers spiralling arms at the outer
edge of the vortex core, while small satellite vortices start to form in the vortex lobes. Simultaneously,
the amplitudes of modes 1 and 2 almost reach that of mode 3. Intense layering starts to form and
is obvious on the PVA vertical sections, showing that optimal perturbations can be an efficient way
to rapidly trigger an intense vertical cascade. After 62 days, mode 2 has overtaken all other modes
and contains nearly 80% of the perturbation energy. Vertical layering has still increased in the vortex
lobes. The final emergence of mode 2, accompanied by a convergence of the τ = 17 days optimal
perturbation’s growth rate towards the τ = 174 days case (Figure 9c) suggests that the normal mode
was eventually excited by the non-normal perturbation.

Figure 10. Time evolution of the optimal perturbation for a time interval τ = 17 days in the non-linear
QG model. The colour scale shows the PVA perturbation (q′ = q− q) while the black contours show
the total PVA q. The top panels show horizontal sections of PVA through the vortex core, the middle
panels show horizontal sections of PVA through the vortex lobes and the bottom panels show vertical
sections of PVA.
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Figure 11. Time evolution of the azimuthal decomposition of the optimal perturbation for a time
interval τ = 17 days integrated in the non-linear QG model. The discontinuous black line shows the
total energy.

4. Discussion and Summary

In this paper, we studied the optimal perturbations of a vortex lens in the QG framework, their
fine-scale azimuthal and vertical structures and their sensitivity to the time interval of optimization τ.
We also investigated their fate in a fully non-linear QG model.

The linear stability analysis revealed that the impact of τ on optimal perturbation’s growth rates is
dramatic for τ greater than 3 days: The shorter τ, the larger the growth rate. For short τ, normal modes
are far from being the most unstable ones: the optimal perturbation’s growth rate for τ = 7 days is
nearly 5 times larger than that of the most unstable normal mode.

Horizontal structures of optimal perturbations are characterised by an intense counter-shear
tilting. Similar results were obtained by [41,42]’s for very high Rossby number barotropic vortices,
and by [40] for a parallel shear flow. Here, we suspect that this counter-shear tilting might result from
stirring of the perturbation by the adjoint advection terms: in the adjoint model, the relative vorticity
sign is opposite to that of the tangent linear model, so that the perturbation is stirred cyclonically
around the vortex’s mean flow.

Decomposing the optimal perturbation onto azimuthal modes, we show that the horizontal
structures of optimal perturbations also dramatically change with τ. While the normal mode
theory predicts that low Burger number vortex lenses are more unstable to low azimuthal mode
perturbations [25,32], our results show that short τ optimal perturbations are composed of a broad
spectrum of high azimuthal wave numbers, suggesting that instability to high wave numbers is not
restricted to high Burger number vortices, when considering the full range of possible perturbations.
The impact of τ on the width of the azimuthal spectrum is also obvious: Short τ optimal perturbations
are composed of a broad range of azimuthal modes while for larger τ, perturbations are nearly
monochromatic. This might explain the power matrix method’s slow convergence for very short τ

since [46] showed that the convergence rate depends on the ratio of the largest eigenvalue to the rest of
the spectrum.

The vertical structure of optimal perturbations consists of a concentric piling of alternating sign
PVA layers. However, the presence of layered patterns in the vertical structure of optimal perturbations
should not lead too quickly to the conclusion that non-modal instability could be the origin of the
layering observed around meddies. Meunier et al. [24] showed that the vertical shear of a vortex
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lens’s azimuthal flow produces small scale layered patterns through the stirring of any horizontal
tracer anomaly (Temperature, salinity, PV or any conservative tracer). As for the counter-shear tilting
observed in the horizontal structure of optimal perturbation, stirring of the PV perturbation by the
adjoint advection terms should naturally result in the generation of fine-scale concentric layers such as
those observed here.

The vertical structure of optimal perturbations is also sensitive to τ. Although the latter does
not impact the energy maximum, which is always centred between modes 25 and 33, the width
of the vertical spectrum increases with decreasing τ, showing this time that low azimuthal mode
perturbations (large τ) are composed of a much richer range of vertical scales than high azimuthal
modes optimal perturbations.

Initialisation of the non-linear QG model, adding the optimal perturbations to the vortex lens
mean flow, illustrates well the transient nature of optimal perturbations, with time-dependent growth
rates. Different behaviours arise depending on τ: for short τ optimal perturbations, the perturbations
decay after an initial phase of growth while for intermediate τ, the growth rates diminish, but
remain positive, so that the perturbation keeps on growing. For very long τ, where the optimal
perturbation is dominated by the azimuthal mode 2 which is close to the fastest growing normal mode,
the perturbation grows exponentially (i.e., at a constant growth rate). The observation of negative
growth rates associated with the decay of short τ optimal perturbations might be linked to the length
scale of the latter: short τ optimal perturbations are composed of high azimuthal modes, hence small
scale perturbations, which are much more sensitive to the bi-harmonic Laplacian dissipation of the
non-linear model. Once the transient growth starts to weaken, dissipation takes over. This increased
sensitivity of high wave number perturbations to dissipation might also explain why the growth rates
associated with the very short τ optimal perturbations are weaker than expected.

The intermediate case with τ = 17 days is of particular interest because the optimal perturbation
does not decay, and the amplification of the optimal perturbation is sufficiently rapid to reach a non
linear regime before the most unstable normal mode (m = 2) emerges. In this particular case, it results
in the fast growth of an azimuthal mode 3 perturbation which dominates the vortex destabilization and
the transition towards a non-linear stage and the formation of spiralling arms eventually detaching
into satellite vortices. This suggests that optimal perturbations may impact the long term non-linear
evolution of a vortex lens only for certain range of τ: if τ is too short, the growth rate is large, but
the spatial scale of the perturbation is small and subject to rapid mixing. If τ is too large, the optimal
perturbation is closely resembling the fastest growing normal mode and the latter will emerge
quickly and dominate the destabilization process. But for intermediate τ, the rapid growth of the
perturbation quickly modifies the mean flow so that it may become unstable to different perturbations.
The possibility for secondary instability to develop on a mean flow that was first destabilized by a
primary perturbation would be an interesting follow-up for the present study. Such processes were
shown to impact significantly inertia-gravity waves [48], and may also impact oceanic vortices.

The possible impact of optimal perturbations on the formation of layering around meddies
remains modest: Hua et al. [21], Meunier et al. [24] showed that baroclinic instability was an efficient
process in generating layers, because it breaks the vortex’s axisymmetry, hence providing the necessary
azimuthal variability that is transformed into vertical variability by stirring effects; even though
optimal perturbations may break this axisymmetry faster than normal modes, and provide higher
horizontal wave number variability, that accelerate the vertical variance cascade [27], the long term
evolution does not change drastically as in both cases, the same stirring processes will be at work.
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