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Abstract: Various tools have been developed to model the aerodynamics of flapping wings.
In particular, quasi-steady models, which are considerably faster and easier to solve than the
Navier–Stokes equations, are often utilized in the study of flight dynamics of flapping wing flyers.
However, the accuracy of the quasi-steady models has not been properly documented. The objective
of this study is to assess the accuracy of a quasi-steady model by comparing the resulting aerodynamic
forces against three-dimensional (3D) Navier–Stokes solutions. The same wing motion is prescribed
at a fruit fly scale. The pitching amplitude, axis, and duration are varied. Comparison of the
aerodynamic force coefficients suggests that the quasi-steady model shows significant discrepancies
under extreme pitching motions, i.e., the pitching motion is large, quick, and occurs about the
leading or trailing edge. The differences are as large as 1.7 in the cycle-averaged lift coefficient.
The quasi-steady model performs well when the kinematics are mild, i.e., the pitching motion is small,
long, and occurs near the mid-chord with a small difference in the lift coefficient of 0.01. Our analysis
suggests that the main source for the error is the inaccuracy of the rotational lift term and the inability
to model the wing-wake interaction in the quasi-steady model.

Keywords: insect flight; flapping wing; unsteady aerodynamics; quasi-steady models;
Navier–Stokes equations

1. Introduction

A preliminary version of this paper was presented at the AIAA SciTech Conference, Grapevine,
Texas, in 2017 [1].

Micro air vehicles (MAVs), typically 15 cm or less in size, will likely be used in a host of
applications in the coming years, from military use cases to agricultural and industrial functions,
and even recreational pursuits. The small size of MAVs can result in many beneficial qualities such
as high maneuverability, low operating costs, as well as being inconspicuous. However, MAVs come
with their own set of technical challenges, which is why they are currently still an area of active
research. It was only recently through the miniaturization of electronics as well as the ability to
fabricate micro-scale parts from a variety of materials that MAVs can start to be realized [2]. In addition
to the challenges associated with manufacture of MAVs, the design of MAVs is also hampered by the
complex aerodynamics of flapping wing flight, which are quite different from the aerodynamics that
govern larger manned vehicles. In particular, they operate under a Reynolds number that is orders of
magnitude smaller, i.e., O(102)–O(104), as opposed to O(106) or higher for more conventional aircraft.
Operating in this regime introduces new challenges associated with aerodynamic efficiency and lift
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generation, while their small size makes them particularly susceptible to environmental factors leading
to challenges associated with stability and control [3–5].

While still not available in the market, a number of prototype flapping wing MAVs have been
created by research groups. A majority of these small robotic fliers have wing and body shapes
that are similar to those found in nature. Biological fliers have many desirable traits that would be
beneficial for MAVs. For flapping wing MAVs, there has been a considerable amount of research
into insects such as flies, bees, hawkmoths, etc. both computationally and experimentally [4,6–16].
Experimental research allows researchers to observe how biological fliers work, to inform the design
of biomimetic and biological inspired MAVs, and to compare against the performance of current
MAV designs. However, experimental research can be challenging, especially at these small scales.
In addition, experimental research does not allow for MAV designs to be tested and assessed before
being produced. Computational techniques allow for different design configurations, kinematics, as
well as different models to be tested before creating a prototype. There are a variety of computational
techniques, ranging from accurate (but time consuming) Navier–Stokes equation (NSe) solution
methods to simplified (yet fast) quasi-steady (QS) models.

QS models have long been used since they allow for simple algebraic equations to express the
aerodynamic forces. This computational efficiency allows for the model to be used for quickly checking
the effects of changing key design parameters, such as flapping and pitching amplitude, pitching
duration, pitching axis, and wing geometries. This is particularly important for MAVs because their
small size and operating speeds, lift and thrust need to be produced with moving wings. Weis-Fogh [6]
was one of the first to pioneer the QS model for flapping wings, describing a method called the steady
state principle. The QS model ignores the effects of flow history and instead considers the forces
generated only by the instantaneous orientation and velocity of the wing. The only time dependence
comes from the kinematics of the airfoil and not from the fluid flow. Since flow history is not taken into
account, not all unsteady mechanisms such as wing-wake interaction are captured [8]. Ellington [14]
found that the steady-state model was insufficient based on the data available at the time.

The unsteady low Reynolds number flow around flapping wings is governed by the NSe [8,17–26].
However, due to the computational challenges associated with efficiently solving the full NSe, the QS
method still is of much interest. Sane and Dickinson [18] created a revised QS model that showed good
estimates for measured forces based on empirically determined coefficients of lift and drag. Variants
of Sane and Dickinson’s QS model are widely used for studies of flight dynamics of flapping wing
flyers due to its simplicity.

The question then arises when a QS model can give an accurate approximation for the
aerodynamic forces and moments on low Reynolds number fliers. Only a few studies have compared
the quasi-steady models and NSe results [20,22,27]. They show that the QS model to be low fidelity but
suitable for initial results. Although there has been significant work by researchers to improve Sane and
Dickinson’s QS model [27,28], as well as additional QS implementations [19,29,30], the present work
seeks to use Sane and Dickinson’s original formulation. This allows the focus to remain on a systematic
study that compares the QS model to the NSe solutions under a wide range of three-dimensional
rotational flapping wing kinematics. This is a novel contribution since such a study is still rare in
the literature.

In this study, we consider two aerodynamic models: (i) a QS method; and (ii) 3D NSe solutions
undergoing the same wing kinematics. The objective of this study is to assess where the QS model
differs the most from the NSe solutions by comparing the resulting aerodynamic lift, drag, and moment
by their counterparts. We use the cycle-averaged coefficients to quantify the accuracy of the QS model.
Because the flapping time scale of a fruit fly is much faster than the body time scale, the dynamics
of the body motion is often modeled with cycle-averaged aerodynamic forces. Furthermore, angle
of attack in flapping wing aerodynamics plays a critical role in the lift generation [18]. Hence, we
primarily consider the effects of the pitching motion described by the pitching axis location, the pitching
amplitude, and the pitch duration on the resulting flapping wing aerodynamics.
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This paper is organized as follows. Section 2 describes the methodology used to conduct
this investigation, describing the case setup, relevant non-dimensional parameters, kinematics,
aerodynamic models, and computational grids. Section 3 covers the results of the investigation
into the study of the effects of the pitching kinematics on the NSe solver. In Section 3, we also
summarize and discuss the results of the QS and NSe models for the considered kinematics.

2. Materials and Methods

2.1. Case Setup and Wing Kinematics

We consider hovering flight for rigid wings. The Reynolds number is Re = ρUc/µ, where ρ is the
constant air density, U is a reference velocity, c is the mean wing chord, and µ is the dynamic viscosity.
In this study, the Reynolds number is kept constant at Re = 100, relevant to a fruit fly flight [6,9,12,16,26].
The reference velocity U is the maximum flapping velocity at the spanwise location of the center of
the second moment of wing area r2 [31], i.e., U = 2πf Zr̂2R, where f is the stroke frequency, Z is
the half peak-to-peak stroke amplitude, and r̂2 = 0.57 is the spanwise location of the center of the
second moment of wing area, normalized by the wing length R. The aspect ratio AR = R/c = 3.02 was
determined by using an actual fruit fly wing to create a 3D model as shown in Section 2.2.2. With the
Reynolds number held constant at 100, the stroke frequency f and amplitude Z are dependent on each
other. The reduced frequency is defined as k = 2πfc/(2U) = (2Zr̂2AR)−1. For this study, the stroke
amplitude is kept constant at Z = 49.3◦, so that the reduced frequency is applicable to a fruit fly flight
k = 0.33 [3].

For hovering flight for insects, there are two primary kinematics: flapping and pitching. In this
study, the flapping motion is assigned a sinusoidal rotation about the wing root as

ζ(t/T) = Zcos(2πt/T), (1)

where t/T is the non-dimensional time, the time t normalized by the flapping period T = 1/f.
A schematic of the 3D flap motion is shown in Figure 1.

The pitching motion considered in this study is motivated by the work by Sun and co-
workers [11,12] as

α(t/T) =


αd +

A
∆τr
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)
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2π sin
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where A is the pitch amplitude and αd and αu are the forward and return pitch amplitudes, respectively.
In this study the pitch amplitude is A = αd = αu. The parameter ∆τr is a non-dimensional number that
determines the duration of the pitch rotation in terms of the period. When the pitching duration is small
the pitching motion is rapid and is confined to the end of each stroke. When the pitching duration is
∆τr = 0.5, the pitching motion is as slow as it can be because it lasts the entire stroke. Depending on ∆τr,
the duration of the pitch the pitching waveform can vary from sinusoidal (∆τr = 0.5) to a square wave
when ∆τr approaches 0. The parameters τ1, τ2, and τ3 determine the timing of the rotation. Since only
symmetric rotation is considered in this study, τ1 = ∆τr/2, τ2 = τ1 + ∆τr/2, and τ3 = 0.5 − ∆τr/2.
The pitching motion is imposed on the pitch axis location xpa, which is normalized by c and measured
from the leading edge. When xpa = 0.0, the pitch axis is at the leading edge and when xpa = 1 the pitch
axis is at the trailing edge. Figure 1b shows a diagram of the pitching motion for a half-stroke for
A = 45◦, xpa = 0.5, and ∆τr = 0.2.
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Figure 1. Schematic of the (a) wing geometry, (b) orthographic view of the flapping wing motion,
(c) 2D view of the pitching motion for ∆τr = 0.2, and (d) 3D design space with the design variables,
pitch amplitude A, pitching duration ∆τr and pitching axis location xpa along the chord.

We vary three pitching parameters to compare the performance of the quasi-steady model and
Navier–Stokes equation solvers. The three independent variables are the pitching amplitude A = 30◦,
45◦, 60◦, the location of the pitching axis measured from the leading edge, normalized by the chord
xpa = 0, 0.25, 0.5, 0.75, 1, and the duration of the pitch ∆τr = 0.2, 0.3, 0.5. The study focuses on the
pitching kinematics because the angle of attack has been shown to greatly affect the aerodynamic
performance [4]. There are 45 combinations for these values, which are simulated for each of the
aerodynamic models. A case by case breakdown for all 45 cases is shown in Figure 1d and Table A1 in
Appendix A.

2.2. Aerodynamic Models

The forces and moments generated by the flow over the wings are the most significant source of
forces for a flapping flyer. We consider two different models for the aerodynamic forces:

• A quasi-steady model from Sane and Dickinson [8,18,30],
• A 3D Navier–Stokes equations solution of the rigid wing motion.

The details of the employed quasi-steady model and the Navier–Stokes equation solver are
described by Bluman, Sridhar, and Kang [32] and summarized in the following subsections. The results
of the model are presented in terms of coefficients of lift CL, drag CD, and moment about the pitching
axis (CM), defined as

CL =
L

1
2 ρU2Rc

, CD =
D

1
2 ρU2Rc

, CM =
M

1
2 ρU2Rc2

(3)

where L, D, and M are the cycle-averaged lift, drag, and moment about the pitching axis, respectively.

2.2.1. Quasi-Steady Aerodynamic Model

In order to provide comparisons among the various flight dynamics studies that have used the
Sane and Dickinson model [18] extensively in the past, the same model will be incorporated into this
study as well. Their model, which is derived from blade element analysis, attempts to capture the
quasi-steady contributions of translational lift Ftrans, rotational lift from circulation Frot, and added
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mass force Fa, to the aerodynamic force on the wing. Additional forces generated via wake capture are
omitted from the model.

The translational lift and drag coefficients are provided by fitting an expression to experimental
results for a range of angles of attack: AoA = −10◦ to 90◦, resulting in Equation (4), where ut is the
wing’s instantaneous velocity.

Ftrans =

∣∣∣∣∣ Ltrans

Dtrans

∣∣∣∣∣ = 1
2

ρu2
t Rc

∣∣∣∣∣ 0.225 + 1.58 sin(2.13AoA− 7.2)
1.92− 1.55 cos(2.04 AoA− 9.82)

∣∣∣∣∣ (4)

The rotational force is developed by the wing’s rotation imparting additional circulation to the
flow, which can enhance lift. In this study, we use Equation (5), an expression equivalent to that
provided by Sane and Dickinson [18]. In Equation (5), r̂1 is the spanwise location of the center of
the first moment, normalized by the wing length and v̂ is the virtual mass. Ellington [15] provides
expressions for the terms v̂ and r̂1, which are a function of the wing shape, and also cataloged their
values for several insects. The expressions are provided in Equation (6) for convenience, where r̂
is the spanwise coordinate, normalized by R and ĉ is the chord at a spanwise location, normalized
by c. We use the average values given by Ellington [15] for fruit flies in the present study of v̂ = 1.0
and r̂1 = 0.49.

Frot = −Crot

(
3
4
− xpa

)
ρ|ut|

.
αc2Rv̂r̂1 (5)

v̂r̂1 =
∫ 1

0
ĉ2r̂dr̂ and v̂ =

∫ 1

0
ĉ2dr̂ (6)

The theoretical value for Crot is Crot = Crot,theo = π [18]. However, Sane and Dickinson [18] show
that Crot depends on the nondimensional rotational velocity ω̂ = ωc/Utip, where ω is the absolute
angular velocity of the wing about its pitch axis and Utip is the reference velocity at the wing tip. Based
on their experiments, an empirical fit was proposed as Crot = Crot,exp = (−11.77ω̂ + 0.8152)(0.75 − xpa).
In this study, we use Crot,exp to calculate the rotational force and quantify its benefit by comparing the
resulting force against the values obtained with Crot,theo in Section 3.

Sane and Dickinson’s added mass term, accounting for differing pitch axis locations as per
Leishman [12] and Babinsky [13], is

Fa = πρRc2
{

r̂2

4

( ..
ζ sin AoA +

.
ζ

.
α cos AoA

)
v̂r̂1 −

..
α

c
8

(
xpa −

1
2

)
v̂
}

. (7)

The aerodynamic moment about any point can be determined as long as the point of application
for each aerodynamic force is known. The circulatory force terms, i.e., Ftrans and Frot, are applied at
the quarter chord, although these assumptions may be over-simplified as recent studies [27,33] have
shed more light on the location of the center of pressure in flapping wing motions. There is a residual
pitching moment that arises due to wing rotation given by Leishman [34], which is

Mcirc =
π

4
ρc3ut

(
xpa +

1
2

)
.
α. (8)

The increment in lift due to added mass is taken to act at the mid-chord. Additionally, Fung [35]
demonstrates that a nose down couple is generated by the pitch acceleration as

Ma = −
πρ

8

( c
2

)4 ..
α. (9)

2.2.2. Navier–Stokes Equation Model

To provide high fidelity solutions to the Navier–Stokes equations, the flow around the wing is
modeled using a well-validated Navier–Stokes equation solver. The case setup for hovering flight
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requires the kinematics of the wing as described in Section 2.1 to be imposed on a quiescent fluid.
The fluid response and resulting viscous and pressure distributions on the body are described by the
unsteady, incompressible Navier–Stokes equations given as

∇∗ ·V∗ = 0
k
π

∂V∗
∂t∗ + (V∗ · ∇∗)V∗ = −∇∗p + 1

Re ∆∗V∗
(10)

where the asterisk (*) indicates variables that have been non-dimensionalized with the reference
velocity U, the flapping frequency f, and the mean wing chord c. These equations are solved in
three dimensions using a structured, finite-volume, pressure-based incompressible Navier–Stokes
equation solver used extensively in flapping wing studies in the past. For example, Teng et al. [36] and
Shyy et al. [37] used the solver for Re = O(102), similar to the present study. Additionally, Lian et al. [38]
and Kamakoti and Shyy [39] used it for Re = O(104). Appendix B demonstrates low Re motion being
simulated with sufficient accuracy.

The 3D grid is a structured, rectangular grid composed of eight separate blocks that is modeled to
have geometry similar to a fruit fly wing. There are 15 cells along the tip and root of the wing, 53 cells
along the leading and trailing edges, and cells approaching the wing are constrained to be only 0.01c
apart. The outer boundary of the domain is located approximately 30 chord lengths from the wing.
The wing is infinitely thin. Figure 2 shows the fruit fly wing used to develop the 3D grid. The boundary
conditions are no-slip on the surface of the wing and extrapolated pressure at the boundary. The initial
conditions are quiescent flow. The wing is rigidly moved at each time step in accordance with the
prescribed wing kinematics.
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Figure 2. Images of (a) a fruit fly wing and (b) the corresponding 3D wing grid.

2.2.3. Spatial and Temporal Sensitivity Study

The number of nodes around the wing is systematically increased with each grid in the spatial
sensitivity study and the number of time steps was increased for each case in the temporal sensitivity
study. These studies are conducted on the baseline kinematics with ha = 1.5, ∆τr = 0.5, xpa = 0.5, αd = αu =
45◦ (case 26 in Table A1). The medium grid (23 × 46 × 92) with 631,800 number of cells and 480 time
steps per period yields sufficiently converged solution for lift as shown in Figure 3 and Table 1.
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Table 1. Spatial and temporal sensitivity for 3D grids. Five different meshes and five timestep sizes
were included in the spatial and temporal sensitivity study. The medium grid (23 × 46 × 92) with
631,800 cells was chosen with 480 timesteps/period for the NSe simulations.

Cells Timesteps/Period Total Cells <CL> L1-Norm L2-Norm

spatial

10 × 20 × 40 480 46,930 0.7820 0.0518 0.0571
15 × 30 × 60 480 168,200 0.7667 0.0220 0.0257
23 × 46 × 92 480 631,800 0.7543 0.0113 0.0152

34 × 68 × 136 480 2,091,874 0.7543 0.0075 0.0094
51 × 102 × 204 480 7,181,504 0.7574 — —

temporal

23 × 46 × 92 60 631,800 1.0504 0.1243 0.2990
23 × 46 × 92 120 631,800 0.8705 0.1071 0.1830
23 × 46 × 92 240 631,800 0.7874 0.0848 0.1032
23 × 46 × 92 480 631,800 0.7543 0.0519 0.0448
23 × 46 × 92 960 631,800 0.7336 — —

3. Results and Discussion

3.1. Aerodynamic Response under the Three-Dimensional Pitch-Flap Motion

Before comparing the performance of the QS model in Section 3.2, we first assess the aerodynamic
response from the NSe solution. In particular, we investigate how the three design variables xpa, A,
and ∆τr affect the resulting CL, CD, and CM under the 3D pitch-flap motion given by Equations (1) and
(2).

Figure 4 shows CL in the design space of xpa, A, and ∆τr. The middle pitching amplitude α =
45◦ has the largest CL at xpa = 0 and ∆τr = 0.2 (rapid rotation). For xpa > 0.5, larger lift is seen at
lower A and, therefore, at higher AoAs (AoA is roughly 90◦–α). When the pitching axis is close to the
leading edge, a longer pitching duration reduces lift. On the other hand, when xpa > 0.5, the lift is
nearly insensitive to ∆τr. The effects of the pitching duration are the most noticeable when the pitch
axis is near the trailing edge at A = 60◦. The lowest lift is found in this region when A = 60◦, xpa = 1,
and ∆τr = 0.2.
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Figure 4. NSe solutions of the cycle-averaged lift coefficient in the design space. (a) Iso-surfaces of
<CL> in the design space. (b) Slices of <CL> in the design space at various xpa values.

The global trends in Figure 4 suggest that the extreme pitching kinematics, i.e., the motion where
the pitching amplitude is large A ≥ 45◦, the duration is short ∆τr < 0.3, and the pitching axis is at the
leading or trailing edge have the most effect on the lift coefficient. On the other hand, the lift response
is mild when the pitch axis is at the midchord xpa = 0.5 and the duration is relatively long ∆τr ≥ 0.3.
To analyze the flapping wing physics further, we consider three parametric studies where a single
design parameter is changed at extreme and mild motions as summarized in Table 2.
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Table 2. Extreme and mild cases considered.

A ∆τr xpa Pitching Motion

30◦, 45◦, 60◦ 0.3 0.5 Mild
30◦, 45◦, 60◦ 0.2 1.0 Extreme

30◦ 0.2, 0.3, 0.5 0.5 Mild
60◦ 0.2, 0.3, 0.5 1.0 Extreme
30◦ 0.3 0.0, 0.25, 0.5, 0.75, 1.0 Mild
60◦ 0.2 0.0, 0.25, 0.5, 0.75, 1.0 Extreme

3.1.1. Pitching Amplitude Trends

Time histories of the aerodynamic forces and moment about the pitching axis over a full cycle
are shown in Figure 5. The pitching amplitude is changed from 30 to 60◦. Figure 5a shows modest
forces result with ∆τr = 0.3 and xpa = 0.5. Figure 5b shows a case with extreme pitching motion with
kinematics ∆τr = 0.2 and xpa = 1.0.
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Figure 5. Plots of the predicted lift, drag, and moment coefficient for cases with changing pitching
amplitude, A = 30◦ (black), A = 45◦ (red) and A = 60◦ (blue). (a) Mild motions with ∆τr = 0.3 and
xpa = 0.5; (b) Extreme motions with ∆τr = 0.2 and xpa = 1.0.

Both forward and return strokes generate similar lift profiles. The pitching occurs at the beginning
and end of the stroke. The angle of attack is held constant during the mid-stroke. At the beginning and
end of each stroke, we see an increase in the magnitude for the peaks and valleys for lift coefficient as
the pitching amplitude increases.

For the mild motions in Figure 5a, the change in A mostly affects the magnitude of the
aerodynamic forces during the mid-stroke, where the flapping velocities are the highest. The pitching
at the ends of the strokes are relatively slow, resulting in rotational peaks that are relatively smaller.
At the middle of the stroke (t/T = 0.25) the smallest lift coefficient is seen at A = 60◦ with A = 45◦

and A = 30◦ having similar values. In Figure 5b, on the other hand, the extreme motions with rapid
pitching (shorter pitch duration ∆τr and pitch axis xpa at the trailing edge) show the lift coefficient
has much larger peaks during the ends of the strokes than seen in the less extreme case in Figure 5a.
The difference in the lift during the midstroke is much smaller than during the ends of the strokes.

The drag coefficient shows similar trends as the lift coefficient. The peak values for the drag
coefficient are seen at the areas of pitching with the rapid pitching case shown in Figure 5b, yielding
much larger drag. However, at the middle of the stroke, we see the largest drag comes from pitching
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amplitude A = 30◦ with decreasing drag coefficient as pitching amplitude increases. The largest drag is
found at A = 30◦ because the wing is more vertical during the midstroke compared to higher pitching
amplitudes. The moment coefficient about the pitching axis is closely related to the lift and drag,
which is also what we observe.

Figure 6 shows the iso-surfaces for the Q-criterion (Q = 0.75) for the forward stroke with A = 30◦ to
A = 60◦ for the mild motions. The Q-criterion is an invariant of the velocity gradient tensor, defined as

Q = −1
2

∂ui
∂xj

∂uj

∂xi
. (11)

The Q-isosurfaces provides a visual indication of the vortical structures in the flow field [40].
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Figure 6. Contour plots of the NSe iso-surfaces of Q-criterion at Q = 0.75 for motions with ∆τr = 0.3,
xpa = 0.5 and (a) A = 30◦, (b) A = 45◦, and (c) A = 60◦.

Larger vortical structures are produced when the wing is pitching at a lower amplitude (A = 30◦),
since the angle of attack is the highest during the mid-stroke. When the pitching amplitude is high
(A = 60◦), the vortices are relatively smaller. The Q-isosurfaces are similar in structure for when A = 45◦

and A = 30◦, where we see larger vortices around the leading edge, trailing edge, and wing tip, also
indicated by the similarity in the lift coefficient in Figure 5a.
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At t/T = 0.5, wing tip vortices move up over the wing. This spanwise non-uniformity is also seen
in Figure 7, which shows the contour plots of the coefficient of pressure for the forward stroke of the
same mild cases for the top and bottom of the wing. Very large pressure coefficient areas are observed
near the wing tip, consistent with the highest flapping wing velocity magnitude towards the wing tip.
These results suggest that most of the lift is produced near the wing tip.
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Figure 7. Contour plots of the NSe coefficient of pressure on the top and bottom of the wing at the
middle of the forward stroke (t/T = 0.25) for ∆τr = 0.3 and xpa = 0.5; (a) A = 30◦, (b) A = 45◦, and
(c) A = 60◦.

3.1.2. Pitching Duration Trends

A comparison of the aerodynamic forces and moment about the pitch axis is shown in Figure 8
for the three pitching durations for the mild and extreme pitching motions. A pitching duration
of ∆τr = 0.5 implies that the pitching takes place over the entire stroke. As the pitching duration
shortens, i.e., as the wing pitches faster, the lift coefficient at the beginning and end of the stroke shows
larger peaks in Figure 8a. Then at the middle of the stroke (t/T = 0.25) the lift coefficient has similar
magnitudes. This trend is magnified for the rapid pitch extreme motions in Figure 8b with much larger
lift peaks. The drag and moment coefficients show similar trends as the lift coefficient.

The similarity between the iso-Q-surfaces shown in Figure 9 with different pitching durations
is striking at the midstroke. At the end of the stroke, the shortest pitching duration ∆τr = 0.2 shows
slightly larger iso-Q-surface. The larger vortical structures at the stroke ends due to quicker rotation
are consistent with the higher force magnitudes in Figure 8.
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Figure 8. Plots of the predicted lift, drag, and moment coefficient for cases with changing pitching
duration, ∆τr = 0.2 (black), ∆τr = 0.3 (red), and ∆τr = 0.5 (blue). (a) Mild motion with A = 30◦ and
xpa = 0.5; (b) Extreme motion with A = 60◦ and xpa = 1.0.
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Figure 9. Contour plots of the NSe iso-surfaces of Q-criterion at Q = 0.75 at t/T = 0.25 (top) and
t/T = 0.5 (bottom) for motions with pitching duration, (a) ∆τr = 0.2, (b) ∆τr = 0.3, and (c) ∆τr = 0.5;
Mild motions with A = 30◦ and xpa = 0.5.

3.1.3. Pitching Axis Trends

Figure 10 show the aerodynamic forces and moment about the pitching axis, where the pitching
axis is changed from the leading edge, xpa = 0.0, to the trailing edge, xpa = 1.0. Figure 10a shows a case
with a relatively small pitching motion with A = 30◦ and ∆τr = 0.3. Figure 10b shows a case with large,
rapid pitching motion with A = 60◦ and ∆τr = 0.2.
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Figure 10. Plots of the NSe predicted lift, drag, and moment coefficient for cases with changing pitching
axis, xpa = 0.0 (black), xpa = 0.25 (red), xpa = 0.5 (blue), xpa = 0.75 (purple), and ∆τr = 0.5 (green) (a) cases
with A = 30◦ and ∆τr = 0.3 (b) cases with A = 60◦ and ∆τr = 0.2.

In Figure 10a the lift coefficient at the beginning of the stroke increases as the pitch axis location
moves towards the trailing edge. At the end of the stroke, this trend reverses. During the middle of
the stroke (t/T = 0.25), the lift coefficient has similar values. These trends are similar in the extreme
cases in Figure 10b with the magnitudes magnified. The difference in lift coefficient is much smaller
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between different pitching axis when the pitching motion is small (Figure 10a) and the difference is
large when the pitching kinematics are extreme (Figure 10b). The drag and moment coefficients show
similar trends as the lift coefficient.

The iso-Q-surfaces are generally similar as shown in Figure 11. Key differences can be seen at
t/T = 0.0 in the LEVs. For trailing edge pitching axis, a large LEV has formed across most of the span
(Figure 11c). When the pitching axis is at the leading edge (Figure 11a), the LEV spins in the opposite
direction, still covering most of the span. For xpa = 0.5, the leading-edge vortex is much smaller and
can be found only near the wing tip (Figure 11b). Also, as the pitching axis moves from the leading
edge to trailing edge, the wingtip vortex becomes stronger. The reverse is true for the wing root vortex,
which is larger when pitching axis is at the leading edge.
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Figure 11. NSe iso-surfaces of Q-criterion at Q = 0.75 and colored with Y- vorticity for the following
motions: (a) xpa = 0, A = 30◦, and ∆τr = 0.3 at t/T = 0.0, (b) xpa = 0.5, A = 30◦, and ∆τr = 0.3 at t/T = 0.0,
and (c) xpa = 1.0, A = 30◦, and ∆τr = 0.3 at t/T = 0.0.

3.2. Assessment of the QS Model

Analysis of the aerodynamic response due to the changes in the three design variables in
Section 3.1 indicates that the force magnitudes during the midstroke are affected primarily by the
pitching amplitude A, whereas the forces at the ends of the strokes are influenced by all three design
variables. Furthermore, there are two main regions worth noting in the design space. The first is where
the pitching kinematics are mild, i.e., the pitching amplitude is small, the duration is long, and the
pitching axis is located near the mid-chord. In this area, the sensitivity of the aerodynamic response is
relatively mild. The second area is where the pitching kinematics are extreme, the amplitude is large,
the duration is short, and the pitching axis is away from mid-chord typically towards the trailing edge.
Also, when xpa is away from 0.5, either the leading edge (LE) or trailing edge (TE) will experience the
largest velocity due to rotation. For symmetric rotations, which we employ in this study, the LE will
experience a greater relative flow velocity when xpa = 1 then vice versa, because the LE rotates into the
flow, whereas the TE rotates away from the flow.

Figure 12 shows the absolute difference between the cycle-averaged lift coefficients between the
QS and NSe results in the design space. Three general trends can be noticed. Firstly, as the pitching
axis moves away from mid-chord the differences tend to increase. The largest differences are seen at
xpa = 1.0, with the smallest typically being at xpa = 0.5 or xpa = 0.25. Secondly, as the pitching amplitude
increases we see an increase in differences in cycle-averaged lift coefficient. Thirdly, a longer pitching
duration leads to a smaller difference in cycle-averaged lift coefficient.

We discuss the qualitative differences by focusing on the motion with the largest difference and
the motion with the smallest difference. A comparison of the wing kinematics between these two
cases is found in Figure 13. To analyze the differences between the two methods we look at one full
stroke of each case in order to capture the asymmetry of the force coefficients in the Navier–Stokes
solutions. The asymmetry in the NSe force coefficients are due to the nonlinear wing-wake interaction,
which cannot be modeled by a QS model, and the asymmetry in the initial direction of the flapping
motion, i.e., forward versus backward strokes [41]. Recall that the NSe solutions are taken from the
third flapping cycle, as described in Section 2.2.3.
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Figure 12. Contour plots of the differences in cycle-averaged lift coefficient between QS and NSe
(<CL,QS>− <CL,NSe>) in the design space of the pitching axis (xpa), pitching duration (∆τr), and pitching
amplitude (A). (a) Iso-surfaces of <CL,QS> − <CL,NSe> in the design space. (b) Slices of <CL,QS> −
<CL,NSe> in the design space at various xpa.
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Figure 13. Plots of wing pitching and flapping for the smallest difference motion versus the largest
difference motion. The largest difference motion is characterized by A = 60◦, Z = 49.3◦, ∆τr = 0.2,
and xpa = 1.0. The smallest difference motion is characterized by A = 30◦, Z = 49.3◦, ∆τr = 0.3,
and xpa = 0.5.

3.2.1. Largest Difference Motion: Case 39

The largest difference in the cycle-averaged lift coefficients between the models, which is 1.7,
occurs when the kinematics are extreme: xpa = 1.0, A = 60◦, and ∆τr = 0.2. The NSe model predicts a
lift coefficient of −0.59, whereas the QS model overpredicts the lift coefficient as 1.11.

We plot the direct comparison of lift, drag, and moment coefficient for the case with largest
differences in Figure 14. The general trends are similar. Both models predict large peaks and valleys for
all three coefficients at the beginning and end of the strokes where the pitching motion occurs. At the
mid-stroke, where the angles of attacks are held constant, much smaller coefficients are predicted than
during the pitching motion.Fluids 2018, 3, x FOR PEER REVIEW  14 of 20 
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Figure 14. Plots of coefficients of lift (top), drag (middle), and moment (bottom) over one stroke for
QS (red) and NSe (blue) predictions for the largest difference motion. In the figure the cycle-averaged
lift coefficient for the QS is 1.11 and the NSe is −0.59. A = 60◦, ∆τr = 0.2 and xpa = 1.0.
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Figure 15 shows a breakout of the components of lift for the QS model in terms of the translational,
rotational, and added mass components (Equations (4)–(9)). The lift coefficient can be divided into
three major areas based on the pitching duration: (i) beginning of the forwards stroke (0.0 < t/T < 0.1),
(ii) middle of forward stroke (0.1 < t/T < 0.4), and (iii) end of forward stroke (0.4 < t/T < 0.5).
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Figure 15. Plots of the translational (black), added mass (red), rotational (blue) and theoretical rotational
(blue dashed), added mass and rotational lift forces in the QS model for the largest difference motion.
A = 60◦, ∆τr = 0.2, and xpa = 1.0.

The first interval starts at the beginning of the forward stroke and ends when the first part of
the pitching motion stops and the pitching angle is held constant at A = 60◦. This portion of the
stroke is dominated by the rotational component of lift, due to the large pitching amplitude and short
pitching duration. The translational velocity is still relatively slow and, therefore, the translational
lift component much smaller. The translational component has a small peak due to the pitching axis
being at the trailing edge, which means the wing is rotating in the direction of the flapping motion.
In the second portion of the stroke, the translational component of lift dominates. Both the rotational
and added mass contributions vanish due to the constant pitch angle. The translational component
peaks at the midstroke, where the flapping velocity is the highest. The QS solution agrees well with
the NSe results. In the third interval, the trends are similar as in the first interval. The signs of the
rotational and added mass contributions are opposite, because of the pitch up motion. As the wing
rapidly pitches up while decelerating, negative lift is generated. The QS model predicts an increase in
lift coefficient and then drops off. The NSe model predicts the lift coefficient to decrease as soon as the
pitching begins at t/T = 0.4.

The major differences in the lift coefficient occur during the rapid pitch motion where the rotational
component is dominant. A phase shift and a difference in magnitude is observed, suggesting that the
rotational term in the quasi-steady model is not accurate for the considered kinematics. Note that the
use of the theoretical rotational lift coefficient Crot,theo = πworsens the accuracy significantly during
this portion of the stroke. This significant inaccuracy is likely due to the fact that the empirical terms in
the Sane and Dickenson QS model [18] are obtained for xpa ≤ 0.66, where the present study considers
xpa ≤ 1. In addition to this assumption, the range of dimensionless rotational velocity (ω̂ in Crot

of Equation (5)) ranges from 0.166 to 0.374 in Sane and Dickinson’s QS formulation [18]. However,
the present study includes a range of ω̂ between 0.5 and 1.75 (which is close to the range typical of
insects [16]), resulting in values completely outside that used by Sane and Dickinson [18]. Considering
the fact that the rotational velocity scales the rotational forces quadratically, it is unsurprising that this
term creates large discrepancies between models, especially at such high values. Additionally, a more
accurate rotational drag term could be used in the model, such as the formulations presented in recent
studies [27,28]. Since the rotational drag term is highly dependent on the rotational axis, it is expected
that improved accuracy would rectify the differences between the QS and NSe solutions even at more
extreme pitch axis locations.

Similar to the lift, the drag peaks during the pitching motion and the drag magnitude significantly
reduces during the middle of the stroke. It is important to notice the magnitude of the peak drag.
The rapid pitching of the wing in the direction of the flapping motion with xpa = 1.0 results in a large
drag force being produced, overpredicting the NSe solutions significantly. At the beginning of the
forward stroke, the drag is almost equally composed of the translational and rotational components.
Based on the lift comparison, we argue that the inaccuracy of the rotational lift causes the large



Fluids 2018, 3, 81 15 of 20

difference observed in this interval. As the pitching ends, the pitching angle is constant and the drag is
made up entirely of the translational component. A closer agreement exists in this phase.

Figure 14 shows that the moment coefficient has large peaks and valleys during the pitching
and smaller ones for the middle of the stroke. The close agreement in the first portion of the stroke
may be due to a cancellation of errors in the lift and drag coefficients. The moment coefficients
are close to zero during the second interval, well predicted by the QS model. However, large
discrepancies are noticeable in the final interval, consistent with the observed differences in the
force coefficient comparisons.

3.2.2. Smallest Difference Motion: Case 22

While the largest difference in accuracy between the models is seen when the pitching kinematics
are extreme, the smallest differences are seen when the kinematics are mild. Consider as an illustrative
example the motion with xpa = 0.5, A = 30◦, and ∆τr = 0.3. This motion shows a difference in the
cycle-averaged lift of only 0.01 between QS and NSe.

We plot the direct comparison of lift, drag, and moment coefficient for this motion in Figure 16.
Compared to the large difference case, the magnitude of the coefficients is smaller in general.
Because the duration of the pitching motion is long at ∆τr = 0.3, the wing does not pitch as quickly.
This motion is directly seen in the QS lift coefficient which is mostly sinusoidal. The QS shows a peak
at the middle of the forward stroke and low values at stroke transition. The NSe model also predicts
lowest values at the stroke transitions. However, the lift and drag time histories consist of multiple
peaks. The first peak in the NSe lift is associated with wake capture, which a QS model cannot capture,
and the second with the delayed stall due to the LEVs [40].Fluids 2018, 3, x FOR PEER REVIEW  16 of 20 
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Figure 16. Plots of coefficients of lift (top), drag (middle), and moment (bottom) over one period for
QS (red) and NSe (blue) predictions for the small difference motion. In the figure the cycle-averaged
lift coefficient for the QS is 0.83 and the NSe is 0.82. A = 30◦, ∆τr = 0.3, and xpa = 0.5.

Figure 17 shows the breakdown for the QS components of lift. The translational component is
the largest contributor to lift with only small effects from the added mass and rotational components
during pitching. The translational lift is dominant due to the small pitching amplitude and the pitching
axis being located at the mid-chord, resulting in in the pitching motion being less extreme and lasting
longer over the stroke.
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Figure 17. Plots of the translational (black), added mass (red), rotational (blue) and theoretical rotational
(blue dashed) lift forces in the QS model for the smallest difference motion. A = 30◦, ∆τr = 0.3,
and xpa = 0.5.

At the beginning of the forward stroke between t/T = 0.0 and t/T = 0.15, the wing begins to
flap and to pitch down. The pitching amplitude is relatively small, i.e., A = 30◦. Also, the pitching
axis at the mid-chord, leading to a small rotational and added mass components. The added mass
and rotational components are proportional to the pitching velocities and accelerations respectively.
During the midstroke, the wing has stopped pitching and is at the maximum pitching angle of 30◦.
The angle of attack is about AoA = 60◦. The translational component of the lift is by far the dominant
component of the lift. As shown in Figure 11a, a previously shed vortex interacts with the wing,
momentarily enhancing the lift. This wake-capture is reflected in the lift as a small peak at t/T = 0.1.
The QS model is unable to capture this unsteady phenomenon. As the wing flaps further, a LEV forms
on the top side of the wing, leading to delayed stall and increased lift. The NSe model matches very
closely with the QS, suggesting that the translational component of the QS accurately models the
delayed stall effect for this motion. At the end of the stroke, the pitching begins to take the wing back
from the maximum angle of attack to 90◦. The NSe lift is larger than the QS lift. The difference may
again be ascribed by the inaccuracy of the rotational force term in the QS model. Similar trends are
observed for the drag and moment about the pitch axis.

Figure 17 also indicates that the theoretical rotational force magnitude and the rotational force
based on the empirical fit are nearly the same. This is a coincidence due to the fact that Crot,exp = 3.14,
which is close to the theoretical value of Crot,theo = π [18]. It should also be noted that the added mass
contribution in both Figures 13 and 16 are not symmetric between the upstroke and downstroke. It is,
however, expected that the added mass contribution would be symmetric between the two strokes
when symmetric kinematics are implemented. It appears that this asymmetry is a result of the QS
model’s formulation of the added mass force (Equation (7)) which is dependent on the sign convention
used in defining the wing motion. This is demonstrated by Sane and Dickinson’s plots of lift due to
added mass, which show slight asymmetries as well [18].

4. Concluding Remarks

The main purpose of this study is to quantify the differences and accuracy between two flapping
wing aerodynamic models: (i) the quasi-steady model and (ii) 3D Navier–Stokes solutions for flapping
wing flyers. When the pitching motion is extreme, i.e., the pitching motion is large, quick, and occurs
about the leading or trailing edge, large force and moment magnitudes are seen at the beginning
and end of the strokes. The differences between the QS and NSe are relatively also larger. The main
difference is caused partially by the inaccuracy of the rotational lift term in the QS model, which is
the dominant term at the beginning and end of the strokes. The use of theoretical value for the
rotational coefficient worsens the accuracy of the force predictions compared to the use of empirically
fit coefficient. Because the rotational effects are more important for the extreme pitch motions, the error
caused by the rotational lift term is also more pronounced.

On the other hand, for the mild pitching motions with pitching motion that is small, long,
and occurs about midchord, the translational contributions are more dominant. The translational
term in the QS model provides a relatively accurate prediction. Another source for the difference is
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the inability of the QS model to properly capture the wake-capture, which is a nonlinear wing-wake
interaction flow phenomenon.

This study is of particular importance to the modeling and analysis of the flight dynamics
of bio-inspired MAVs or biological flyers. Due to the inherent coupling between the unsteady
aerodynamics of the wings and flight dynamics of the body, a closed form expression, such as a
QS model, would be used for the flapping aerodynamics in an ideal case as solving the NSe is
computationally expensive. However, our study shows that the large and rapid pitch rotations that
produce large forces, desired for MAV development, the current QS model underperforms. A question
still remains how the observed differences in the aerodynamics would affect the MAV dynamics and
stability, which will be investigated in the future.

Finally, Lentink and Dickinson [42] have shown that aerodynamic coefficients are sensitive to
the Reynolds number especially Re < 1000, which is relevant to small insect and micro-air vehicles.
The accuracy of QS model needs to be investigated at different Re. Also, as most insect wings are
flexible, an investigation into the QS model performance as compared to flexible NSe models would
be beneficial. Furthermore, this study only considered three pitching parameters, leaving numerous
kinematic parameters left as unexplored topics of future studies. Another avenue for future research
would be to investigate additional QS models [8,17–27] and compare them against each other as well
as against Navier–Stokes solvers.
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Appendix A

Table A1 lists the kinematics that we consider in this study.

Table A1. Cases considered in this study.

Case α (◦) ∆τr xpa Case α (◦) ∆τr xpa Case α (◦) ∆τr xpa

1 30 0.2 0 16 30 0.5 0.25 31 30 0.3 0.75
2 45 0.2 0 17 45 0.5 0.25 32 45 0.3 0.75
3 60 0.2 0 18 60 0.5 0.25 33 60 0.3 0.75
4 30 0.3 0 19 30 0.2 0.5 34 30 0.5 0.75
5 45 0.3 0 20 45 0.2 0.5 35 45 0.5 0.75
6 60 0.3 0 21 60 0.2 0.5 36 60 0.5 0.75
7 30 0.5 0 22 30 0.3 0.5 37 30 0.2 1
8 45 0.5 0 23 45 0.3 0.5 38 45 0.2 1
9 60 0.5 0 24 60 0.3 0.5 39 60 0.2 1

10 30 0.2 0.25 25 30 0.5 0.5 40 30 0.3 1
11 45 0.2 0.25 26 45 0.5 0.5 41 45 0.3 1
12 60 0.2 0.25 27 60 0.5 0.5 42 60 0.3 1
13 30 0.3 0.25 28 30 0.2 0.75 43 30 0.5 1
14 45 0.3 0.25 29 45 0.2 0.75 44 45 0.5 1
15 60 0.3 0.25 30 60 0.2 0.75 45 60 0.5 1

Appendix B

The present Navier–Stokes equation solver was used to generate results for fruit fly motion,
as described and experimentally implemented by Fry et al. [43]. The results show a <CL> of 0.64,
which is in sufficient agreement with Fry, who reports a <CL> of 1.06, and with Aono et al. [44]
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whose NSe simulation result in a <CL> of 0.58. For a more detailed description of the kinematics and
computational setup, refer to Aono et al. [44].
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