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Abstract: Large amplitude, horizontally propagating internal waves are commonly observed in the
coastal ocean. They are often modelled by a variable-coefficient Korteweg–de Vries equation to take
account of a horizontally varying background state. Although this equation is now well-known,
a term representing non-conservative effects, arising from horizontal variation in the underlying
basic state density stratification and current, has often been omitted. In this paper, we examine the
possible significance of this term using climatological data for several typical oceanic sites where
internal waves have been observed.
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1. Introduction

Large amplitude internal solitary waves are commonly observed in the coastal ocean (see the
reviews by Grimshaw [1], Holloway et al. [2], Ostrovsky and Stepanyants [3], Helfrich and Melville [4,5],
Grimshaw et al. [6] and the book by Vlasenko et al. [7]). As they are long waves with wavelengths
greater than the relevant vertical scale, it is widely accepted that the basic paradigm for the description
of these waves is based on the Korteweg–de Vries (KdV) equation, first derived in this context by
Benney [8] and Benjamin [9] and subsequently by many others (see the aforementioned references).
However, typically, they propagate through regions of horizontally variable density stratification
and background currents, and over variable bottom topography. Hence, a variable-coefficient
Korteweg–de Vries (vKdV) equation is needed to model these waves. For internal waves, this is
given by (see Grimshaw [10], Zhou and Grimshaw [11] for a detailed derivation),

ηt + cηx +
cQx

2Q
η + µηηx + δηxxx + ση +D(η) = 0 . (1)

Here, η(x, t) is the internal wave amplitude of the relevant modal function, usually mode 1
(see Section 2 for a precise definition). In (1), x, t are space and time variables, c(x) is the relevant
linear long wave speed, and Q(x) is the linear magnification factor, defined so that Qη2 is the wave
action flux density for linear long waves. The coefficients c, Q, µ, δ, σ are slowly-varying functions of x
and are determined by the relevant waveguide properties. D(η) is a frictional term, which can take
various forms (see the aforementioned review articles). For most of this paper, we omit this term, but
we will return to it later in Appendix A. Formally, the derivation requires the usual KdV scaling where
η ∼ ε2, ∂/∂x ∼ ε, ∂/∂t ∼ ε. Then, the first two terms in (1) are the dominant terms and the evolution
takes place on a spatial scale x ∼ ε−3. The coefficients c, Q, µ, δ vary on this same spatial scale x ∼ ε−3,
while σ ∼ ε3 and D(η) ∼ ε5.
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Our main concern in this paper is with the term ση, which represents non-conservative effects
arising from the horizontal variability in the underlying basic state density stratification and current.
An outline of the derivation of (1) was given by Liu et al. [12] and for convenience is briefly
summarised here in Section 2, emphasising how the “new” term ση arises. It is present because
the vKdV Equation (1) describes the evolution of a wave field about a basic state which may not
be in exact equilibrium due to the inhomogeneous background state. That is, it does not satisfy the
underlying conservative full equation set, in this case the two-dimensional Euler equations, which can
be constructed from a Lagrangian. Andrews and McIntyre [13], Grimshaw [14], have described in
a general context how this term arises when considering wave action conservation. We use the term
“non-conservative” here and throughout in the restricted sense that it is non-conservative only because
the horizontal variability of the basic state current and density fields, taken from oceanic data, may not
satisfy the two-dimensional Euler equations. Note that the horizontal variation of the fluid depth h is
mainly already accounted for in the linear magnification factor Q, and ensures that the wave action
flux Qη2 is conserved in the conservative case. Although the “new” term has the form of Rayleigh
friction, importantly this term has no connection with dissipative processes on the internal waves
themselves. Unlike the usual Rayleigh friction, σ varies with distance, can be positive or negative,
and indeed can change sign along the wave path. Although this term has been known for over three
decades, it has usually been neglected in modelling studies. Zhou and Grimshaw [11] examined some
possible scenarios of how the term might arise, and, recently in Liu et al. [12], we examined its effect
for a model two-layer fluid and for three oceanic cases previously considered by Grimshaw et al. [15],
where the term had been omitted. In this paper, we use climatological data from five typical oceanic
sites where internal waves have been observed. Importantly, we also now include a background
current, which was of necessity omitted in Liu et al. [12] because of the lack of suitable current data.

Since the first two terms in (1) are the dominant terms, we can make the transformation

A =
√

Q η , T =
∫ x

0

dx
c

, X = T − t . (2)

Substitution into (1) yields, to the same order of asymptotic approximation as in the derivation of (1),
and after omitting the dissipation term D(η) (although we shall return to this later),

AT + νAAX + λAXXX + σA = 0 , (3)

ν =
µ

c
√

Q
, λ =

δ

c3 . (4)

The coefficients ν, λ, σ are functions of T alone. In addition, since we can assume δ > 0 without loss of
generality, we make a further transformation yielding the canonical form,

Aτ + αAAX + AXXX + βA = 0 , (5)

where τ =
∫ T

0
λ dT =

∫ x

0

δ

c4 dx , α =
ν

λ
=

µc2
√

Qδ
, β =

σ

λ
=

σc3

δ
. (6)

Note that the coefficients α, β, originally expressed as functions of x, are now functions of τ through
the transformation τ = τ(x) (6). A further transformation yields the form suitable for numerical
simulation,

A = RÃ , R = exp (−
∫ τ

0
β dτ′) , Ãτ + α̃ÃÃX + ÃXXX = 0 , α̃ = Rα . (7)

The scaling factor R is a cumulative measure of the coefficient β. In the sequel, we will show some
simulations of this equation. There are two conservation laws
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∂M
∂τ

= 0 , M =
∫ ∞

−∞
Ã dX , (8)

∂P
∂τ

= 0 , P =
∫ ∞

−∞
Ã2 dX , (9)

relating to mass and wave action flux, respectively.
In Section 2, we present a brief summary of the derivation of (1) emphasising the origin of the

coefficient σ. Then, in Section 3, we present some case studies based on climatological data for five
typical oceanic sites. Three of these show that the effect on the “new term” ση is measurable but
small, while the other two cases are when it is quite significant. We conclude in Section 4. In the
Appendices A and B, we examine the possible effects of bottom friction and the earth’s background
rotation, neglected in the main body of the paper.

2. Variable-Coefficient Korteweg–De Vries Equation

The vKdV Equation (1) was derived by Grimshaw [10] (see also Zhou and Grimshaw [11])
and was summarised in our previous paper, Liu et al. [12]. That summary is briefly reproduced here
for convenience, and also to define the coefficients in (1). We assume a two-dimensional configuration,
so that there is no y-dependence in either the basic state or in the wave field. Then, the basic state
consists of a depth h = h(x), a background horizontal current in the wave direction u0(z; x) with
a corresponding vertical velocity field w0(z; x), a density field ρ0(z; x) with a corresponding pressure
field p0(z; x) and a free surface displacement ζ0(x). When the basic current field and density fields
have an explicit x-dependence, as may arise in practice when, as here, they are obtained from actual
oceanic data, this basic state may not satisfy the full steady-state two-dimensional Euler equations.
Hence, body forces F0(z; x), G0(z; x) are inserted into the momentum equations, and a source term
H0(z; x) is inserted into the density equation, in order to take account of this. Note that the source term
H0(z; x) was omitted in Liu et al. [12] but is included here to allow for the presence of a background
current. Thus, the basic state equations are

ρ0(u0u0x + w0u0z) + p0x = F0 , (10)

[ρ0(u0w0x + w0w0z)] + p0z + gρ0 = [G0] , (11)

u0ρ0x + w0ρ0z = H0 , (12)

u0x + w0z = 0 , (13)

in the fluid domain −h < z < ζ0. The boundary conditions are

w0 + u0hx = 0, at z = −h(x) , (14)

p0 = 0, at z = ζ0 , (15)

u0η0x = w0 , at z = ζ0 . (16)

As discussed above, the important issue here is that, due to the observed horizontal inhomogeneity
in the background density and current, this background state is not in exact equilibrium, and does not
satisfy the two-dimensional inviscid Euler equations. Hence, the terms F0(z; x), G0(z; x) and H0(z; x)
are then needed to support the basic state. They may arise from diabatic effects, dissipative effects,
Coriolis terms, or driving terms such as wind stress. However, we do not examine the origin of these
terms directly. Instead, we use oceanic data to find the background state ρ0(z; x) and u0(z; x) and
hence estimate F0(z; x), G0(z; x) and H0(z; x) directly, without regard to their precise physical origin.
We emphasise again that, although these terms may be related to diabatic and dissipative processes in
the basic state, they do not have any direct relation to wave dissipation processes per se.

Because the x-dependence is slow, technically ∂/∂x ∼ ε3, w0 ∼ ε3, F0 ∼ ε3, H0 ∼ ε3 while
G0 ∼ ε6, so that the dominant balance in the vertical momentum equation is hydrostatic and the
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terms in [·] can be omitted. Importantly, note that a transverse velocity field v0(z; x) and Coriolis term
f v0 are not included on the left-hand side of (10) and, if present, have been absorbed into the body
force term F0 (see Grimshaw [10], Zhou and Grimshaw [11]). In addition, note that, if such terms are
present, we have nevertheless ignored any possible slow y-dependence of order ε3, as this additional
complication is beyond the scope of this present study. However, we discuss this issue later at the end
of the opening part of Section 3. We have included here an additional source term H0 in (12) to allow
for the possibility that the density field is maintained by diabatic effects, through the dependence on
the underlying temperature and salinity fields. This extra term leads to a minor modification to the
derivation in Grimshaw [10], Zhou and Grimshaw [11]. However, we note that this term is small when
the Boussinesq approximation is made (see below).

This basic state is then perturbed by the wave field, where at the leading order the perturbation
vertical particle displacement is given by

ζ ∼ η(x, t)φ(z; x) . (17)

Here the modal function φ(z; x) together with the linear long wave speed c(x) is defined by the
boundary-value problem,

{ρ0(c− u0)
2φz}z − gρ0zφ = 0 , for − h < z < η0, (18)

φ = 0 at z = −h , (c− u0)
2φz = gφ at z = η0 . (19)

In general, there is an infinite set of such modal functions, but here we shall, in the sequel, examine
only the lowest internal mode, often designated as mode 1. Continuation of this asymptotic expansion
to the next order than yields the vKdV Equation (1) (see Grimshaw [10], Zhou and Grimshaw [11],
Liu et al. [12] or the reviews by Grimshaw [5], Grimshaw et al. [6]). The coefficients are given by

Iµ = 3
∫ η0

−h
ρ0(c− u0)

2φ3
z dz , (20)

Iδ =
∫ η0

−h
ρ0(c− u0)

2φ2 dz , (21)

where I = 2
∫ η0

−h
ρ0(c− u0)φ

2
z dz , Q = c2 I , (22)

and Iσ = −
∫ η0

−h
φφzK0zdz ,

K0 = F0 + u0H0 = u0(ρ0u0)x + w0(ρ0u0)z + p0x . (23)

These expressions are all well-known, except for the coefficient σ which represents non-conservative
effects (see Grimshaw [10], Zhou and Grimshaw [11], Liu et al. [12] for the case when H0 = 0). That case
can be extended to the situation here when H0 6= 0, or this term can also be obtained in full directly
from the general theory for wave action when there are non-conservative terms (see Grimshaw [14]).

3. Estimation of the Non-Conservative Term from Oceanic Data

The primary purpose of this paper is to examine the possible significance of the non-conservative
term with coefficient σ in (1) or β in the transformed Equation (5). For this purpose, we examined
three latitudinal and two longitudinal transects (see Figure 1) of the coastal ocean where internal
solitary waves are known to occur frequently, these being on the West Coast of Portugal (WP), in the
South China Sea (SCS), on the North West Shelf of Australia (NWS), along the Malvinas Current
(MC) and near the Amazon River mouth (ARM). In each case, we use the oceanic data to evaluate the
coefficient σ and then test through numerical simulations how much influence this term might have
on the propagation of internal waves in each of these cases. For this purpose, we use monthly-mean
climatological data provided from NOAA. The spatial resolution of this data is 0.333 degrees in latitude
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and 1.0 degrees in longitude. A global grid (418× 360) spans from 74.5 S–64.5 N, 0.5 E–359.5 E and
the vertical levels (40 in total) go from 5 to 4478 m depth. For our numerical simulations of the vKdV
Equation (5), we choose data in two summer months (July and August, 2005) and two winter months
(January and February, 2006). Note that we call July and August ‘summer’ and January and February
‘winter’, no matter if it is in the northern or southern hemisphere. From this data, we obtain the modal
function (18) and all the vKdV coefficients (20)–(23) both with and without a basic background current
u0, that is for both H0 6= 0, H0 = 0. Note that, consistent with the basic theory, we take u0 to be the
current along the transect, and ignore the component normal to the transect. The KdV coefficients
and the transformed coefficients in (6) for each transect are displayed in the following subsections,
together with some numerical simulations of the vKdV Equation (5). In the simulations, α, β, R and α̃

are non-dimensional with a length scale of 100 m and a velocity scale of 1 m s−1, respectively.

Figure 1. Five oceanic transects where internal solitary waves are known to occur frequently.

For each latitudinal transect, we have data ρ0(z; i) and u0(z; i) at sites i = 1, 2 · · · n where typically
we choose n = 5. From these, we compute the modal function φ(z; i), and the speed c(i), and hence
the nonlinear coefficient µ(i) (20), the dispersive coefficient δ(i) (21) and Q(i) (22). Then, we use a
spline interpolation to get c(x), µ(x), δ(x), Q(x). To find an expression for σ (23), we need expressions
for u0x and ρ0x. First, we note that it is useful here to use the Boussinesq approximation and the rigid
lid approximation, so that (23) becomes

Iσ ≈ −
∫ η0

−h
(u0u0x + w0u0z)ρ0(φ

2
z + φφzz)dz +

∫ η0

−h
φφzgρ0x dz . (24)

Here, the first term arises after integration by parts, and in the second term we have used hydrostatic
balance so that p0zx = −gρ0x. Note that the outcome for σ in (24) is the same as if we set H0 = 0 in (23)
indicating that as anticipated, the term H0 is very small when the Boussinesq approximation is made.

To get ρ0x(z; x), we first interpolate ρ0(z; i) to get ρ0(z; x) as above, and the depth hi is likewise
interpolated to h(x). However, a difficulty now arises as ρ0(z; i) is defined in a variable domain
−h(i) < z < 0, and hence the interpolation procedure depends on the index i. To illustrate how this
can be overcome, we suppose that n = 5, that is, i = 1, 2, 3, 4, 5. For the usual case of a decreasing
depth, we can assume that h5 > h4 > h3 > h2 > h1. Then, interpolation for five sites is done for each
fixed z in the range 0 > z > −h1, for four sites −h1 > z > −h2, and so on, but cannot be done in the
bottom layer −h4 > z > −h5. We assign ρ0(z; x) in the bottom layer at site i = 5 to be the same value
as in the fourth layer. Thus, ρ0x(z; x) is a cubic, quadratic and linear function of x in the top, second
and third layer, respectively, a constant in the fourth and fifth layer. The estimation of u0x is analogous.
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Importantly, we note that, although the real oceanic background flow fields may be
three-dimensional, the transects we choose are two-dimensional along the assumed wave propagation
direction. In particular, as discussed above, our developed theory ignores any possible y-dependence
in the basic state, and in particular does not take account of a term v0y in the incompressibility
condition (13). This is permissible along a strong unidirectional current, such as a tidal flow or
boundary current, or possibly even along the axis of an oceanic eddy. The data we examine do show
that v0 6= 0, but we cannot determine v0y from our transect, and the quality of the data does not allow
us to check w0z to see the actual balance in the incompressibility condition (13). Since the theory is
two-dimensional, we replace w0z by −u0x in Equation (24) (see Equation (13)) because the quality of
w0 is not good enough to find w0z with sufficient accuracy.

Available in situ oceanic data on transects where internal waves have been recorded typically
show horizontal gradients in ρ0 and, although the corresponding data for u0 is sometimes absent,
we suspect it will also be horizontally varying. If u0 does vary with x, then w0 must be nonzero in
the two-dimensional theory we are using, but it is very small as can be seen in the results we present
below. Note that in our previous paper Liu et al. [12], we set u0 = 0 and w0 = 0, but σ 6= 0 due to
the observed horizontal density stratification. We present these five cases in two parts. In the first
part with three cases, even though u0 6= 0, we find that the horizontal density stratification was the
major contribution to σ. In these first three cases, although the effect of the term ση on the wave field
is measurable, the impact of including this new term is quite small. However, in the second part with
two cases, the contribution from u0 was significant, and we find that the new term has a significant
impact on the evolution of the wave field.

3.1. Cases Where the Horizontal Density Stratification Is the Major Effect

3.1.1. A: Western Portugal

Here, we choose a transect close to Western Portugal along a latitude from the point 38.50 N,
14.5 W to the point 38.50 N, 10.5 W. The water depth varies from 4470 m to 1800 m on the continental
slope off western Portugal. Figure 2 shows the background density field at five points along the transect.
We see that there is variability along the transect, especially noticeable in the buoyancy frequency near
the pycnocline, and larger in winter than in summer. It can be treated as an approximate two-layer
stratification with a top layer thinner than the bottom, which indicates that there is no polarity change;
here, µ < 0, α < 0 as shown in Figure 3. From the vKdV coefficients shown in Figure 3, we see that
|α| increases shorewards as the depth decreases, indicating that the effect of nonlinearity increases.
The background current u0 is quite small, from −0.01 to 0.004 m s−1, and has almost no effect on
the linear long wave speed c, and hence also for all the derived coefficients α, β, R. For example,
the magnitude of β is quite small, just O(10−12), no matter with or without the current.

The simulations of the vKdv Equation (7) are shown in Figure 4. Note that the output is Ã(X, τ),
and is plotted as a function of X. This needs to be interpreted in terms of the original x, t variables
through the transformations (2) and (6) to plot η(x, t) as a function of t for certain fixed X as in
the figures in Liu et al. [12]. Ã differs from η through the factors

√
Q and R (see the Formulas (2)

and (7)). Here, we plot both the numerical solution Ã and the physical solution η, noting that we have
transformed the physical Equation (1) to the simulation Equation (7) and so we can see a difference
when we transfer back to the physical space. The dynamics are controlled by the derived coefficients
α, β and the evolution is with respect to the transformed variable τ. The initial depression solitary
wave steepens on the front face, and then starts to fission, with an indication that a second solitary
wave is forming at the end of the domain. With the same wave shapes in summer and winter,
the only difference is the magnitude of the amplitude, which is larger in summer than in winter.
The non-conservative effect is best estimated from the scaling factor R and we see from Figure 3 that
the effect is quite small. In addition, as anticipated here, the background current u0 has little impact in
this case.
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Figure 2. Background density and buoyancy frequency distribution along the transect of the Western
Portugal case. (a,b) are situations in summer, while (c,d) are in winter. Five different lines in each panel
represent situations on the chosen five points along the wave propagation transect.
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Figure 3. Variation of the original coefficients (left panel and top of the right panel) and the derived
coefficients (remainder of the right panel) of the vKdV equation for conditions of the Western Portugal
case. The results show the coefficients in summer with background current u0 (blue, solid), without u0

(black, dash) and the coefficients in winter with u0 (red, solid), without u0 (blue, dashed-dotted).
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Figure 4. A numerical simulation of the vKdV Equation (5) for the Western Portugal case for summer
(a,b) and winter (c,d) conditions, with u0 = 0 (a,c) or u0 6= 0 (b,d), respectively. The initial condition
is the solitary wave (black, dash), the numerical solution is Ã (red, dot) and the physical solution
is η (blue, solid). From top to bottom, the distances from the initial point are (I) 0 km, (II) 110 km,
(III) 220 km, (IV) 330 km, (V) 440 km, respectively.

3.1.2. B: South China Sea

A transect along the latitude from 20.83 N, 120.5 E to 20.83 N, 116.5 E is selected in this
much-studied South China Sea (SCS), which has one of the most frequent occurrences of internal
waves. The background state is shown in Figure 5, with similar features as the previous WP case.
The water depth ranges from 1600 m to 600 m, with the background current varying from −0.15 to
0.15 m s−1. The vKdV coefficients are shown in Figure 6. However, unlike the WP case, the background
current now does have an discernible effect on the linear long wave speed c, the linear magnification
factor Q and the coefficients µ, δ and σ as well.

The simulations of the vKdv Equation (5) are shown in Figure 7. The outcome is quite similar to
the WP case. The initial solitary wave steepens and then begins to indicate that it may fission at the
end. However, now the scaling factor R has a slightly larger variation compared to the deeper water
WP case. Thus, here the background current causes a very slight growth in winter, with no obvious
effects in summer.
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Figure 5. Background density and buoyancy frequency distribution along the transect of the South
China Sea case. (a,b) are situations in summer, while (c,d) are in winter. Five different lines in each
panel represent situations on the chosen five points along the wave propagation transect.
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Figure 7. A numerical simulation of the vKdV Equation (5) for the South China Sea case for summer
(a,b) and winter (c,d) conditions, with u0 = 0 (a,c) or u0 6= 0 (b,d), respectively. The initial condition is
the solitary wave (black, dash), the numerical solution is Ã (red, dot) and the physical solution is η(blue,
solid). From top to bottom, the distances from the initial point are (I) 0 km, (II) 110 km, (III) 220 km,
(IV) 330 km, (V) 440 km, respectively.

3.1.3. C: North West Shelf

We select a transect on the North West Shelf (NWS) of Australia from 114.5 E to 118.5 E, where the
water depth ranges from 740 m to 120 m, which is shallower than that in the WP and SCS cases.
This case is quite close to the location discussed by Grimshaw et al. [15] and Grimshaw et al. [16],
and re-examined by Liu et al. [12] for the effect of the non-conservative term with coefficient σ.
The main difference is that Grimshaw et al. [15] and Grimshaw et al. [16] used actual real oceanic
data taken at the same time and location where the internal solitary waves were observed, whereas
here we use monthly-mean climatological data, which can make some difference (see the discussion in
the concluding Section 4). Figure 8 shows the background density and the corresponding buoyancy
frequency for summer and winter. As the depth becomes shallower, there is a significant change in
the pycnocline, and, as found by Grimshaw et al. [15] and Grimshaw et al. [16], there is a polarity
change and the nonlinear coefficient µ changes sign from negative to positive. The vKdV coefficients
are shown in Figure 9. Here, the background current u0 ranges from −0.05 to 0.03 m s−1 and has
almost no effect on c, Q, µ and δ, but does have some effects on β, of order 10−6 with the current and
10−8 without it.
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Figure 8. Background density and buoyancy frequency distribution along the transect of the North
West Shelf case. (a,b) are situations in summer, while (c,d) are in winter. Five different lines in each
panel represent situations on the chosen five points along the wave propagation transect.
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Figure 9. Variation of the original coefficients (left panel and top of the right panel) and the derived
coefficients (remainder of the right panel) of the vKdV equation for conditions of the North West Shelf
case. The results show the coefficients in summer with background current u0 (blue, solid), without u0

(black, dash) and the coefficients in winter with u0 (red, solid), without u0 (blue, dashed-dotted).
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From the simulation of the vKdV Equation (7) shown in Figure 10, we see that the initial
internal solitary wave undergoes the well-known transformation due to the polarity change; an initial
depression wave is converted to a depression rarefaction wave followed by an undular bore of elevation
waves. From Figure 9, we see that β has a significant effect during winter when the background current
u0 is taken into account, and is initially positive indicating wave decay, but then becomes negative and
will generate some wave growth. In summer, the magnitude of β is smaller and there is almost no big
difference to the cases with or without the background current. Thus, the scaling factor R in winter
has significant variation for the situation with a background current, varying from 1 to a minimum
0.8, and then grows up to 1.3; however, in summer there is no such difference. We note that the
magnification factor Q changes from 1 to almost 0, and, when combined with R, generates a large
difference between η and Ã.
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Figure 10. A numerical simulation of the vKdV Equation (5) for the North West Shelf case for summer
(a,b) and winter (c,d) conditions, with u0 = 0 (a,c) or u0 6= 0 (b,d), respectively. The initial condition
is the solitary wave (black, dash), the numerical solution is Ã (red, dot) and the physical solution
is η (blue, solid). From top to bottom, the distances from the initial point are (I) 0 km, (II) 110 km,
(III) 220 km, (IV) 330 km, (V) 440 km, respectively.
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3.2. Cases Where the Horizontal Current Variation Is Significant

3.2.1. D: Malvinas Current

Internal waves propagating in the opposite direction along the very strong Malvinas Current (MC)
in the southwest Atlantic Ocean have been observed (see Magalhaes and da Silva [17]). Our study
region here is from shallow to deep along the transect 59.5 W which is near the shelf break and
continental slope between 42.17 S and 43.5 S. Note that here the transect is in the N–S direction, so the
x-direction is now also oriented N–S. The background state is shown in Figure 11 and the vKdV
coefficients are shown in Figure 12. The water depth ranges from 200 m to 700 m. However, the depth
of the background current data we can obtain is only from 100 m to 450 m, so we limit the depth to
that range. The order of magnitude of the velocity of MC is 1 m s−1 and can be almost up to 0.8 m s−1

in the in situ observational data (Magalhaes and da Silva [17]), but here from the climatological data,
the N–S velocity component of the current is only 0.1–0.25 m s−1. However, nevertheless, this signal is
much stronger than the above three cases. Compared to the long wave speed c, whose whole range
is around 0.2–0.6 m s−1 in Figure 12, we can see that it has the same magnitude as the background
current. Thus, here, for the two scenarios with and without the background current, the difference of
the original coefficients between these two situations is much clearer compared to those in the former
cases, especially for the linear long wave phase speed c, the magnification factor Q, and the derived
coefficient β.

This is an unusual case, as the internal solitary wave propagates from the shallow water to the
deep water (see the depth h in Figure 12). In summer, the density and buoyancy frequency distribution
in Figure 11 show that, along the transect, the pycnocline becomes thinner and shallower and this
leads to a polarity change (see µ, α in Figure 12). The simulation of the vKdV Equation (7) is shown in
Figure 13, and we see that an elevation wave is converted to a rarefaction elevation wave followed by
an undular bore depression wave, with the coefficient µ of the quadratic nonlinear term being initially
positive and then becomes negative. In winter, the background state distribution is similar to those in
WP and SCS cases, with the pycnocline staying near the surface, and hence, there is just a depression
wave with no polarity change.

A comparison of the cases when β = 0 and β 6= 0 made by Liu et al. [12] suggests that the overall
structure of the dynamical wave evolution remains basically the same, and the role of β through R is
usually mainly to change the wave amplitude. However, in this case, we can see significant influence
on the shape as well as the amplitude. In Figure 13, we can see that the magnitude of the initial
amplitude in each panel is 10 m, which is the same, and in the scenario with no background current,
the wave decays in summer but grows slightly in winter. Although both of the wave variation trends
in summer and winter correspond to those without the background current, when the background
current is included, the wave shape is discernibly different. With much larger changes in R in this case,
the derived nonlinear coefficient α̃ is significantly modified compared to α, which will then alter the
nonlinear processes. Thus, here the effect of the current can cause stronger nonlinear phenomenon
seen in Figure 13, compared to the weaker nonlinear effects when u0 is not included.
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Figure 11. Background density and buoyancy frequency distribution along the transect of the Malvinas
Current case. (a,b) are situations in summer, while (c,d) are in winter. Five different lines in each panel
represent situations on the chosen five points along the wave propagation transect.
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Figure 12. Variation of the original coefficients (left panel and top of the right panel) and the
derived coefficients (remainder of the right panel) of the vKdV equation for conditions along the
Malvinas Current case. The results show the coefficients in summer with background current u0
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Figure 13. A numerical simulation of the vKdV Equation (5) of a transect along the Malvinas Current
case in summer (a,b) and winter (c,d) conditions, with u0 = 0 (a,c) or u0 6= 0 (b,d), respectively.
The initial condition is the solitary wave (black, dash), the numerical solution is Ã (red, dot) and the
physical solution is η (blue, solid). From top to bottom, the distances from the initial point are (I) 0 km,
(II) 36.5 km, (III) 73 km, (IV) 109.5 km, (V) 146 km, respectively.

3.2.2. E: Amazon River Mouth

A wave field of internal solitary waves extending more than 500 km near the Amazon River
mouth (ARM) has been documented by Lentini et al. [18]. However, this region has not received
much attention, even although the internal solitary waves here propagate over a large distance and
are of frequent occurrence. Three distinct groups of waves were identified based on their sea surface
signature and the main directions of propagation. While cross-shelf internal wave propagation has
been previously documented, the majority of internal waves propagate along the shelf and upstream,
approximately in the opposite direction from the North Brazilian Current (NBC) (see Lentini et al. [18]).
For this case, the study area is along 48.5 W, from 3.83 N to 2.50 N, a transect of about 150 km
distance. From Figure 14, we see that the background stratification is very similar to the SCS case,
slowly changing density and an approximate two-layer stratification, with a near-surface pycnocline.
In addition, here again, the transect is N–S. The vKdV coefficients are shown in Figure 15. The depth in
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this region is quite similar to that in the SCS case. The order of the alongshore currents that flow below
the plume layer is 1 m s−1, according to a series of current meter observation (see Johns et al. [19]).
Here again, based on the climatological data, the current we use is weaker than that, with a range of
0.4–0.6 m s−1 (N–S component) and 0.2–0.5 m s−1 (W–E component). Although it is smaller than the in
situ value, the background current is much stronger than that in the Malvinas Current case. Again, the
current now makes an obvious difference to all the original coefficients (c, Q, µ, δ), not only on c and Q
as in the previous cases. For the derived coefficient β, the order of magnitude is O(10−5) compared to
that without the current O(10−8).

In this case, the vKdV simulations shown in Figure 16 show a seasonal difference as well as
an effect of the background current. In Figure 15, we see that β has significant differences between
the cases with and without the consideration of the background current. It grows from 0 to positive
when there is background current effect, and correspondingly the scaling factor R decays from 1
to 0.5 (0.4) during winter (summer), indicating significant wave decay. In Figure 16, for example,
the wave amplitude increases from initially 20 m to 40 m without the consideration of the background
current in summer, but decreases to less than 10 m when the current is taken into account. There is
a similar trend in winter. This case has similar depth and linear long wave speed c to the SCS case.
However, the results are different. The background current along the transect in SCS is −0.15 to
0.15 m s−1, much smaller than here. In terms of c, the magnitude of the background current contributes
significantly. From Figure 16, we see that, although the initial wave amplitude is the same in these
four panels, the wave evolution is clearly different in each, and both the wave structure and amplitude
have been significantly modified due to the effects of the background current. The difference between
the physical solution η and the numerical solution Ã is the joint influence of Q and R (see Formulas (2)
and (7)), so, for the situation without the current, it mainly depends on Q, while, in the other scenario
with a current, it mainly depends on R.

Figure 14. Background density and buoyancy frequency distribution along the transect of the Amazon
River Mouth case. (a,b) are situations in summer, while (c,d) are in winter. Five different lines in each
panel represent situations on the chosen five points along the wave propagation transect.
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Figure 15. Variation of the original coefficients (left panel and top of the right panel) and derived
coefficients (remainder of the right panel) of the vKdV equation for conditions of the Amazon
River Mouth case. The results show the coefficients in summer with background current u0
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Figure 16. A numerical simulation of the vKdV Equation (5) of a transect close to the Amazon River
Mouth case in summer (a,b) and winter (c,d) conditions, with u0 = 0 (a,c) or u0 6= 0 (b,d), respectively.
The initial condition is the solitary wave (black, dash), the numerical solution is Ã (red, dot) and the
physical solution is η (blue, solid). From top to bottom, the distances from the initial point are (I) 0 km,
(II) 36.5 km, (III) 73 km, (IV) 109.5 km, (V) 146 km, respectively.

4. Discussion and Conclusions

In this paper, a sequel to Liu et al. [12], we have especially examined the effect of a background
current on the non-conservative term ση in the vKdV Equation (1). This term, which has been neglected
in most previous studies, was examined in Liu et al. [12], using actual oceanic data in three different
cases considered by Grimshaw et al. [15]. Here, since background current data is not always readily
available from in situ data, instead we use monthly mean climatological data along transects where
large amplitude internal solitary waves have been observed. We choose five representative cases (A–E),
representing five contrasting scenarios; from deep to shallow (A–D), with (C–D) or without (A, B and E)
polarity changes and with different background current intensity (A–E). They are Western Portugal
(WP), South China Sea (SCS), North West Shelf (NWS) of Australia, a region along the Malvinas
Current (MC) and Amazon River mouth (ARM). In each case, we use monthly-mean climatological
data, including variable background density and background currents, to calculate the coefficients of
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the vKdV Equation (1) for a mode 1 wave, and then simulate the propagation of an internal solitary
wave propagation based on the vKdV Equation (5). In all cases, the derived nonlinear coefficient α is
much larger than the derived non-conservative coefficient β, so that the effect of this non-conservative
term is locally quite small. However, its effect is cumulative when expressed through the factor R,
and in some cases this can be quite significant.

Both the horizontal density stratification and the background current contribute to the
non-conservative term coefficient σ. In the cases A, B and C, where the horizontal density stratification
is the major effect, the currents are small and the depth varies from deeper water in case A to shallower
in case C. In a deep ocean, the background current is insignificant compared with the wave phase
speed, and therefore makes very little difference on internal solitary waves, so the impact of the
current can be neglected (see case A for instance). As the depth becomes shallower, such as in the
cases B and C, with a relatively larger background current, the impact of the non-conservative term
can have an effect on the waves, by making them grow or decay, or modifying the degree of the
nonlinearity and dispersion. However, in cases D and E, the horizontal current variation is comparable
to the background density stratification variation. In these two cases, there are two strong currents,
the Malvinas Current and the North Brazilian Current, whose magnitudes can be 5–10 times greater
than those in case A–C. Thus, in case D, where the depth is quite shallow together with a strong
background current, we find a quite surprisingly large effect. Although the magnitude of the current in
this case D is similar to the current in case B, the effect of the term ση is clearly different. The magnitude
of the amplitude is clearly changed with stronger nonlinearity in case D, while there is not much
difference in case B. The reason for this difference is because, with the larger depth, the linear long
wave phase speed c is very different (see Figures 6 and 12). The wave speed c in case D is much smaller,
and so the background current is relatively larger, and so the term ση becomes more significant. When
the background current is even larger still, as in case E, the wave amplitude can be totally different in
both seasons. They reduce to less than 10 m from initially 20 m under the consideration of the current
but grow when the current is not taken into account.

Furthermore, we note that only steady state currents are considered here as the data is
time-averaged climatological data, and so the background flow is necessarily steady. In practice,
time variation in the background flow, for instance in a tidal flow, could be significant (see Zhou and
Grimshaw [11]). In addition, we note that, for the cases studied in this paper, all the speeds for internal
waves are faster than the currents, so no blocking can occur, with turning points, which will lead to the
internal waves amplifying and changing direction.

Our discussion has of necessity been based on the vKdV model (1) which strictly is valid only
for weakly nonlinear waves, although is often used with some success for large amplitude waves
(see Ostrovsky and Stepanyants [3], for instance. However, all the cases we have examined in this
paper meet the KdV weak nonlinearity criterion). To demonstrate this, the plots of basic density
stratification for each case (see that Figures 2, 5, 8, 11 and 14 show that the initial solitary amplitudes
are smaller than the pycnocline depth). Nevertheless, the KdV equation and its variations are widely
used, and work well with its well-known strengths and limitations. These KdV models describe the
essential dynamics of observed internal solitary waves (and undular bores, not considered here) due
to the underlying balance between nonlinearity and dispersion, even when the solutions may not be
completely quantitatively correct.

Finally, we recall that we have used monthly-mean data for the background density stratification
and currents, whereas observed internal waves in fact propagate on a particular instance of these
background fields. Hence, the evolution might well be different from that found here. Out of necessity,
we chose to use monthly averaged data instead of in situ data, as the background current in in situ
data is rarely available in the form we needed. However, in order to test how large the difference
might be, we increased and decreased the background current by 30% and then performed the same
simulations for the wave propagation as that shown above. We then averaged the two maximum wave
amplitudes obtained from these two contrived cases, and compared the outcome with the maximum
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amplitude we obtained from waves propagating on the mean background state. The results are shown
in Table 1 with the comparison of the wave amplitudes between propagation on the mean (η, Ã) with
the mean of the two contrived cases (η, Ã), both for the physical solutions (η, η) and the numerical
solutions (Ã, Ã) of the transformed equation. From Table 1, we can see that indeed the propagation
on the average background state is different from the averaged of the two inflated and deflated cases.
However, for cases A–D, this difference is not significant, and we infer that the results presented in
Section 3 are representative of the possible effects of background currents. However, for case E in
summer, although the simulated evolution is comparable (plots not shown here), there is a significant
difference in the maximum amplitude for the physical solution, although this is not so evident in the
simulated solution. We suggest that the reason is that in this case E the current is quite strong, and we
find that the change in the cumulative parameter R is quite significant, and so the averaged maximum
amplitude η for the two scenarios is different from that when we use the monthly mean current.

Table 1. Wave amplitude comparison. S is summer, W is winter.

Case A B C D E

Season S W S W S W S W S W

(η − η)/η(%) 2.74 0.00 2.43 −1.80 2.06 2.52 −1.41 2.10 44.42 6.14
(Ã− Ã)/Ã(%) 1.40 0.00 2.50 −0.60 0.00 0.16 0.70 1.35 2.73 −1.28
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Appendix A. Bottom Friction

In this Appendix, we return to the frictional term D(u) in (1) in order to examine how significant
this might be compared with the nonconservative term ση. For this purpose, we choose the Chezy
friction form commonly used in oceanographic applications

D(η) = γ|η|η , Iγ = CDρ0(c− u0)
2|φz|3(z = −h) , (A1)

where CD = 2.5× 10−3 is a non-dimensional drag coefficient (see Grimshaw [1] and Grimshaw et al. [6]).
As a guide to estimate the magnitude of the frictional term, consider a two-layer fluid of upper and
lower layer depths h1,2, respectively. In the Boussinesq approximation with a rigid lid, and in the
absence of a current (u0 = 0), φ = −z/h1, (z + h)/h2 in the upper and lower layers respectively, so that
φz(z = −h) = 1/h2, and I = 2ch/h1h2 (setting ρ0 = 1). Thus, from (A1),

γ =
CDch1

2hh2
2

. (A2)

In a typical oceanic case when h1 � h2, this yields the estimate γ ∼ CDch1/2h3. For instance, with h1 =
100 m, a depth h = 1000 m and c = 1 m s−1, this yields γ|η| ∼ 10−8 s−1 even for a large amplitude wave
where η ∼ 100 m . Thus, especially in deep water, we expect this frictional term to be insignificant, but
it could become comparable with the non-conservative term in shallow water. For instance, in shallow
water where h ∼ 2h1, this same estimate becomes γ|η| ∼ 10−5 s−1. To examine this in more detail
in the present context, we plot the frictional index γ|η| for each of our five case studies in Figure A1,
where we set |η| equal to the initial wave amplitude. In all cases, this index is at least an order of
magnitude smaller than σ, indicating that, by comparison, this frictional term can usually be neglected.
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However, as indicated above, in very shallow water, the frictional index increases to a level where
the frictional term should be taken into account. Note the curious exception of the SCS, where the
frictional index decreases as the depth decreases.
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Figure A1. The frictional index γ|η| for the five cases, where |η| is set to be the initial amplitude.
From left to right, they are the cases, Western Portugal, the South China Sea, the North West Shelf,
the Malvinas Current and the Amazon River mouth. For each panel, it represents the frictional index
in summer with the background current (blue, solid), without the current (blue, dashed-dotted) and in
winter with the current (red, dash), without the current (red, dot), respectively.

Appendix B. Rotational Effects

In this Appendix, we examine the possible effects of the Earth’s background rotation. When rotational
effects are added to the vKdV model (1), this becomes the Ostrovsky equation, Ostrovsky [20],
Grimshaw [21], Grimshaw and Helfrich [22], Grimshaw et al. [23], expressed here with variable
coefficients, and with the dissipation term omitted,

{ηt + cηx +
cQx

2Q
η + µηηx + δηxxx + ση}x + ωη = 0 . (A3)

The background rotation is represented by the coefficient ω given by, Grimshaw [24],

Iω = f 2
∫ 0

−h
ρ0Φφz dz , ρ0(c− u0)Φ = ρ0(c− u0)φz − (ρ0u0)zφ , (A4)

where f is the Coriolis parameter. In the absence of a background current (u0 = 0) Φ = φz and so
ω = f 2/2c. The effect of this rotational term can be estimated from the Ostrovsky number, defined by
Grimshaw et al. [25] as

Os = max[
3µη0xx

ω
] . (A5)

This is found by examining the integrability or otherwise of the reduced Ostrovsky equation, that is (A3)
with the third-order linear dispersive term and the non-conservative term both omitted, where
Grimshaw et al. [25] showed that rotation inhibits nonlinear steepening, and hence the formation of
solitary-like waves. The expression (A5) is a refinement of a suggestion by Farmer et al. [26] and Li
and Farmer et al. [27] that a suitable measure of rotational effects is the ratio of the nonlinear term
to the rotational term. If Os < 1, then rotational dispersion dominates over nonlinear steepening,
and solitary wave formation is inhibited. However, if Os > 1, then an initial wave profile will steepen,
the third order linear dispersive term needs to be invoked, and solitary waves will form. If we use a
KdV solitary wave of amplitude a0 to estimate ηxx, then
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Os =
µ2a2

0
6δω

=
a2

0
M2 , where M =

(6δω)1/2

|µ| . (A6)

Note that M is a physical length scale, independent of the wave amplitude. Another measure of
the effects of rotation is the extinction time te, which is the time for an initial KdV solitary wave to
be extinguished by radiation of inertial-gravity waves and converted to an envelope wave packet,
Grimshaw and Helfrich [22]. For a constant background, this is given by

te =
1
ω
{ |µa0|

12δ
}1/2 , (A7)

where a0 is the initial wave amplitude. This can be compared to the total travel time t f = T(x f ) (2),
where x f is the total distance over which the wave has travelled. In Table A1, we present estimates
of Os and te based on the values of the coefficients at the initial time, but note that t f is based on the
variable phase speed c.

Table A1. Estimation of rotational effects. S is summer, W is winter.

Case A B C D E

Season S W S W S W S W S W

Os 0.44 0.71 74 42 126 136 18 14 10,579 6106
te(day) 0.4 0.4 6.0 5.0 9.0 9.0 1.5 1.8 407.4 309.6
t f (day) 2.8 2.8 2.3 2.6 5.8 4.9 3.8 3.0 0.9 1.0

We infer that, for cases B, C and E, rotational effects are not significant but will have a marginal effect
in case D, and will affect the simulations presented for case A. This latter case is due to the deeper
water, and hence larger value of the linear dispersive coefficient δ in this case A, consistent with the
analysis of possible rotational effects from satellite data in Grimshaw et al. [23]. In addition, note that
the large values of Os, te in case E are because this case is very close to the equator, where we expect
rotational effects to be minimal.
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