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Abstract: The spreading of viscous and viscoelastic fluids on flat and curved surfaces is an important
problem in many industrial and biomedical processes. In this work the spreading of a linear
viscoelastic fluid with changing rheological properties over flat surfaces is investigated via a
macroscopic model. The computational model is based on a macroscopic mathematical description
of the gravitational, capillary, viscous, and elastic forces. The dynamics of droplet spreading are
determined in sessile and pendant configurations for different droplet extrusion or formation times
for a hyaluronic acid solution undergoing gelation. The computational model is employed to
describe the spreading of hydrogel droplets for different extrusion times, droplet volumes, and
surface/droplet configurations. The effect of extrusion time is shown to be significant in the rate and
extent of spreading.
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1. Introduction

The spreading of viscous and viscoelastic droplets over surfaces is an immensely important
subject that has been studied extensively [1–4]. The detailed computational description is inherently
an extremely challenging problem as it involves complex flow fields, movement and deformation of
the droplet interface as well as creation of a new interface and these processes alter the boundary to
the computational domain. Fluid viscoelasticity further complicates the problem and can manifest in
many ways, e.g., memory, elastic forces, yield-stress effects.

To date computational techniques to solve these types of problems have been developed following
a case-by-case problem-oriented approach, e.g., Reference [5]. On the other hand, commercial
Computation Fluid Dynamics, CFD, products until recently have lacked efficient boundary updating
for many of the large deformation problems. Currently, commercial products based on Finite Element
Method, FEM, techniques with well-structured grids appear to be the most accurate in terms of surface
updating during large deformations [6]. Continuing efforts to develop computational techniques for
such challenging programs include many hybrid approaches, e.g., boundary element methods for
the interface and FEM for the internal nonlinear viscoelastic or inertial terms [7]. These and other
approaches require significant expertise and further testing before they can be adopted by the general
scientific community.

At the same time there is significant amount of experimental investigations involving free-surface
flows of viscous or viscoelastic fluids. Spreading of droplets over flat surfaces is a very common
laboratory test to determine “spreadability” of fluids, (e.g., with lubricant oils [8] and food products [9])
as well as an industrial test (e.g., with foamed cement [10]). The droplet spreading tests can become
even more difficult to interpret when considering viscoelastic fluids, curved surfaces, or time-variable
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fluid properties. Because of these difficulties there is a need to provide a simple means to describe
spreading tests of complex fluids in order to extract more meaningful data as well as to obtain a better
understanding of more complex coating processes.

In this work we develop a simple droplet spreading model for a linear viscoelastic fluid and
connect it to nonlinear processes that affect the rheological properties of the fluid. The literature is
currently lacking in such simple models. These models can be employed to facilitate the interpretation
of simple spreading tests and potentially as a design tool for many processes involving spreading
and time varying fluid properties. In the section that follows the computational model is described
building on the work of Härth and Schubert [11]. Next the specific hyaluronic acid system which
forms droplets examined in this work is described. In the third section the model is tested with the
spreading of viscoelastic droplets with time-varying properties.

2. Droplet Spreading Model

To develop a simple macroscopic film spreading model the macroscopic model of Härth and
Schubert [11] is employed which considers viscous, gravitational, and surface forces for partially
or fully wetting droplets. The model is extended to include elastic forces, consider pendant drop
configurations in addition to sessile drop, and is applied to a gelling system with time-varying
rheological properties. It should be noted that the spherical cap approximation is realistic if the initial
droplet radius is less than the capillary length, LC =

√
γL/ρ g, or the Bond number, Bo, is less than

one [12]:

Bo =
∆ρ g R2

0
γL

=

(
R0

LC

)2
< 1 (1)

where ρ is the fluid density, g, is the gravitational acceleration constant, γL is the fluid surface energy,
and R0 is the initial curvature at the apex which is equal to the initial spherical cap radius.

The basic geometry of a spherical-cap droplet spreading on a flat surface is shown in Figure 1.
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Figure 1. Drop shapes during spreading. Initial spherical cap (solid line), transition shape (short-dashed
line), steady state “pancake” shape (long-dotted line).

For a spherical cap droplet of base radius, r, and height, h, the volume, V, is given by:

V =
π

6

(
3 r2 h + h3

)
(2)

and it is constant with time as long as there are no physical or chemical changes in the fluid and as
long as there are no mass losses, e.g., due to evaporation.

Consequently the differential in height is given by [13]:

dh = − 2 r h
r2 + h2 dr (3)
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2.1. Forces Acting on Droplet during Spreading

The total force, F, acting in the radial direction is the sum of capillary, viscous, gravitational,
and elastic terms. To determine these forces a macroscopic approach is followed assuming flat droplets,
i.e., h << r, and small Bond numbers, i.e., Bo < 1. The forces are determined by considering the various
contributions to the droplet energy, E, during an infinitesimal spreading step of dr and dh (Figure 2)
during which the total radial force, F, is given as:

F = −dE
dr

= −∂E
∂r

+
∂E
∂h

2rh
r2 + h2 (4)
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With these assumptions it was shown in [11] that the capillary force, FC, is given by:

FC = 2 π r
(

S + γL
2 r2

r2 + h2

)
(5)

where S is the spreading coefficient given by:

S = γS − γSL − γL (6)

where γS is the surface energy of the solid and γSL is the surface/fluid interface energy.
Following Härth and Schubert, and by considering the potential energy of a spherical cap as an

integral over horizontal slabs of thickness dz:

E =
∫ h

0
ρgzdV (7)

the gravitational force, FG, is determined to be [11]:

FG = ρ g π h2 r
3

(
r2

r2 + h2

)
= ρ g

π

6
r3 h
R

(8)

where R is the radius of the spherical cap (Figure 2) which is equal to:

R =
r2 + h2

2 h
(9)

The viscous force, FV, can only be approximated in a macroscopic approach because of the
unknown velocity profile, e.g., adjacent to the contact line. The movement of the contact line can
be very complicated and dynamic. The contact line does not always move smoothly (e.g., stick-slip
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motion, see [1]) and is not always well defined (e.g., the fluid over the contact line can move over a
thin layer of air). When considering microscopic effects van der Waals forces [14] and line tension
effects [15] can become important and nanoscale effects require different considerations [16].

The viscous force for a Newtonian fluid undergoing simple shear flow is proportional to a shear
stress, τ, multiplied by a surface area, A, parallel to the direction of flow according to:

FV = τ A = η
.
γ A (10)

where η is the viscosity and
.
γ is the shear rate. Here it is assumed that the dominating nature of flow is

simple shear as a stick boundary condition can be assumed for most of the contact area of the droplet.
This assumption over-estimates the shear rate only in a small region near the moving contact line
which during the slip transition does not flow via simple shear. Consequently, we have:

FV = η

.
r
w

2πrw = 2 π r η
.
r (11)

where w is the average height of the droplet. It should be noted that in Härth and Schubert the viscous
force (without the 2π term) was adapted to:

FV = r η
.
r ≈ r6 η

.
r

ξ V2 (12)

where ξ = 37.1 m−1 is considered a universal constant.
In this work the elastic contribution of a linear viscoelastic fluid of the Maxwell type:

τ + λ
dτ

dt
= η

.
γ (13)

where η is the Maxwell viscosity and the relaxation time λ is given by

λ =
η

E
(14)

where E is the elasticity of the Maxwell fluid.
In order to determine the elastic contribution from linear viscoelastic Equation (14) it is clear

that there should be a first-order relaxation term e−
t
λ and that the average elastic stress should be

proportional to the average relative deformation, ε(t), and the elasticity E, according to:

τE(t) = E ε(t) e−
t
λ (15)

The average relative deformation is approximated by the deviation from the initial spherical
shape so that:

ε(t) ≈ r(t)− R0

R0
(16)

Following the same procedure as with the viscous force we obtain the elastic force term for a
Maxwell fluid:

FE,M = 2 π r h
η

λ

r− R0

R0
e−t/λ (17)

The net driving force, Ftot, in the radial direction for deformation and spreading of a viscoelastic
droplet on a flat surface is a sum of capillary, gravitational, viscous, and elastic terms.

Ftot = FC + FG − FV − FE,M (18)
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2.2. Spreading Model

For highly viscous or viscoelastic fluids a quasi-steady state assumption is valid in which the net
acceleration is much smaller than the other processes. The rate of change in the radius, dr/dt, can then
be obtained from:

0 ≈ 2 π r
(

S + γL
2 r2

r2 + h2

)
+ ρ g

π

6
r3 h
R
− 2 π r η

dr
dt
− 2 π r h

η

λ

r− R0

R0
e−t/λ (19)

Consequently, Equation (19) can be solved for dr
dt to obtain:

dr
dt

=
S
η
+

γL
η

r2

h R
+

1
12

ρ g
η

r2 h
R
− h

λ

r− R0

R0
e−t/λ (20)

The above equation is solved together with:

dh
dt

= − 2 r h
r2 + h2

dr
dt

(21)

which is obtained from Equation (3) together with Equation (9) for R in order to provide the time
variation of the radius of contact, r, height, h, and aspect ratio, Z = r/h. If the initial contact radius
r0 = r(0) is known for a given droplet volume V then, from Equation (2), the following cubic equation
is solved for the initial height of the spherical cap, h0 = h(0):

h(0)3 + 3 r(0)2 h(0)− 6 V
π

= 0 (22)

Setting x = r/R0 and y = h/R0 and dividing by R0 we have:

dx
dt

=

[
S

η R0

]
+

[
γL

η R0

]
2 x2

x2 + y2 +
1
6

[
ρ gR0

η

]
y2 x2

x2 + y2 −
[

1
λ

]
y (x− 1) e−t/λ (23)

where the terms in square brackets have units of 1/s.
Equation (23) is solved together with Equation (21) in the following form:

dy
dt

= − 2 x y
x2 + y2

dx
dt

(24)

Selecting a characteristic time of t∗ =
√

R0/g we can obtain the following dimensionless forms:

dx
dτ

=
σ

Ca
+

1
Ca

2 x2

x2 + y2 +
1
6

Bo
Ca

y2 x2

x2 + y2 −
1

De
y (x− 1) e−τ/De (25)

and
dy
dτ

= − 2 x y
x2 + y2

dx
dτ

(26)

where τ = t/t∗, σ = S/γL, Ca is the Capillary number, Ca = µ
√

ρg/γL, and De is the Deborah
number, De = λ/t∗.

The effect of inverted droplets (i.e., pendant droplets) hanging from a flat surface can be studied
by changing the sign in the gravitational term of Equations (23) and (24) or the dimensionless Equations
(25) and (26).

2.3. Varying Rheological Properties

Rheological properties can change with time due to physical (e.g., compositional changes due
to evaporation) and chemical (e.g., reaction) processes. These changes are reflected in rheological
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measurements, e.g., oscillatory rheometry, leading to time varying storage (i.e., G’) and loss (i.e., G”)
moduli of the fluid.

In order to describe the deformation of a viscoelastic hydrogel droplet undergoing gelation a
simple linear viscoelastic model with time varying material properties was considered. Note that the
Maxwell fluid element converges to Newtonian when E→ ∞ as the viscosity pot and the spring are in
series. The loss and storage moduli data, at a specific frequency, ω, can be related to the Maxwell fluid
coefficients according to [11]:

E = G′′
[(

G′

G′′

)2

+ 1

]
/
(

G′

G′′

)
(27)

and

η = λ =
G′

G′′ ω
(28)

It should be noted that more complicated rheological models require additional rheological data
to be properly characterized and cannot be easily decomposed into viscous and elastic component as
in this simple analysis.

2.4. System Studied

The system studied consists of an enzymatically crosslinking hyaluronic acid (HA) system [17].
Specifically, Lee et al. [17] provide results for oscillatory rheometry experiments which were performed
while HA-tyramine hydrogel was formed via crosslinking of tyramine moieties catalyzed by hydrogen
peroxide (H2O2) and horseradish peroxidase (HRP). The oscillatory rheometry results for the loss
and storage moduli (obtained with a constant deformation of 1% at 1 Hz and at a temperature of
37 ◦C) are summarized in Table 1. Note that for this specific system (i.e., with 728 mM of H2O2 and
0.025 units per ml of HRP) the gel point [18] where the hydrogel transitions from a viscoelastic liquid
to a viscoelastic solid occurs at 48 s.

Table 1. Loss and storage moduli (extracted from [11]).

t, s G’, Pa G”, Pa

0 0.8 4.2
25 3.6 11
48 28.4 28.4
80 150 42

100 285 41
150 720 31
200 1120 23
250 1400 19
300 1850 15
400 2350 15
600 2800 15

2.5. Physical Model and Simulation Algorithms

As a test system an extrusion syringe was considered where a droplet is directed to a flat
surface either facing upwards (i.e., sessile configuration) or downwards (i.e., pendant configuration).
The gelling fluid is extruded onto the surface where it forms an initial half droplet. The syringe
is retracted to allow the droplet to spread freely. It is assumed that the HA solution is mixed
instantaneously and completely at the beginning of the syringe and gelation continues throughout the
extrusion and spreading processes. Figure 3 displays a typical setup in pendant configuration.
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Figure 3. Film application and spreading onto an inverted substrate. s = time from inflow to syringe =
t + text. Flow rate Q ~1–10 cm3/min.

Early experimental studies (not reported here) indicate that a critical property for spreading and
film formation is the extrusion time, text, or the time required to form the initial droplet especially for
rapidly gelling systems. If the extrusion times are too large no spreading is observed of the droplet and
there is no film formation. Large droplets were found to detach easily especially with low viscosity
droplets, i.e., short extrusion times.

In this work a computational including the residence time of the gelling HA solution in the
syringe is taken into account. The known geometric properties of the system are the droplet volume
and the initial contact radius. The known physical properties are the density, surface tension,
viscosity, spreading coefficient, and the rheological properties of the gelling HA solution, i.e., loss and
storage moduli.

The simulation procedure is shown in Figure 4. The simulation begins with solution of the cubic
Equation (22) for the droplet height. Next, the spreading equations, i.e., (25) and (26) are solved with
time. At each time step the total time of gelation, s, and of spreading, t, are determined. Based on the
rheology data of Lee et al. [17] the rheological parameters λ and η are calculated at the corresponding
gelation time, s. Simulations proceed until the net change per time step becomes less than a limit value.
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In this work the Maxwell model is used as a simple representation of a linear viscoelastic fluid.
This approach can be implemented with more complex linear viscolelastic models. The drop shape
algorithm assumes spherical cap shapes which has been shown to agree with experimental data for
broad “pancake” shaped droplets. The total time “s” is employed in the rheology model and includes
the extrusion time. In this way the extrusion model is connected to the spreading model. For example,
if the extrusion rate is very slow (or the extrusion time is very large) then the extruded droplets will
be too viscous and elastic to adequately spread and will detach instead. It should be noted that for
Newtonian fluids the computational model reduces to a model similar to that of Härth and Schubert
which was validated for the spreading of sessile Newtonian fluid droplets [11].

3. Results

For the gelling hyaluronic system studied in this work a density difference of ∆ρ = 103 Kg/m3

and surface tensions of γ = 15 and 45 mN/m were assumed. Also, the initial contact radii and the
droplet volumes ranged between 0.2–1 cm and 2–4 cm3, respectively. The fluid, i.e., gelling hyaluronic
acid solution, was assumed to fully wet the surface (i.e., S = 0) and to form a droplet after an extrusion
time of text, Various extrusion times from 10 to 120 s were examined. Both flat upward-facing and
inverted geometries corresponding to sessile (g > 0) and pendant (g < 0) configurations for the initial
droplet were considered.

The results are shown in Table 2 in terms of the final contact radius, r, height, h, droplet radius,
Rc, and the spreading aspect ratio Z = r/h. For sessile and pendant droplets, the spreading process
results in an exponentially decreasing contact line velocity. As expected the surface tension plays
an important role. The spreading aspect ratio for case 1 (γL = 15 mN/m) was Z = 7.7 and for case 3
(i.e., γL = 4 mN/m) it was nearly four times larger at Z = 27.7.

The effect of droplet formation or extrusion time was also examined. From the results in Table 2
it is clear that delaying the film spreading (by increasing the application or extrusion time) changes
the rheological properties of the gel to such a point that the elastic forces inhibit spreading. As the
extrusion time increased from text = 10 to 60 s the spreading aspect ratio decreased from Z = 27.7 to
2.9. If the extrusion time is increased further, then the gel does not spread at all despite it wetting
the surface.

Table 2. Simulation Results.

γ mN/m g m/s2 r(0) cm V cm3 text s r cm h cm Rc cm Z = r/h

15 9.8 1 4 30 2.71 0.35 9.5 7.7
45 9.8 1 4 10 4.16 0.15 59.0 27.7
45 9.8 1 4 20 3.61 0.20 33.6 18.1
45 9.8 1 4 30 3.16 0.25 19.7 12.6
45 9.8 1 4 40 2.66 0.36 10.0 7.4
45 9.8 1 4 50 2.27 0.49 5.5 4.6
45 9.8 1 4 60 1.92 0.66 3.1 2.9
45 9.8 1 4 90 1.31 1.17 1.3 1.1
45 9.8 1 4 120 1.09 1.39 1.1 0.8
45 9.8 1 1 30 2.15 0.13 16.8 16.6
45 −1.0 1 4 30 2.78 0.33 11.9 8.4
45 −2.0 1 4 30 2.58 0.38 9.0 6.8
45 −3.0 1 4 30 0 0 - -
45 −3.0 1 4 10 0 0 - -
45 −3.0 0.2 1 30 13.51 0.43 58.2 31.4
45 −9.8 1 4 30 0 0 - -
45 −9.8 1 1 60 1.16 0.44 1.7 2.6
45 −9.8 1 1 30 2.01 0.16 13.0 12.6
45 −9.8 1 1 20 2.43 0.11 23.4 22.1

Because the Bond number is small, the effect of inverted or pendant droplets can be studied by
changing the sign in the gravitational term in Equation (26) which in Table 2 is denoted with negative
gravity. It is clear that stable pendant droplets can be obtained below a specific mass and these display
spreading but to a smaller degree than the corresponding sessile droplets of the same mass.
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From Equation (25) it can be shown that the spreading pendant films are stable, i.e., spreading
and not retracting, when h0 = h(0) < 3.46 LC or, in terms of the Bond number defined using the initial
height of the film h0:

Bo =
∆ρ g h2

0
γL

< 12 (29)

Note that when pendant drops are retracting they either form a stable pendant droplet or detach.
Both of these outcomes are beyond the scope of the current macroscopic model which examines only
stable, i.e., Bo < 1, and flat, i.e., h/r < 1, droplets.

In Figure 5 the spreading of hydrogel droplets on an inverted surface is shown. It is clear that
the final aspect ratio, Z = r/h, depends strongly the initial contact radius of the droplet as well as
the extrusion time due to the gelling reaction and changing rheological properties. The dashed line
separates the spreading and retracting regimes in terms of the initial contact radius according to
Equations (2) and (29). Note that with the current model metastable configurations are possible in the
retracting regime, i.e., for r0 < 1.237 cm, where the droplet is unstable but kinetically frozen.
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In Figure 6 it can be seen that for a given droplet volume (i.e., V = 2 cm3) increasing the extrusion
time results in decreased droplet spreading due to increased elasticity and viscosity. This reflects the
coupling of the applicator syringe and droplet spreading problem. Clearly very slow application
speeds will result in inadequate spreading.
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In Figure 7 the effect of elasticity on droplet spreading is shown. The elasticity was increased by
×3 and ×8 times compared to the normal case with an extrusion time of 30 s. The effect of elasticity
alone is to significantly decrease the response time and the extent of spreading. This is expected to be a
general effect even with other—reasonable—rheological models.
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4. Discussion and Conclusions

In this work the model of Härth and Schubert [11] is extended to account for linear viscoelastic
effects. The model is employed to describe both sessile and pendant drop configurations in a case
study with spreading of gelling hyaluronic acid solution. The effect of gelling time and elasticity are
shown to be significant in terms of the extent of spreading of the gelling hyaluronic acid solution.

The computational approach described in this work can be implemented with other simple linear
viscoelastic models. The approach could be extended beyond spherical caps, e.g., to ellipsoidal caps,
as a more general approximation of sessile and pendant droplets. Furthermore, limitations could be
placed on the moving contact angles which are determined by sinθ = r/R. More realistic descriptions
of changes on the contact angle at the moving contact line necessitate some type of model of the
underlying surface which can be a challenging task. For example, soft deformable surfaces can display
significant deformation at the contact line [19].

Application of hydrogel or other viscoelastic fluids by spreading over biological membranes and
mucous layers and other surfaces remains a very complex subject. A complicating factor is when the
spreading fluid is undergoing chemical or physical changes resulting in variable rheological properties
with time. This type of a dynamic system may be a desirable solution when spreading occurs while
the fluid is still of relative low viscosity but, after spreading has finished, rheological changes such as
increased viscosity and mucoadhesiveness help to keep the film in place.

This work demonstrates a simple model providing a connection between dynamic rheological
data and droplet spreading behavior. Although many assumptions are made, the model can describe
the spreading behavior over flat surfaces, including the effect of viscoelasticity. Approximate models
can also help in designing and interpreting spreading experiments of complex viscoelastic fluids.
Approximate models can help reduce the design space of a system involving several elements such
as mixing, delivery, spreading. The potential exists to employ these types of simple models to
more complex hydrogel delivery systems, e.g., via droplet sprays, other gelling mechanism, e.g.,
thermos-reversible, and other geometries, e.g., slightly curved surfaces. Of the many possible
improvements to the model, including the interaction of the film with the substrate, beyond the
simple surface energy of Equation (4), seems the most interesting and can be achieved by considering
mucoadhesion models or including mechanisms for contact line motion dynamics.
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