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Abstract: The purpose of the present review is to describe the effect of an interface between media
with different mechanical properties on the acoustic response of a gas bubble. This is necessary
to interpret sonar signals received from underwater gas seeps and mud volcanoes, as well as in
the case of acoustic studies on the Arctic shelf where rising gas bubbles accumulate at the lower
boundary of the ice cover. The ability to describe the dynamics of constrained bubble by analytical
methods is related to the presence of internal symmetry in the governing equations. This leads
to the presence of specific (toroidal and bi-spherical) coordinate systems in which the variables
are separated. The existence of symmetry properties is possible only under certain conditions.
In particular, the characteristic wavelength should be larger than the bubble size and the distance
to an interface. The derived analytical solution allows us to determine how the natural frequency,
radiation damping, and bubble shape depend on the distance to the boundary and the material
parameters of contacting media.

Keywords: bubble; symmetry; toroidal and bi-spherical coordinates; natural frequency;
radiation damping

1. Introduction

The presence of gas inclusions in the medium has a strong effect on the propagation of acoustic
waves and leads to an additional damping and scattering of sound [1]. Hydro-acoustic manifestations
of gas bubbles are important in various fields, such as acoustic oceanography, ultrasonic technologies,
bio-medical applications. In the oil and gas industry, the detection of Leaks in sub-sea hydrocarbon
pipelines and equipment represents a significant problem. At leakage, the gas bubbles are created and
produce their birthing wails by which they can be identified [2].

Although a great deal is known about bubble oscillations in unbounded liquids [1], it is not very
clear to what extent these results are applicable to the dynamics of constrained bubbles. Strasberg [3]
was the first who studied the effect of a closely located rigid boundary boundary on the natural
frequency of a single bubble. The effect of a rigid wall on gas bubble natural frequency has been
evaluated in this approach by accounting for only monopole interactions between the bubble and its
mirror image. The resonant frequency of a bubble attached to a solid boundary was first determined
by Howkins [4]. The next step was done by Blue [5], who also adopted Strasberg’s theory to explain
the experimental finding.

The experimental studies and a theoretical analysis of the behavior of in-phase oscillations of
bubbles tethered to a plate have been performed by Paine et al. [6] and Illesinghe et al. [7]. The method
of images developed by Strasberg [3] was used to model the effect of the boundary which, as noted
above, requires correction at distances compared with the size of the bubble.

Microbubble contrast agents find application in a variety of biomedical technologies for imaging
and drug delivery. In most cases, contrast agents perform forced oscillations near a boundary.
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Prediction of the natural frequency of the oscillation of ultrasound contrast agents in microvessels
has drawn increasing attention [8–10]. Experimental studies demonstrate strong evidence that the
microbubble oscillation amplitude and its back scattering signal amplitude are changed significantly if
the contrast agent is in contact with the boundary. Garbin et al. [11] showed that the close proximity of
a wall decreased the radial amplitude of microbubble oscillation by 50%. The influence of adherence at
a wall on the dynamics of the microbubbles has been investigated by Overvelde et al. [12]. The shape
of a bubble that performs volumetric oscillations can deform if it touches a wall. The amplitude
of nonspherical oscillations of ultrasound contrast agent has been estimated by Vos et al. [13].
The nonspherical and translational behavior of individual microbubbles has been observed and
categorized by Vos et al. [14]. The effect of the mechanical properties of adjoining media on
the bubble dynamics remains poorly understood. It should be noted that there are experimental
studies of the dynamic deformation of a viscoelastic layer induced by the volumetric oscillations
of an ultrasound-driven microbubble [15], but there is no consistent theoretical explanation of the
observed phenomena. A very comprehensive overview of achievements in this field has just become
available [16]. The purpose of the series of studies [17–21] was to reveal how boundaries with different
mechanical properties affect the acoustic response of a contrast agent microbubble. The radial motion
of an encapsulated microbubble has been studied, taking into account only the monopole component
in interaction. Since one of the purposes of these studies was a mechanism for sonoporation, the
final calculations were performed at closest distances to the border. In this area, the corrections to the
monopole contribution are the greatest.

The successes achieved with the use of numerical methods for simulating the behavior of
a gas bubble located near a boundary were presented in the review by Blake and Gibson [22].
Further development of the method and new applications have been reported in subsequent works by
Chahine et al. [23], Krasovitski and Kimmel [24], and Fong et al. [25].

The results presented in the current paper describe only linear phenomena in the interaction of a
bubble with a boundary. For this reason, the description of a very complex mechanism of interaction
of a laser-induced bubble with elastic materials observed experimentally [26–28], in particular,
jetting formation, bubble migration, cavitation erosion, stress wave emission during optical breakdown
and bubble collapse is currently possible only with the use of numerical methods.

A gas bubble is a very symmetrical object, which allows for a fairly complete description of its
behavior even for a substantially nonlinear regime. The presence of confining surfaces located near
the bubble disrupt the spherical symmetry of the problem and significantly limits the possibilities
of analytical description. However, along with the physically obvious symmetry of the form, in this
problem, there may exist less obvious but not less significant symmetries of the equations that describe
the bubble behavior in the presence of constrains.

The application of methods of Lie groups consists in constructing geometric transformations of
the space of independent and dependent variables of a system of differential equations. Almost for
each important system of differential equations from the point of view of physics, these conditions of
infinitesimal invariance are found [29] and allow, in particular, to predict coordinate systems in which
the variables can be separated [30]. This approach has been used to obtain an analytical description
of several phenomena in bubble dynamics [31–34]. The review surveys current studies and indicates
issues for future research.

2. Results

Consider a bubble attached at the interface of a fluid (medium 1) with density ρ0 and sound speed
c0 and the second medium characterized by density ρ∗ and sound speed c∗. The center of the bubble is
at distance h from the boundary with the second medium. The basic bubble equilibrium shape consists
of a bowl with the curvature R0 (if the bubble is tethered to the interface h < R0) and a sphere of radius
R0 (if the bubble is located at the distance h > R0 from interface).
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It will be assumed that the characteristic wavelengths of the acoustic field exceed the size of the
bubble and the distance to the boundary c0T >> R0, h (here T is the characteristic time scale), so that
the liquid near the bubble wall can be regarded as incompressible. Under this condition, the velocity
can be expressed as the gradient of a scalar potential ϕ:

v = ∇ϕ, ∇2 ϕ = 0. (1)

The relationship between pressure P(r, t) and potential in a liquid is determined by the
Bernoulli integral

P(r, t) + ρ0 [ϕ̇(r, t) + (∇ϕ · ∇ϕ) /2− ϕ̇∞(t)] = P∞ + Pm(t), (2)

where P∞ is the equilibrium pressure in the liquid far from the bubble, Pm(t) is the pressure in the
acoustic wave. The potential in the Bernoulli equation is defined within an arbitrary function of time.
For this reason, the potential at large distances from the bubble ϕ∞(t) is commonly taken to be zero.
The amplitude of the bubble oscillation is assumed to be small. This allows one to neglect the nonlinear
terms (∇ϕ · ∇ϕ) /2 in the Bernoulli equation.

The dynamic boundary condition expresses the balance of forces: the pressure on two sides of the
bubble wall differ only because of surface tension:

Pl = Pg − σ (∇ · n) , (3)

where Pl = P(r ∈ S, t) and Pg = P0 (V0/V)γ denote the pressure in the liquid and in the bubble
respectively, n is the unit vector normal to the bubble surface S0, σ is the coefficient of surface tension
of the gas/liquid interface. We adopt a widely used equation of state for gas in a bubble corresponding
to a polytropic law, V, V0 are the instantaneous and equilibrium bubble volume, γ is the polytropic
exponent, P0 is the equilibrium pressure in the bubble.

The kinematic boundary condition expresses continuity of displacements on the bubble wall:

ζ̇ = (v · n)r∈S0
, (4)

where ζ is the normal displacement of the bubble wall S0.
The pressure in the acoustic wave can be considered spatially uniform at a distance less than

characteristic wavelength. For this reason, the assumption that the bubble possesses axial symmetry
and has no angular momentum will be justified. The choice of a particular coordinate system will help
us to find an analytical solution to the problem. This coordinate system should have axial symmetry
and lead to the separation of variables in the Laplace equation.

2.1. Symmetries in the Dynamics of Constrained Bubble

The Laplace Equation (1) is very symmetric. It is clearly invariant under translations, rotations,
and scaling transformations. The full set of infinitesimal generators of symmetries for this equation
have the following form [30]

Pj = ∂j = ∂xj, j = 1, 2, 3; J1 = x3∂2 − x2∂3, J2 = x1∂3 − x2∂1, J3 = x2∂1 − x1∂2; K1 = x1

+
(

x2
1 − x2

2 − x2
3

)
∂1 + 2x1x3∂3 + 2x1x2∂2, K2 = x2 +

(
x2

2 − x2
1 − x2

3

)
∂2 + 2x2x3∂3 + 2x1x2∂1,

K3 = x3 +
(

x2
3 − x2

1 − x2
2

)
∂3 + 2x1x3∂1 + 2x1x2∂2; D = − (1/2 + x1∂1 + x2∂2 + x3∂3) , (5)

where Pj are the generators of translations, Jj are the generators of rotations, D is the generator of
dilatations and the Kj are generators of special conformal transformations. The tenth-dimensional
algebra of symmetry of the Laplace Equation (5) leads to 17 coordinate systems, enabling the separation
of variables [30]. The toroidal and bi-spherical coordinates are part of these systems.
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For most important linear equations, solutions with separating variables are common
eigenfunctions of second order commuting operators from the enveloping Lie algebra of symmetries
corresponding to this equation. The commuting symmetry operators that completely specify the
toroidal coordinates are S1 = J2

3 and S2 = (P3 + K3)
2 [30].

The toroidal coordinates (η, ψ, α) are related with Cartesian ones (x, y, z) by the relations:

x =
L
2

sinh η cos α

cosh η − cos ψ
, y =

L
2

sinh η sin α

cosh η − cos ψ
, z =

L
2

sin ψ

cosh η − cos ψ
, (6)

where η goes from 0 to ∞, ψ and α go from −π to π and from 0 to 2π, correspondingly; L is the
diameter of the focal ring. The surface η = const is a torus and the surface ψ = const is a spherical
bowl. An illustration of toroidal coordinates is shown in Figure 1a,b. The system of toroidal coordinates
is orthogonal.

ρ

z

η= 1/2

η= 1

η= 2

η= 0

ψ= 0

ψ = −π/8

ψ = π/8

ψ = −π/4

ψ = π/4

ψ = −π/2

ψ = π/2

ψ = −3 π/4

ψ = 3 π/4

(b)

Figure 1. Schematic illustration of toroidal coordinates. (a) The toroidal coordinates of any point are
given by the intersection of a sphere, a torus, and an azimuthal plane. Spheres of different radii that pass
through the focal ring are specified by coordinates ψ. The surfaces of constant η are non-intersecting
tori of different radii. The coordinate α is the azimuthal angle about the z axis. (b) The right panel
shows circles of constant η and ψ observed in the section of the azimuthal plane

2.2. Dynamics of a Tethered Bubble

Toroidal coordinates is a natural coordinate system for analysis of oscillations of tethered bubbles
since the equilibrium surface of a such bubble is a spherical bowl. The Laplace equation has the
following form in toroidal coordinates

1
h3

η

[
1

sinh η

∂

∂η
hη sinh η

∂

∂η
+

∂

∂ψ
hψ

∂

∂ψ
+

hα

sinh η

∂2

∂α2

]
ϕ (η, ψ, α, t) = 0, (7)

where hη = hψ = (L/2) [cosh η − cos ψ]−1, hα = (L/2) sinh η [cosh η − cos ψ]−1 are the
Lamè coefficients.

The boundary conditions to this equation should be specified on the bubble wall ψw = θc (where
θc is the contact angle) and on the boundary ψb = 0 which corresponds to the interface (see Figure 1).
The relation between the diameter of the ring of contact L and the equilibrium radius of the bubble R0

is given by L = 2R0 sin θc.
To separate the variables in the Laplace equation, we replace ϕ (η, ψ, α, t) by√

cosh η − cos ψϕ̃ (η, ψ, α, t) [35]. In view of the axial symmetry of the system, Equation (7)
acquires the form [

L̂ +
∂2

∂ψ2

]
ϕ̃(η, ψ, t) = 0, L̂ϕ̃ =

1
sinh η

∂

∂η
sinh η

∂

∂η
ϕ̃ +

ϕ̃

4
, (8)



Fluids 2018, 3, 90 5 of 17

here L̃ is the Legendre operator. An important class of integral expansions involving spherical
harmonics is commonly known as Mehler-Fock integral transforms. This suggests that the solution of
Equation (8) can be found in the form [36]:

ϕ̃(η, ψ) =
∫ ∞

0
P−1/2+iτ(cosh η)Φ(ψ, τ)dτ, (9)

Φ(ψ, τ) = τ tanh(πτ)
∫ ∞

0
P−1/2+iτ(cosh η)ϕ̃(η, ψ) sinh ηdη. (10)

Equations (9) and (10) represent the forward and inverse transformations. Here, P−1/2+iτ(cosh η)

is the Legendre functions of the first kind. The degree of the associated Legendre function appears as
the integration variable in the inversion formula.

The kernel of the integral transform, Φ(ψ, τ), obeys the equation

∂2Φ(ψ, τ)

∂ψ2 = τ2Φ(ψ, τ). (11)

The substitution of the solution of Equation (11) into Equation (9) yields the general form of the
required solution

ϕ̃(η, ψ) =
∫ ∞

0
[a(τ) cosh(ψτ) + b(τ) sinh(ψτ)] P−1/2+iτ(cosh η)dτ, (12)

where a(τ) and b(τ) should be determined from the boundary conditions on the bubble wall.
We shall assume that the characteristic length of the acoustic wave exceeds the dimensions of

the bubble not only in the liquid, but also in the gas. Under these conditions, the pressure inside
the bubble will change periodically in time, but remain spatially homogeneous. It follows from the
Bernoulli equation that the surface of such a homobaric bubble will be equipotential, if neglecting
surface tension and nonlinear term. We shall analyze only linear volume oscillations of the relatively
large bubbles and therefore can use this approximation ϕ(η, ψ, t)ψ=θc = ϕ0(t).

For the relatively simple case when the lower medium is absolutely rigid
(
∂ϕ/∂ψ|ψ=0 = 0

)
we

have b(τ) = 0. After using the Heine identity [36]

1√
cosh η − cos θc

=
√

2
∫ ∞

0

cosh [(π − ϑc)τ]

cosh(πτ)
P−1/2+iτ(cosh η)dτ, (13)

one obtains

a(τ) = ϕ0(t)
√

2
cosh [(π − ϑc)τ]

cosh(πτ) cosh(ϑτ)
(14)

which provides finding in the close form the solution of the problem:

ϕ(η, ψ, t) = ϕ0(t) (cosh η − cos ψ)1/2√2
∫ ∞

0

cosh(ψτ) cosh [(π − ϑc)τ]

cosh(πτ) cosh(ϑcτ)
P−1/2+iτ(cosh η)dτ. (15)

The Legendre function of complex index could be expressed by means of the following integral

P−1/2+iτ(cosh η) =

√
2

π
coth(πτ)

∫ ∞

η
dt

sin(tτ)

(cosh t− cosh η)1/2 . (16)

Substitution of this expression into Equation (15) allows one to convert it to the form

ϕ(η, ψ, t) = ϕ0(t)

[
1− (cosh η − cos ψ)1/2 2

ϑc

∫ ∞
η

cos
(

ψπ
2ϑc

)
sinh( tπ

2ϑc )dt

(cosh t−cosh η)1/2
[
cosh( tπ

ϑc )−cos
(

ψπ
ϑc

)]
]

. (17)
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In this form, the behavior of the potential in the vicinity of the tethered bubble was derived
earlier [37]. However, the method by which these results were obtained was complicated and of an
intuitive, rather than a regular nature. By using the transformation of inversion relative to the ring of
contact, the original problem has been reduced to the form corresponding to the field of point charge
in the wedge. The inverse transformation of the known solution of electrostatics led to Equation (17).
A small difference between the earlier [37] and the present approaches consists in using the different
boundary conditions for the potential at the bubble wall ϕ0(t) and far from the bubble ϕ∞(t): it was
assumed in the Ref. [37] that ϕ0(t) = 0, ϕ∞(t) 6= 0 but we set ϕ0(t) 6= 0, ϕ∞(t) = 0 in the present
approach. This difference is not important, since the potential is determined to within an arbitrary
function of time.

Substitution of solutions in the form of (15) and (17) into the kinematic boundary condition
Equation (4) establishes the relationship between the time variation in the bubble volume ∆V̇ and the
value of the potential at the bubble wall ϕ0(t)

∆V̇ = LCϕ0(t),

C = (1− cos(ϑc))
1/2 π

ϑc

∫ ∞

0

sinh t

(cosh t− cos(ϑc)) cosh
(

tπ
2ϑc

)
(cosh t− 1)

dt

= (2π)
∫ ∞

0
dτ

cosh [(π − ϑc) τ]

cosh (πτ) cosh (ϑcτ)
. (18)

Introducing the notation C (capacity), we use the existing analogy of dynamics of homobaric
bubble and electrostatics [38]. The form of Equation (18) substantially simplifies the expression
given in Ref. [37] where C was described by a double integral. Different forms of representation
for C correspond to the two forms of the solution found Equations (15) and (17). When performing
numerical calculations, the third line of Equation (18) is useful. In turn, the form presented on the
second line of Equation (18) is more convenient for the discovery of the fact that the integral for C can
be reduced to analytical formulas for definite values of wetting angles: ϑc = π/6, π/4, π/3, π/2 [37].

Substituting ϕ̇0(t) expressed through the change of volume in the dynamic boundary condition (3),
we obtain an analogue of the Rayleigh equation [37]

1
2R0 sin ϑcC(ϑc)

d2∆V
dt2 +

γP0

ρ0V0
∆V = −Pm

ρ0
sin(ωt). (19)

It follows directly from this equation that the fundamental frequency of the tethered bubble has
the form

Ω2
∗ (R0, ϑc) =

2γR0 sin ϑcC(ϑc)P0

ρ0V0
= Ω2

0
sin ϑcC(ϑc)

2π

[
1− (1−cos ϑc)

2(2+cos ϑc)
4

] , (20)

where Ω0 =
[
(3γP0) /

(
ρ0R2

0
)]1/2 is the fundamental frequency of a free bubble of the same radius

of curvature R0. The ratio of these frequencies Ω̃ = Ω∗/Ω0 depends only on ϑc. The plot of the
dependence Ω̃ on ϑc presented in the Ref. [37] is the only predicted physical effect that can be verified
experimentally. This is an obvious defect in the developed approach. However, the unified approach
based on the use of toroidal coordinates makes it possible to significantly expand this list. Thus, some of
the effects described in the next section, related to the analysis of the behavior of the bubbles located at
a close distance from the boundary surface in bi-spherical coordinates, have a close analogues for a
tethered bubbles, which can be studied in toroidal coordinates.

2.3. Bubble Dynamics Close to Interface

In this section, we use a bi-spherical coordinate system for separating variables in the Laplace
equation. In contrast to toroidal coordinates, this system is conformally equivalent to a system of



Fluids 2018, 3, 90 7 of 17

spherical coordinates. However, these two coordinate systems are not equivalent with respect to the
Euclidean group [30].

The bi-spherical coordinates (ξ, ϑ, α) are related to Cartesian coordinates (x, y, z) by the relations:

x = a
sin ϑ cos α

cosh ξ − cos ϑ
, y = a

sin ϑ sin α

cosh ξ − cos ϑ
, z = a

sinh ξ

cosh ξ − cos ϑ
,

a = R0 sinh ξ0, ξ0 = ln
[

h/R0 +

√
(h/R0)

2 − 1
]

, (21)

where ξ goes from −∞ to ∞, ϑ and α go from 0 to π and from 0 to 2π, correspondingly. The surface
ξ = ξ0 is the bubble, while the interface corresponds to ξ = 0. For ξ = 0, cos ϑ → 1 corresponds to
r → ∞. Illustration of the bi-spherical coordinate system is shown in Figure 2a,b.

By its structure, the Laplace equation in bi-spherical coordinates is close to Equation (7) and has
the following form

∇2 ϕ =
1
h3

ξ

[ 1
sin ϑ

∂

∂ϑ

(
hϑ sin ϑ

∂ϕ

∂ϑ

)
+

∂

∂ξ

(
hξ

∂ϕ

∂ξ

)
+

hα

sin2 ϑ

∂2 ϕ

∂α2

]
= 0,

hξ = hϑ = a [cosh ξ − cos ϑ]−1 , hα = a sin ϑ [cosh ξ − cos ϑ]−1 , (22)

where hξ , hϑ, hα are the Lamè coefficients.
A solution procedure for the Laplace equation in bi-spherical coordinates requires the introduction

of the following substitution: ϕ =
√

cosh ξ − cos ϑϕ̃. In view of the assumed axial symmetry,
the function ϕ̃ does not depend on the azimuthal angle. For the function ϕ̃, the variables are separated.

We begin with the simplest solution [39] obeying rigid boundary conditions. Applying the
equipotentiality condition ϕ(ξ, ϑ, t)|ξ=ξ0 = ϕ0(t) on the bubble wall and the impermeability
condition on the rigid boundary h−1

ξ (∂ϕ/∂ξ)ξ=0 = 0, we find the analytic solution of the boundary
value problem

ϕ(ξ, ϑ, t) = ϕ0(t)
√

cosh ξ − cos ϑ
√

2
∞

∑
n=0

Pn(cos ϑ)e−(n+1/2)ξ0
cosh [(n + 1/2)ξ]
cosh [(n + 1/2)ξ0]

, (23)

here Pn(cos ϑ) are the Legendre functions. The structure of Equation (23) is similar to that obtained in
Ref. [40] for the free surface and corresponds to another limiting case, that of a rigid boundary.

The time derivation of the bubble volume, ∆V̇, can be expressed through the potential at the
bubble wall

∆V̇
V0

= −3ϕ0(t)Ω̃2 (κ)

R2
0

, κ =
h

R0
, Ω̃2 = 1− 2

√
κ2 − 1

∞

∑
n=0

[
κ +
√

κ2 − 1
]−(2n+1)

[
κ +
√

κ2 − 1
](2n+1)

+ 1
. (24)

Substitution of this relation into the dynamic boundary condition (3) leads to the Rayleigh
equation for the volume variation ∆V(t)

∆V̈ + Ω2
0∗∆V = 0, Ω0∗ = Ω̃Ω0. (25)

Here, Ω0∗ is the natural frequencies of the bubble located at the distance h above the rigid bottom.
A graph of the ratio Ω∗/Ω0 as function of h/R0 is shown in Figure 3 of the Ref. [39].
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x

z
ξ= 1/2

ξ= −1/2

ξ= 1

ξ= −1

ξ= 2

ξ= −2

ξ= 0

ϑ= 0

ϑ= −π/8 ϑ= π/8

ϑ= −π/4 ϑ= π/4

ϑ= −π/2 ϑ= π/2

(b)

Figure 2. Schematic illustration of bi-spherical coordinates. (a) A surface, on which the bi-spherical
coordinate ξ is constant, represents a sphere of a radius a/| sinh ξ| with center at (z = a coth ξ0,
x = y = 0). An orthogonal surface, on which the bi-spherical coordinate ϑ is constant, is formed
by the circular arc with center (x = a cot ϑ, z = 0) and radius a/| sin ϑ| rotating around the axis 0z.
The coordinate α is the azimuthal angle about the z axis. (b) Circles of constant ξ and ϑ in the (x; z)
plane are shown in panel (b).

1 2 3 4 5 6 7 8 9 10
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

κ

Ω
∗
/Ω

0

(ln2)
1/2

Figure 3. Normalized natural frequency as function of distance to boundary (h/R0). Solid circles show
the measured values [3]. The dashed line corresponds to case where only monopole component of
interaction between bubble and its mirror image is taken into account.

The presence of a rigid boundary decreases the natural frequency. The figure also includes a
comparison of these calculated values with measured values. There is a continuous transition from
the state of the tethered bubble to the state of the bubble located at some distance from the surface.
This is the state of the bubble which touches the surface at one point. The shift of the natural frequency
obtained for this case [37] and the results of the Ref. [39], which uses bi-spherical coordinates, give the
same value.

The problem of describing the dynamics of a bubble located at some distance from the boundary
is much simpler than the description of a tethered bubble, since it does not require analysis of the
behavior in the vicinity of the contact line. For this reason, a much more detailed study of the features
of the behavior of such an inclusion can be obtained.

First, we consider the acoustic correction to the incompressible Rayleigh-Plesset Equation (25).
The implementation of this procedure follows the approach suggested by [41,42] and account for the
presence of the rigid boundary. The radiation damping results from the emission of energy away from
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the bubble as sound. Use is made of the method of matched asymptotic expansion in which the small
parameter is ε = R0/(c0T0). In this way we find [39]

∆V̈ + νr∆V̇ + Ω2
0∗∆V = 0, νr =

2R0Ω̃2Ω2
0∗

c0
. (26)

The damping constant γr differs from that for a free bubble by a co-factor (2Ω̃4). Since the
presence of a rigid wall doubles the amplitude of potential in the far field, then the power (which is
proportional to the square of the amplitude) leads to the factor 4. However, the radiation from the
bubble near the rigid wall occurs only in a half of the solid angle. For this reason, only the factor 2
enters into the final expression for the radiation damping. This result is valid only for the case when
the wavelength is much greater than the distance to the rigid wall λ >> h and one can ignore the
phase difference between the direct wave and the one reflected from the wall. The factor Ω̃4 reflects the
variation in the bubble inertial mass near the wall. This term quickly approaches unity with increasing
distance from the bubble to the wall.

So far, we have assumed the flow near the bubble and the rigid wall to be inviscid and irrotational.
In reality, the presence of viscosity implies that the tangential and normal components of the stress
must be continuous at the surface of the bubble. The velocity should be vanished at the rigid wall.
To accommodate these boundary conditions other types of solution of the viscous equations of motion
are required. For the millimeter sized bubbles and kHz frequency range, the viscous length |δ|,
(δ−1 = (−iω/ν)1/2) is small compared with the equilibrium radius R0. Thus vorticity is restricted to
the thin boundary layers near the bubble interface and the rigid wall.

A straightforward method for taking into account the vorticity would be to proceed by successive
approximations. On the other hand, if we restrict our analysis to finding the value of viscous damping,
and not the details of flow in the near interface region, we can use the approach based on the total
energy conservation in incompressible liquid. In this approach, time derivative of energy is balanced
by dissipative function. Longuet-Higgins [43] used this approach in finding viscous damping of
surface modes on the bubble wall. As was shown in Ref. [39], the damping factor of bubble oscillations
due to dissipation near the boundary has the form

γv =
2ν

R2
0

R0

|δ|Ω̃2
Fv(κ). (27)

One can identify three factors in this expression. The first one 2ν/R2
0 characterizes the viscous

losses at the free surface—the bubble wall. The second factor shows how the viscous losses near
the rigid wall exceed the losses at the free surface R0/|δ| >> 1. The third factor Fv(κ) describes the
law of diminishing losses with increasing the distance from the bubble to the rigid wall κ = h/R0.
The explicit form of Fv is given in Ref. [39]. For large values of the argument κ (h >> R0) Fv is given by
the formula Fv ≈

(
4κ2)−1. Figure 4 illustrates the behavior of Fv on κ = h/R0 for the most interesting

range of distances. The starting point is the state when the bubble near touches the boundary, and then
this interval extends up to a relatively large distances (κ = 10, h = 10R0).

Please note that although the surface value of the potential over the bubble wall is constant, the
value of the normal derivative, which determines the displacement and deformation of the bubble
shape ζ = h−1

ξ (∂ϕ/∂ξ)ξ=ξ0
, varies with the angle ϑ. To illustrate the variation in the bubble shape

during its oscillations near the rigid wall, the angular dependence of the displacement ζ on ϑ has been
evaluated [39].
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Figure 4. Variation of the dimensionless damping coefficient, Fv, entering in Equation (27).
The dash-dotted line describes the approximate shape of Fv(κ), corresponding to large distances.

Figure 5 shows the distortions reached during the expansion (dashed line) and contraction
(dot-dashed line) phases of oscillations, for the dimensionless amplitude ζ/R0 = ϕ0(0)/

(
Ω∗R2

0
)
= 0.2.

The bubble equilibrium shape is shown by the the solid line. The dependencies shown in the figure
demonstrate a rather non-obvious fact that the bubble shape can be qualitatively well described
by the first terms of the multipole expansion even at a relatively short distance from the boundary.
This approach provides an efficient way to evaluate the accuracy of the approximate methods [17,18].
In applying these methods it was assumed that the bubble undergoes only radial and translational
oscillations near an interface.

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x

z

Figure 5. The shape of the bubble at the moments of the largest expansion (dashed line) and the greatest
compression (dot-dashed line). For comparison the bubble equilibrium shape is shown by the solid
line. All length-dimensional values are normalized to the bubble equilibrium radius R0. The bubble is
located at the distance h = 1.5R0 from the rigid bottom. When calculating the dependencies shown in
the figure, the value of the dimensionless amplitude ζ(0)/R0 = 0.2 was used.

The interaction of a bubble with a boundary is traditionally taken into account by introducing a
mirror monopole source. The applicability of this method is restricted by the condition of smallness
of the bubble size compared to the distance to the bounding surface. An approach using specific
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coordinate systems for separating variables was successfully used in describing the behavior of tethered
inclusions and bubbles located near rigid boundaries. The boundary of most media is not absolutely
rigid, so the next step in applying the method is to examine the bubble behavior near an interface
between two liquids.

2.4. Bubble Oscillations Near an Interface between Two Liquids

In this case, the parameters of the second medium—its density and the speed of sound—influence
the behavior of the bubble. At the interfaces, the boundary conditions should be satisfied, which include
continuity of displacements and equality of forces. In each medium, the potential satisfies the
Helmholtz equation. However, if we use the integral representation of this equation, this will make it
possible to express the potential in the medium (1), where the bubble is located, through the boundary
values on the interfaces:

ϕ(r) =
1

4π

∫
S0+Sint

[
G(r, r′)

∂ϕ(r′)
∂n′

− ϕ(r′)
∂G(r, r′)

∂n′

]
dS, (28)

where G(r, r′) is the Green’s function, r is the position of the observation point, r′ corresponds to points
at the bubble surface and interface and ∂/∂n′ is the derivative with respect to the normal (the normal
is directed inside the bubble and inside medium (2)).

In the first stage [44], we will analyze natural bubble oscillations, and, therefore, the right-hand
side of Equation (28) does not contain the term describing the source. The choice of the Green’s
function in Equation (28) makes it possible to simplify considerably the procedure for finding the
solution. Following [45], we choose it in the form satisfying the boundary conditions at the interface
between two liquids. For a planar interface, this leads to the fact that the integral over Sint vanishes,
so that only the integral over the bubble surface remains in Equation (28).

When solving Equation (28), we use the asymptotic expansion method, with the small parameter
being the ratio ε of the bubble size and the bubble-to-boundary distance to the wavelength. In the
vicinity of the bubble, r ≈ R0, h, the media can be considered incompressible. Far from the bubble,
r ≈ (c0, c∗)T, the finite speed of propagation is essential.

ϕ(r) = ϕ0(r) + εϕ1(r) + ...,

G(r, r′) = G0(r, r′) + εG1(r, r′) + ... (29)

We will take into account only two first terms of the series expansion, which, as shown by
Prosperettit [41], is sufficient to determine the natural frequency and the radiation damping of
bubble oscillations.

The zero-order and first-order equations have the form

ϕ0(r) =
1

4π

∫
S0

[
G0(r, r′)

∂ϕ0(r′)
∂n′

− ϕ0(r′)
∂G0(r, r′)

∂n′

]
dS,

ϕ1(r) =
1

4π

∫
S0

[
G0(r, r′)

∂ϕ1(r′)
∂n′

+ G1(r, r′)
∂ϕ0(r′)

∂n′
− ϕ0(r′)

∂G1(r, r′)
∂n′

− ϕ1(r′)
∂G0(r, r′)

∂n′
−
]

dS. (30)

This system of equations becomes completely defined if we supplement it with the boundary
conditions at the bubble wall Equations (3) and (4).
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The first two terms of the expansion of the Green’s function that appear in Equations (30) have
the form [44]:

G0(r, r′) =
1

|r− r′| +
1

|r− r′ + 2z′ez|
m− 1
m + 1

, G1(r, r′) = 2ik0m
[

m− n
m2 + 1

+ mC(n, m)

]
,

C(n, m) =



− (n2−1)1/2

(m2−1)3/2 ln


(

1−
√

(n−1)(m−1)
(n+1)(m+1)

)
(

1+
√

(n−1)(m−1)
(n+1)(m+1)

)
 , n > 1, m > 1;

− 2(n2−1)1/2

(1−m2)3/2 arctan
[√

(n−1)(1−m)
(n+1)(m+1)

]
, n > 1, m < 1;

− 2(1−n2)1/2

(m2−1)3/2 arctan
[√

(1−n)(m−1)
(n+1)(m+1)

]
, n < 1, m > 1;

− (1−n2)1/2

(1−m2)3/2 ln


(

1−
√

(1−n)(1−m)
(n+1)(m+1)

)
(

1+
√

(1−n)(1−m)
(n+1)(m+1)

)
 , n < 1, m < 1.

(31)

where ez is the unit vector along the z axis, m = ρ∗/ρ0, n = c0/c∗. The zero-order Green’s function can
be interpreted as follows: it consists of two monopole sources in an incompressible liquid, namely, a
direct source and a mirror one with respect to the interface, the mirror source intensity being such that
the boundary conditions are satisfied. The first-order Green’s function G1 is constant and independent
of spatial coordinates. It should be noted that the above formulas are valid within the wave zone.

To find the zero-approximation solution ϕ0(r), we use the fact that the liquid within the wave
zone near the bubble can be considered incompressible. This means that the potential is a solution of
the Laplace equation along with the integral equation (the first lune of Equation (30)). The convenience
of the integral equation is that we do not need to worry about satisfying the boundary conditions at
the interface Sint. It suffices to substitute a general solution to the Laplace equation and explicit form
of the Green’s function into the integral equation. Thus, the zero-approximation solution takes on the
form [44]:

ϕ0(ξ, ϑ) =
√

cosh ξ − cos ϑϕ0(ω)
√

2 ∑∞
k=0 e−(k+1/2)ξ0 (m+1)e(k+1/2)ξ+(m−1)e−(k+1/2)ξ

(m+1)e(k+1/2)ξ0+(m−1)e−(k+1/2)ξ0
Pk(cos ϑ). (32)

The solution to the first-approximation is independent of spatial coordinates and has the form [44]

ϕ1 = ik0 ϕ0(ω)2m
[

m− n
m2 + 1

+ mC(n, m)

]
Ω2

b,

Ω2
b = 1− 2 sinh ξ0

∞

∑
k=0

(m− 1)e−(2k+1)ξ0

(m + 1)e(2k+1)ξ0 + (m− 1)
. (33)

This leads [44] to the modified Rayleigh Equation (26) in which the frequency Ω0∗ is replaced by
Ω∗b and νr is replaced by ν

Ω∗b = Ω0Ωb, ν =
(

Ω2
0R0/c0

)
2m
[

m− n
m2 + 1

+ mC(n, m)

]
Ω4

b. (34)

Spatial variations of Ω∗b and ν are governed by the behavior of factor Ωb(ξ0) which involves an
explicit dependence on bubble-to-boundary distance h and bubble size R0:

Ω2
b = 1− 2(m− 1)

√
(h/R0)2 − 1

∞

∑
k=0

[
h/R0 +

√
(h/R0)2 − 1

]−(2k+1)

(m + 1)
[

h/R0 +
√
(h/R0)2 − 1

](2k+1)
+ (m− 1)

. (35)

Figure 6 illustrates the behavior of dimensionless natural frequency Ωb = Ω∗b/Ω0 as function
of the normalized distance to the boundary (h/R0) and the ratio of densities m = ρ∗/ρ0. The typical
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ratio of sediment density to water density is m = 1.95, for blood and artery wall this ratio is close to
unity m = 0.9/1.05 = 0.86. The behavior of the natural frequency of the bubble displayed above the
sediment layer is depicted by dash-doted line. The dependence of this frequency for a bubble located
in the sediment layer is shown by a dashed curve. The bubble natural frequency in blood near the
artery wall is represented by a dotted line.

The dimensionless damping factor ν/ν0 (normalized to the damping factor of a free bubble
ν0 = Ω2

0R0/c0) is shown in Figure 7. The damping factor is calculated for resonance frequency, and its
spatial variability is determined only by the factor Ω̃4

b. Since the radiation damping in addition to the
dimensionless distance, (h/R0), depends also on two parameters characterizing the media (the ratio
of densities, m, and the ratio of sound speeds, n), it is not possible to describe its behavior by one (even
a three-dimensional plot). For this reason, two-dimensional graphs describing the dependence of the
damping on the distance to the boundary, (h/R0), are given. However, each of the graphs corresponds
to the typical physical parameters of the media, m, n.

So, for a bubble near the sediment layer (the upper curve in Figure 7), the damping factor
decreases on approaching to the boundary because of the decrease in frequency Ω̃b. For a bubble in
the sediment layer, the damping factor increases on approaching to the boundary (the lower solid
curve in Figure 7) because of the increase in frequency Ω̃b. As the distance to the boundary increases,
however, within the range which is smaller than the wavelength, the damping factor of a bubble above
the sediment layer is higher than that of a free bubble, because sediments represent a heavier and
less-compressible medium. The presence of this medium can be roughly estimated by the presence of
a mirror bubble oscillating in phase. Conversely, for a bubble in the sediment layer, the mirror bubble
oscillates in anti-phase and, hence, reduces damping. For damping of a bubble in blood, which is
shown by the thick dashed line in Figure 6, the difference in the parameters of media is so small that
the variation in the bubble oscillation parameters is almost undetectable. It should be noted that the
above results relate only to the contribution of radiation damping. Blood is a non-Newtonian fluid
and the viscous component of the complex viscosity can lead to a marked influence on the bubble
dynamics at physiological hematocrit values (∼45%) [46].

Figure 6. Normalized natural frequency as function of distance to boundary (h/R0) and the ratio of
densities m. Dash-dotted curve corresponds to bubble above sediment layer (m = 1.95). Dotted line
describes dependence of natural frequency for bubble in blood near artery wall (m = 0.86). Dashed line
corresponds to bubble in sediments (m = 0.51).
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Oscillations of a bubble near an interface, in addition to the distortion of the bubble shape,
lead to deformation of the boundary. This new, in comparison with a rigid boundary, effect is used
in experimental studies related to biomedical applications [15,16]. The vertical displacement of the
interface between the media ∆z = (i/ωhξ) (∂ϕ0/∂ξ)ξ=0 is determined directly from the found solution
and has the form

∆z(ϑ) =
iϕ0(ω) (1− cos ϑ)3/2

ωR0 sinh ξ0

√
2

∞

∑
k=0

(2k + 1)Pk(cos ϑ)

(m + 1)e(2k+1)ξ0 + (m− 1)
. (36)

It should be noted that small (micron) size bubbles were used in the mentioned experiments.
The presented approach is valid for relatively large bubbles for which the contribution of surface tension
can be ignored. For this reason, comparison is possible only after the inclusion into consideration of
the effects associated with deviation from equipotentiality of the bubble wall.

The presented results describe a relatively simple case of a boundary separating two liquids.
However, the possibilities of the approach used are much broader and allow us to consider a much
more complicated case of the interface between liquid and elastic media. The technical difficulties
in solving this problem consist in the cumbersomeness of calculating the asymptotic of the Green’s
function Equation (28). In the integral representation of this function, the coefficient of reflection
from the liquid half-space should be replaced by the reflection coefficient from the elastic half-space.
The existence of surface waves at the boundary of these media is manifested as a pole of the reflection
coefficient, which makes it difficult to calculate the asymptotic behavior and leads to the necessity of
introducing etalon integrals.

1 2 3 4 5 6 7 8 9 10

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

h/R
0

ν
/ν

0

Figure 7. Normalized radiation damping factor as function of distance to boundary. Upper solid
curve, lower solid curve and thick dashed line correspond to bubble above sediment layer, to bubble in
sediments, to bubble in blood near arterial, respectively. Thin dashed lines correspond to case where
only monopole component of interaction between bubble and its mirror image is taken into account.

3. Discussion

It was shown above that the presence of internal symmetry, which leads to the existence of very
specific coordinate systems, allows one to analytically describe the behavior of a tethered bubble or a
bubble located at a close distance from the boundary. Unlike these results, which are applicable to
the case of passive acoustic methods of bubble diagnostics, there were carried out additional studies,
reported in the paper [47], which concern to active acoustic methods. The purpose of that study was to
describe the effect of an interface between media with different mechanical properties on the acoustic
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response of a gas inclusion. This is necessary to interpret sonar signals received from underwater gas
seeps and mud volcanoes, as well as in the case of acoustic studies on the Arctic shelf where rising gas
bubbles accumulate at the lower boundary of the ice cover.

Analytic formulas have been derived which determin the dependencies of radial and dipole
oscillation amplitudes on the size of the bubble, its distance to the boundary, and physical parameters
of media. It has been showed that the use of an approximate model taking into account the contribution
of only the lowest-order expansion term to the interaction between the bubble and its mirror image
provides a good approximation of the exact solution. It has been found that, as the distance to the
boundary decreases, dipole oscillations become comparable in amplitude with radial oscillations.
A consequence of this effect is a considerable growth of microstreaming generated by the bubble.

Although the results of [47] refer to a bubble located near the boundary, there are no fundamental
limitations for transferring them to the case of a tethered bubble. Moreover, the case where the bubble
is attached to the boundary at one point is described in this study.

We confine ourselves to presenting results describing the behavior of a bubble near a plane surface,
but the proposed approach will also be valid for a more complicated form of the boundary. Namely,
the coordinate surfaces that must coincide with the boundaries represent a family of confocal cyclides.
A cyclide is a surface whose equation has the form [30]

q(x2 + y2 + x2)2 + P(x, y, z) = 0, (37)

where q is some constant, and P is a polynomial of the second order. The simplest example is a sphere,
that is the presence of a second bubble. The solution of this problem has been given in the following
publications [48,49].

4. Conclusions

In recent years there has been substantial progress in the theory of oscillatory dynamics of
constrained bubbles. The presence of an interface strongly affects the bubble dynamics. The use
of relatively simple models based on the presence of the internal symmetry of the problem, made
it possible to reveal how the distance to the boundary and physical parameters of media affect
bubble oscillations. It has been shown that bubbles exhibit a strong ability to be sensitive to the
presence of boundaries in their environment. Applicability of the models used earlier and based on
accounting for only the monopole component in the interaction between the bubble and its mirror
have been determined. The results obtained prove useful for the passive and active acoustic methods
of bubble diagnostics.
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