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Abstract: Incompressible magnetohydrodynamic (MHD) turbulence under influences of the Hall
and the gyro-viscous terms was studied by means of direct numerical simulations of freely
decaying, homogeneous and approximately isotropic turbulence. Numerical results were compared
among MHD, Hall MHD, and extended MHD models focusing on differences of Hall and extended
MHD turbulence from MHD turbulence at a fully relaxed state. Magnetic and kinetic energies, energy
spectra, energy transfer, vorticity and current structures were studied. The Hall and gyro-viscous
terms change the energy transfer in the equations of motions to be forward-transfer-dominant while
the magnetic energy transfer remains backward-transfer-dominant. The gyro-viscosity works as a
kind of hyper-diffusivity, attenuating the kinetic energy spectrum sharply at a high wave-number
region. However, this term also induces high-vorticity events more frequently than MHD turbulence,
making the turbulent field more intermittent. Vortices and currents were found to be transformed
from sheet to tubular structures under the influences of the Hall and/or the gyro-viscous terms.
These observations highlight features of fluid-dynamic aspect of turbulence in sub-ion-scales where
turbulence is governed by the ion skin depth and ion Larmor radius.
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1. Introduction

Plasma turbulence is observed in various fields of science including fusion plasma, space
plasma, liquid metals in some devices, and others, with considerable diversity in its nature.
Magnetohydrodynamic (MHD) model is applicable to a wide range of these studies. The MHD
model has been used for numerical studies of instability and transition to turbulence in fusion plasmas
extensively, for example (see Ref. [1] and references therein). However, the MHD approximation breaks
down for plasma motions with small collisionality, because this approximation is essentially based on
the local equilibrium hypothesis. Additionally, some effects such as the two-fluid (Hall) effects and
the finite Larmor radius (gyro-viscous) effects, which are retained in the original formulation for a
collisional plasma by Braginskii [2], are neglected in the MHD model.

For some numerical studies of instability and turbulence simulations where these neglected
effects are important, an extended MHD model is adopted instead of the traditional MHD model [3–5].
However, nonlinear simulations of the extended MHD model with the Hall and gyro-viscous terms
often require a large number of grid points and an extremely small time step width. This is closely
related with the dispersive natures of the extended MHD model. The presence of the Hall term leads
to propagation of whistler waves along the magnetic field, and restricts time steps very severely.
The gyro-viscosity is closely related with drift wave instability, and has been validated for the
Q-machine [6]. In addition, this effect is sometimes expected to stabilize a Rayleigh–Taylor (RT)
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type instability (including interchange and ballooning instability) [7–9]. However, fully nonlinear
simulations of the RT instability show that the gyro-viscosity can enhance velocity shear and bring
about broad-band excitation of Fourier components both in space and in time through secondary
Kelvin–Helmholtz-like instability, making simulations much more unstable [10]. Nevertheless,
instability and turbulence simulations by the use of the extended MHD model are meaningful both for
studying physics of turbulence and for development research of a plasma facility because they can
clarify some physics of instability and turbulence associated with the ion-skin-depth and ion Larmor
radius, and provide more precise information than MHD simulations. Despite the incompleteness of
the extended MHD model for plasma with small collisionality and the broad-band nature, extended
MHD simulations are less expensive and affordable in a smaller HPC machine in comparison to
kinetic (five- or six-dimensional) simulations. Thus, extended MHD simulations can contribute to
understanding the physics of plasmas through less expensive computations over a wide range of
parameters. In other words, an extended MHD simulation can be a good compromise between
accuracy of physics and computational cost in many studies.

There are two approaches for overcoming the stiff and broad-band natures of the extended MHD
simulations. The first approach is discarding the Hall and gyro-viscosity through the drift-ordering.
Drift-ordered extended MHD equations such as the Heizeltine–Meiss model [3] are often used in
nonlinear instability simulations in fusion plasmas. Since the ordering is made based on an assumption
of some characteristic quantities, nonlinear simulations that violate the assumption are not validated.
The second approach is adopting a semi- or fully implicit scheme in time-marching to overcome the
restriction on very small time-step-width in a simulation [4,5]. However, this approach does not
improve the demand for a high spatial resolution in an extended MHD simulation. On the contrary, the
demand of a spatial resolution can even restrict applicability of the (semi-)implicit numerical approach
through a large cost or a slow convergence of matrix solver, for example.

Although both approaches have artificial natures and difficulties in treatment of a small-spatial
and short-time scale, this does not matter when relatively large-scale and long-time-scale motions
are our interest. However, this can have significant influences on physics when we study turbulence
and/or nonlinear evolution of short-wave instabilities such as interchange or ballooning modes.
Recently, we proposed a third approach that mitigates the demand for the high resolutions and enables
quicker computations: large eddy simulation (LES) approach for a simulation of plasma with a very
small collisionality [11,12]. In an LES of fluid simulation, the artificial natures in the small and/or
short scales appear as a phenomenological model, or sub-grid-scale (SGS) model, which represent
roles of the scales smaller than the grid width to the scales larger than the grid width [13]. Virtues of
the LES approach are that the SGS term can influence simulations only in a fully nonlinear or turbulent
stage without contaminating the preceding linear instability stage and that we can make the time step
width larger than full simulations by enabling a high-Reynolds-number turbulence simulation by a
relatively small number of grid points.

The purpose of this paper is to present direct numerical simulations (DNS) of homogeneous and
isotropic turbulence with and without the Hall and gyro-viscous terms, and deepen our understanding
of basic natures of turbulence, specifically of small scales, under influences of these terms so that
the understanding of small scales helps the three numerical approaches discussed above, ordering,
a semi/full implicit method, and LES approach, with appropriate physical insights. Homogeneous and
isotropic turbulence maintains some distance from application targets such as magnetically confined
fusion problems. However, studying isotropic turbulence is one of the best approaches to deepen
the understanding of the terms added to the MHD equations since this allows us to make use of
various knowledge and analysis methods in turbulence of fluid mechanics (see, e.g., Refs. [14–17]).
We concentrate on incompressible fluid in this article, although the extended MHD model is usually
accompanied by fluid compressibility as well as finite variation of the mass density and the pressure.
Even though some important aspects of plasma dynamics such as compressible modes (this is closely
related with the stiffness of the equations) and dia-magnetic drift as well as gyro-viscous cancellations
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are lost by the incompressible assumptions, this assumption allows us to concentrate on acquiring basic
insights into turbulent motions under influences of the velocity-gradient part of the gyro-viscosity.

This paper is organized as follows. In Section 2, equations and numerical models used in
our simulations are explained. In Section 3, numerical results are shown. Section 4 presents
concluding remarks.

2. Equations, Numerical Models, and Parameters

The incompressible extended MHD equations can be described as

∂ui
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= − ∂
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Ei = −εijk
(
uj − εH Jj

)
Bk + η Ji. (6)

The four symbols, Bi, Ei, Ji = εijk∂jBk, and ui are for the ith components of the magnetic field,
the electric field, the current density, and velocity field vectors, respectively. The scalar variable p is
the pressure which is determined by the incompressible condition in Equation (2). For a later use,
the three components of the vorticity field are defined here as ωi = εijk∂juk. The symbols δij and εijk
denote the Kronecker’s delta and the Levi–Civita’s anti-symmetric tensor, respectively. The symbol
Sij is the rate-of-strain tensor. The sum of 1, 2, and 3 is taken for repeated suffixes of the vector and
tensor variables. The symbol εH is the Hall parameter, which indicates the ratio of the ion skin depth
to the system size. The symbol Πij represents the non-dissipative part of the Braginskii’s stress tensor
(gyro-viscous tensor) [2],

Π11 = −εGS12, (7)

Π22 = εGS12, (8)

Π33 = 0, (9)

Π12 = Π12 =
εG
2

(S22 − S11) , (10)

Π13 = Π31 = −εGS23, (11)

Π23 = Π32 = εGS13. (12)

The symbol εG is the ratio of the ion Larmor radius to the system size. See Table 1 for nomenclature.
Obviously, the presence of the mean magnetic field is assumed in the derivation of the gyro-viscous
tensor, and the formulation for the mean magnetic field introduces the anisotropy to the equations of
motions in Equation (1). However, it turns out later that this term does not provide a strong anisotropy.
We also note here that the thermodynamic pressure (or the mass density and temperature) is multiplied
by Equations (7)–(12) in the original definition of the gyro-viscosity. Because of the incompressibility
assumption, however, we have replaced the thermodynamic pressure by a constant value and have
included the constant pressure in εG. In exchange for the linearization of the gyro-viscosity, we can
focus on the effects of the velocity gradient in the gyro-viscous tensor on turbulence.
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Table 1. Nomenclature.

k wave number in the Fourier space
p pressure
bi ith component of the magnetic field vector
Ei ith component of the electric field vector
Ji ith component of the current density field vector
ui ith component of the magnetic field vector
ωi ith component of the vorticity field vector
Πij gyro-viscous tensor
Sij rate-of-strain tensor
δij Kronecker’s delta
εijk Levi–Civita’s anti-symmetric tensor
εG gyro-viscous parameter
εH Hall parameter
η magnetic diffusivity
ν viscosity

B0 reference magnetic field strength
L0 reference length scale
ρ0 reference mass density
n0 reference number density
m0 reference ion mass
µ0 vacuum permeability
VA reference Alfvén velocity
B̃k Fourier coefficient of Bi
ũk Fourier coefficient of ui

∑[k] shell-average in the Fourier space
(The variables below appear only in the Appendix A)

a the inner product of the unit vector of the mean magnetic field direction and the z-direction
c speed of light
êx the unit vector to the x-direction
êy the unit vector to the y-direction
gk Fourier amplitude given to an initial wave
ks projection of the wave number vector to the direction of the uniform magnetic field B0
Φk phase of the Fourier coefficient ũk

Equations (1)–(6) were normalized by a reference length scale L0, magnetic field strength B0, mass
density ρ0 = m0n0 (m0 and n0 are the ion mass and the number density, respectively), and Alfvén

velocity VA =
√

B2
0/µ0ρ0 where µ0 is the vacuum permeability. The symbols η and ν are magnetic

diffusivity, and shear viscosity, respectively. We can understand 1/ν and 1/η as the reference Reynolds
number and the Lundquist number, respectively. Physical parameters in DNS are shown in Table 2.

In these simulations, the dissipation scale was smaller than the ion skin depth and the ion Larmor
radius. The Hall and gyro-viscous parameters were chosen so that they represent the ratios of the
ion skin depth and the ion Larmor radius to the system length typically seen in the Large Helical
Device fusion experiments [18,19], expecting application of the knowledge in this paper to numerical
simulations of magnetically confined fusion plasma. The other two parameters, viscosity and the
resistivity, were determined so that the DNS can achieve numerical convergence. Although these
two parameters should be much smaller for fusion experiments or other applications such as space
plasmas, this simulation study can provide some basic information on plasma turbulence. We come to
the ratio of the viscosity and the resistivity at the end of this paper.

Equations (1)–(6) were solved numerically by means of the pseudo-spectral technique and the
fourth-order Runge–Kutta–Gill technique under the periodic boundary condition.

The aliasing errors were removed by the 2/3-truncation method spherically in the Fourier space.
See Appendix A for the validation of the simulation code. Initial velocity and magnetic fields were
given by the energy spectrum proportional to k4 exp

(
−(k/k0)

2) (k0 = 4 in this paper) and random
phases.
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Table 2. Parameters in direct numerical simulations (DNS).

Run Name N3 ν η εH εG

iMHD-1 5123 1× 10−3 1× 10−3 0 0
iMHD-2 5123 5× 10−4 5× 10−4 0 0

iHMHD-1 5123 1× 10−3 1× 10−3 0.05 0
iHMHD-2 5123 5× 10−4 5× 10−4 0.05 0
iHMHD-3 10243 5× 10−4 5× 10−4 0.05 0
iXMHD-1 5123 1× 10−3 1× 10−3 0.05 0.05
iXMHD-2 5123 5× 10−4 5× 10−4 0.05 0.05

3. Numerical Result

3.1. Time Evolution of Energies

Firstly, we compared the time evolution of the kinetic and magnetic energies among the MHD,
Hall MHD, and extended MHD models. Figure 1 presents the mean values of: (a) the kinetic energy
EK = 〈uiui〉 /2; and (b) magnetic energy EM = 〈BiBi〉 /2, in the six runs except iHMHD-3. In the time
evolution of the energies, we did not observe a clear difference among the models. The kinetic energy
EK keeps decaying monotonically. The monotonic decay is caused not only by the viscous dissipation
but also by the energy transfer from EK to EM associated with the dynamo process. On the other hand,
the magnetic energy EM grows at first by receiving the energy from EK through the dynamo action, and
then decays. Although we omit the plots of EK + EM, the total energy decays slowly and monotonically
thoroughly by the by the energy dissipation. These processes appear almost the same among the
three models.

The Taylor’s micro-scale Reynolds numbers of the velocity and magnetic fields are shown in
Figure 2a,b, respectively. The velocity Reynolds number Rλu decays slowly. With respect to the three
runs with small dissipative coefficients η = ν = 5× 10−4 (runs iMHD-2, iHMHD-2, and iXMHD-2),
Rλu ' 80 at the final state. (Strictly speaking, Rλu still continues to decay but the decay is very slow at
t ' 1.) In contrast to the slow decay of Rλu , the magnetic Reynolds number RλB reaches a statistically
steady state RB

λ ' 100 for the three runs as soon as t ' 0.5. The difference between the decays of the
two Reynolds numbers can be understood as the consequence of the energy transfer from EK to EM.
Since the dynamo effect keeps the energy transferring from EK to EM, both EK and Rλu keep decreasing.
In the magnetic field, the energy transfer from EK and the energy dissipation by the resistivity can
balance at a range of scales including the Taylor’s micro-scale despite the magnetic energy EM due
to the dissipation, for t ≥ 0.15. Consequently, RλB stays almost constant while EM decays. Hereafter,
we focus on the time t ' 1 as a fully relaxed state in the decaying simulations.
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Figure 1. Time evolution of: (a) the kinetic energy EK ; and (b) the magnetic energy EM.
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Figure 2. Time evolution of the Taylor’s micro-scale Reynolds number on (a) the velocity and (b)
magnetic fields.

3.2. Hall and Gyro-Viscous Effects in the Fourier Space

Energy spectra of MHD, Hall MHD, and extended MHD simulations are compared at t ' 1 in
Figure 3. In Figure 3a, the kinetic energy spectrum EK(k, t) = ∑[k] |ũk(t)|2 of runs iMHD-1, iMHD-2,
iHMHD-2, and iXMHD-2 are presented where ∑[k] and˜denotes the shell average in the Fourier space
and a Fourier coefficient, respectively. Since the energy has been transferred from the kinetic energy
to the magnetic energy, EK(k, t) has been attenuated sufficiently until t ' 1 over a wide range of the
wave-numbers, and the energy spectrum does not have a clear inertial sub-range.

We found that EK(k, t) in iXMHD-2 is attenuated more sharply at k > 60 than that in iMHD-2
(the same viscosity and resistivity as iXMHD-2), and even more sharply than iMHD-1 (the viscosity and
resistivity are larger than those of iXMHD-2). In other words, the attenuation of EK(k, t) of iXMHD-2
is much sharper than that of the other runs, indicating that the gyro-viscosity attenuates EK(k, t) at
a narrower range than a normal viscosity, working like a hyper-diffusivity. We must note again that
the gyro-viscosity is non-dissipative part of the stress tensor in Braginskii’s formulation [2]. However,



Fluids 2019, 4, 46 8 of 28

the linearization of the gyro-viscosity due to the incompressible assumption changes this term from
non-dissipative to dissipative.

(a)

10
-5

10
-4

10
-3

10
-2

 1  10  100

E
K

(k
,t

) 
a
t 

t=
0

.9
6

k

iMHD-2
iHMHD-2
iXMHD-2

iMHD-1

k
-5/3

(b)

10
-4

10
-3

10
-2

10
-1

 1  10  100

E
M

(k
,t

) 
a
t 

t=
0

.9
6

k

iMHD-2
iHMHD-2
iXMHD-2

k
-5/3

k
-7/3

Figure 3. Energy spectrum: (a) EK(k, t); and (b) EM(k, t) at t ' 1.

In Figure 3b, the magnetic energy spectrum EM(k, t) = ∑[k]

∣∣∣B̃k(t)
∣∣∣2 of runs iMHD-2, iHMHD-2,

and iXMHD-2 at t ' 1 is shown. Being sustained by the energy input by the dynamo action, the energy
level of EM(k, t) is higher than that of EK(k, t) almost at all k. It has been reported earlier that the
Hall term brings about a new scaling law k−7/3 (sub-inertial scaling region) in the sub-ion scale
k > kH = 1/εH , in addition to the primary scaling region of Kolmogorov’s k−5/3 (or can be the
Iroshnikov–Kraichnan k−1/2)-law [20–22].

We found that the tail of EM(k, t) of run iHMHD-2 is raised at k > 100. This is due to the Hall term
enhancing the forward-energy-transfer through its quadratic nature to the magnetic field, as has been
discussed in earlier works [20,23]. (A small raise in EK(k, t) of run iHMHD-2 in the same wave-number
region is considered as the consequence of the raise of EM(k, t).) Consequently, the resolution of the
run iHMHD-2 is insufficient. Thus, we omit the wave-number region k ≥ 100 hereafter from our
discussion. However, the raise of the tail in EM(k, t) does not affect the qualitative discussion in this
paper crucially, and thus we analyze run iHMHD-2 instead of iHMHD-3, for ease of comparison with
the runs iMHD-2 and iXMHD-2. See Appendix A for a comparison of the spectra and the energy
transfer functions of the runs iHMHD-2 and iHMHD-3.



Fluids 2019, 4, 46 9 of 28

Although the scaling region is not very clear in Figure 3b, we consider that the wave-number
region 20 ≤ k ≤ 40 can be the sub-inertial scaling region. While the scaling region of EM(k, t) in
iHMHD-2 and iXMHD-2 are occupied only by k−7/3-law, the spectrum consists of both k−5/3 and
k−7/3 regions in our earlier work [20]. We consider that the difference between this work and the
earlier work comes from the change of the initial spectrum profile.

In this paper, we give the initial velocity and magnetic fields by the energy spectrum proportional
to k4 exp

(
−(k/k0)

2) for k0 = 4. On the other hand, the initial fields in the earlier works have been
given by the energy spectrum proportional to k2 exp

(
−(k/k0)

2) for k0 = 2. The change of the initial
spectrum shape causes the proximity of the energy peak at k ' k0 and the sub-ion-scale (k ≥ 1/εG),
and leads to the disappearance of k−5/3-like region in runs iHMHD-2 and iXMHD-2. On the contrary,
EM(k, t) in run iMHD-2 shows a k−5/3-like region of the absence of the Hall term. Consequently,
the magnetic spectrum is more energetic in iMHD-2 than in iHMHD-2 (and iHMHD-3, equivalently).
Although pursuing the reason for the disappearance of the k−5/3-like primary sub-range may be
interesting, this does not necessarily disturb our purpose in this paper, deepening an understanding of
roles of the gyro-viscosity to turbulence. Note that the tail of EM(k, t) is not raised very much in the run
iXMHD-2 while it is raised in the run iHMHD-2. Although the Hall term excites the high-wave-number
components in the magnetic field as in iHMHD-2, the gyro-viscosity in the equations of motions
suppresses not only the high-wave-number components of the velocity field but also those of the
magnetic field, indicating that the suppression of the high-wave-number components in the velocity
field can lead to suppression of the high-wave-number components of the magnetic field.

In Figure 4, the energy transfer functions in the right-hand-side (rhs) of the equations of motions
(Equation (1)) are compared among the runs: (a) iMHD-2; (b) iHMHD-2; and (c) iXMHD-2 at t ' 1.
The rhs terms in the equations of motions are grouped into the three parts, the advection term
−uj∂jui, the Lorentz force εijk JjBk, and the gyro-viscous part which appears only in the extended
MHD simulations. The transfer functions corresponding to these terms are defined according to a
standard manner in fluid mechanics [15,16]. (See also Ref. [20] for the transfer functions of the Hall
MHD equations.) The functions associated with the pressure gradient (which is always zero in the
incompressible fluid) and the normal viscosity are omitted from the figure. We do not normalize the
transfer functions by the Kolmogorov length scale and energy dissipation rate because the definition
of the dissipation scale is ambiguous in the extended MHD equations because of the presence of the
gyro-viscosity.

In the figures, the transfer functions averaged over the period 0.8 ≤ t ≤ 1.0 as well as the time
snapshot of the functions at t = 1 are presented so that the time-variation of the functions can be seen
easily. The comparison between the time-averaged transfer function and the snap-shot shows that
the snap-shot can give qualitative natures of the three kinds of turbulence, because plasma is in a
statistically steady and fully relaxed state.

The magnitude of the transfer functions in Figure 4a are larger than those in Figure 4b,c. We also
found that the sign of the transfer function associated with the advection is different between Figure 4a
and Figure 4b,c. This term is positive at two regions, k ≤ 6 and k ≥ 70, and negative at 6 < k < 70
of the run iMHD-2 in Figure 4a. (As has been stated already, we exclude the region k > 100 from the
discussions because of the insufficiency of the run iHMHD-2, while the runs iMHD-2 and iXMHD-2
are considered converging numerically since the energy spectra EK(k, t) and EM(k, t) are attenuated
rapidly toward large k, as shown in Figure 3. See Appendix A for the transfer function of iHMHD-3,
a simulation with the same computation with iHMHD-2 but with a larger number of grid points,
N3 = 10243.) The existence of the positive region k ≤ 6 indicates that there is a backward-transfer of
the energy toward this region. In contrast to Figure 4a, the transfer functions in Figure 4b,c show a
typical forward-transfer-dominant profile similar to the transfer function observed in Navier–Stokes
turbulence: negative in low-wave-number side and positive in high-wave-number side. Relative
importance of the advection term and the Lorentz force in the energy transfer are also different among
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Figure 4a–c. The absolute value of the transfer function on the advection term is about 1/7 of the
transfer function on the Lorentz force in Figure 4a, while the ratio is about 1/2 in Figure 4b,c.

Here, we pay attention to a difference of the energy transfer functions between Figure 4a and
Figure 4b,c at moderate or high wave-number regions. The energy transfer by the advection term
increases monotonically at the wave-number region k > 70 in Figure 4a while the function does not
necessarily increase monotonically in Figure 4b,c. The energy transfer by the Lorentz force also increase
at the wave-number region k > 50 in Figure 4a, while the transfer function increases at k < 40 and
decreases at k > 40, becoming almost zero at the highest wave-number in Figure 4b,c.

The transfer function associated with the gyro-viscosity is shown only in Figure 4c. The plot of
the gyro-viscosity shows that the gyro-viscosity works as a sink of the kinetic energy at every scale.
The wave-number k ' 60, where the transfer function for the gyro-viscosity is minimum, gives a
typical characteristic length scale of the velocity gradient.

In Figure 5, the transfer functions in the rhs of the magnetic field Equations (4) and (6) are
compared among the runs: (a) iMHD-2; (b) iHMHD-2; and (c) iXMHD-2 at t ' 1. The rhs terms in
Equations (4) and (6) are re-arranged into the advection term−Ve

j ∂jBi and the magnetic-field-stretching
term by the (electron) velocity Bj∂jVe

i , where Ve
i = ui − εH Ji is the electron velocity. Since εH = 0 in

the MHD model, Ve
i is equivalent to the velocity ui in iMHD-2. The two transfer functions on the

advection and the stretching terms are defined in the same manner as in the above. Basically, the
profiles of both the advection and stretching transfer functions look similar among the three panels,
although the absolute values of the transfer functions of Figure 5a are about three times larger than
those in Figure 5b,c. All of the three panels show that the two energy transfer functions are positive
at k = 1 and/or k = 2 in the three runs, although the values are very small in iMHD-2. The two
transfer functions are negative from k ' 3 to k = 40 or higher, and become positive finally in the high
wave-number region in the three panels. However, the energy transfer associated with the Bj∂jVe

i
looks somewhat different qualitatively between Figure 5a and Figure 5b,c at k > 30.The energy transfer
by this term is nearly zero at 30 < k < 70 in Figure 5b,c, changing its sign at some k, while this term is
almost constant and positive in Figure 5a. Thus, the magnetic field stretching by the electron velocity is
not very active in this region in Figure 5b,c, and can contribute to either forward- or backward-energy
transfer depending on some conditions. Clarifying this condition is left for future studies.
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Figure 4. Kinetic energy transfer functions at t ' 1 in the runs: (a) iMHD-2; (b) iHMHD-2;
and (c) iXMHD-2, for the time-average over 0.8 < t < 1 and for the time snap-shot = 1.
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Figure 5. Magnetic energy transfer functions at t ' 1 in the runs: (a) iMHD-2; (b) iHMHD-2;
and (c) iXMHD-2, for the time-average over 0.8 < t < 1 and for the time snap-shot = 1.

3.3. Vorticity and Current Structures

Now, we examine vorticity and current density fields as the representatives of turbulent field.
In Figure 6, probability density functions (PDFs) of the three vector components: (a) ω1; (b) ω2;

and (c) ω3 in the runs iMHD-2, iHMHD-2, and iXMHD-2 are shown at t ' 1. Although a PDF is
usually normalized by the deviation of a quantity in studies of turbulence, we do not normalize the
PDFs in this figure because we aim at comparing the PDFs among different models.

See Table 3 for the skewness S =
〈

a3〉 /
〈

a2〉3/2, the kurtosis K =
〈

a4〉 /
〈

a2〉2, and the standard

deviation σa =
√
〈a2〉 − 〈a〉2 (a = ω1, ω2, or ω3) of the three vorticity vector components to compare

how sharp the plots are.
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Figure 6. The PDFs of the three vector components: (a) ω1; (b) ω2; and (c) ω3 in the runs iMHD-2,
iHMHD-2, and iXMHD-2 at t ' 1.
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Table 3. Quantities for the sharpness of the three vorticity vector components.

Quantity Run Name Skewness S Kurtosis K Standard Deviation σωi

ω1 iMHD-2 5.44× 10−3 3.86 1.59× 101

ω2 iMHD-2 9.05× 10−3 3.86 1.59× 101

ω3 iMHD-2 5.21× 10−3 3.83 1.59× 101

ω1 iHMHD-2 3.72× 10−3 4.68 1.90× 101

ω2 iHMHD-2 2.52× 10−3 4.66 1.89× 101

ω3 iHMHD-2 7.00× 10−3 4.32 1.71× 101

ω1 iXMHD-2 7.51× 10−3 4.65 1.90× 101

ω2 iXMHD-2 6.05× 10−3 4.32 1.71× 101

ω3 iXMHD-2 5.64× 10−3 4.34 1.71× 101

All the plots in Figure 6 are non-Gaussian, showing a sharp triangular peak (except a very narrow
region of zero-vorticity) and long tails at the high-vorticity regions. Obviously, the PDFs in Figure 6a–c
show that the vorticity field of the run iHMHD-2 is much more intermittent than the other two runs.
Although the Hall term influences only the magnetic field directly, the Hall term is considered to
have excited the high-vorticity events through the Lorentz force. From the point of views on the
small-scale excitation, the generation of high-vorticity events in iHMHD-2 can be related with a
large forward energy transfer at k > 70 observed in Figure 4b. The iXMHD-2 run also has the Hall
term. However, it is considered that the hyper-diffusivity nature of the gyro-viscosity suppressed the
high-vorticity events.

We found that outline of the PDFs of the runs iMHD-2 and iXMHD-2 are not necessarily the
same as each other completely, although the difference is small. A difference between the MHD
and extended MHD model can be seen at ωi > ±50 ( about ±3σωi ; see Table 3 for the values of
σωi ). The profile of the PDF of iMHD-2 at ωi ∼ ±50 is convex and more parabolic than that of the
iXMHD-2, which is concave there. The PDF of the run iXMHD-2 is lower than that of run iMHD-2
at ωi ' ±50 and larger at ωi ' ±100. Thus, the probability density with moderate (large) |ωi| of
iXMHD-2 is smaller (larger) than that of iMHD2. In this sense, the turbulent vorticity field in the run
iXMHD-2 is more intermittent than that in the run iMHD-2. Although the difference of the PDFs is
small between the PDFs of iMHD-2 and iXMHD-2, the difference can become larger once the Reynolds
numbers become larger, because the maximum vorticity in a simulation becomes larger for a higher
Reynolds number. Since the probability density of large-|ωi| events in iXMHD-2 are larger than that
of iMHD-2, the extended MHD simulation requires finer spatial and temporal resolutions than the
MHD simulation to resolve these high-vorticity events even though the energy spectrum EK(k, t) is
attenuated sharply as in Figure 3. The small differences between PDFs of runs iMHD-2 and iXMHD-2
may come from the nature of the gyro-viscosity to make a shear layer thinner, and be one of the reasons
the extended MHD model is sometimes stiffer than the MHD model. We come to this point, with the
reason we pay attention to the small differences, in the last section.

In Figure 7, PDFs of the three vector components: (a) J1; (b) J2; and (c) J3 in the runs iMHD-2,
iHMHD-2, and iXMHD-2 at t ' 1 are shown. See Table 4 for S, K, and the standard deviation σJi of
the three current-density components. While the tails of the PDFs are stretched, peaks of the PDFs
are more Gaussian-like than those of the vorticity in Figure 6. Note that the tails of the high-current
regions are more populated in the PDF of iMHD-2 than that in iHMHD-2. This is exactly opposite to
our previous computations in Ref. [20]. We consider that this should be related with the change of the
magnetic energy spectrum in Figure 3b, as mentioned above. The magnetic energy spectrum EM(k, t)
of iMHD-2 is larger than that of iHMHD-2 and iXMHD-2, while the slope of the spectrum of iMHD-2
is less steep than that of iHMHD-2 and iXMHD-2. Thus, the gradient of the magnetic field of iMHD-2
should be larger than that of the other runs, and can generate higher current density event.
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Figure 7. The PDFs of the three vector components: (a) J1; (b) J2; and (c) J3 in the runs iMHD-2,
iHMHD-2, and iXMHD-2 at t ' 1.
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Table 4. Quantities for the sharpness of the three current density vector components.

Quantity Run Name Skewness S Kurtosis K Standard Deviation σ Ji

J1 iMHD-2 8.70× 10−3 3.50 1.85× 101

J2 iMHD-2 9.05× 10−3 3.51 1.85× 101

J3 iMHD-2 1.92× 10−3 3.49 1.86× 101

J1 iHMHD-2 1.03× 10−2 4.45 1.40× 101

J2 iHMHD-2 1.94× 10−3 4.44 1.40× 101

J3 iHMHD-2 5.23× 10−3 4.48 1.40× 101

J1 iXMHD-2 7.31× 10−3 3.53 1.84× 101

J2 iXMHD-2 1.09× 10−2 3.54 1.84× 101

J3 iXMHD-2 4.71× 10−3 3.52 1.84× 101

We found here that neither PDFs of the three vorticity components in Figure 6 nor those of the
three current vector components in Figure 7 in run iXMHD-2 show a clear anisotropy. To clarify this
point, the PDFs of the three components of the vorticity and the current in run iXMHD-2 are shown in
Figure 8a,b, respectively. In this figure, the PDFs are normalized by the deviation ( σω

i for Figure 8a

and σ
j
i for Figure 8b; i = 1, 2, 3). Because of the anisotropy in the gyro-viscosity in Equations (7)–(12),

the PDF of ω1 could be different from ω2 and ω3. The current vector component Ji (i = 1, 2, 3) could
also posses an anisotropy as well. However, the plots for all the three vector components i = 1, 2, 3 in
Figure 8a,b collapse almost completely to each other. Since the difference appears at a high-current
region, it can be considered as one of the origins of the demand for a high numerical resolution in
an extended MHD simulation. Since our turbulence simulations are carried out without the mean
magnetic field, the formal anisotropy in Equations (7)–(12) does not work effectively. In this sense,
we describe this turbulent field as approximately isotropic.

Changes of the vorticity and the current density fields in turbulence due to the Hall and
gyro-viscous terms can be seen more directly by visualizing the entrophy density q = ωiωi/2 and the
squared current density I = Ji Ji/2. In Figure 9, isosurfaces of these quantities in the runs: (a) iMHD-2;
(b) iHMHD-2; and (c) iXMHD-2 are presented. The thresholds of the isosurfaces are given by the three
times of the deviation above the average value of each quantity. As is well known, the isosurfaces
of the two quantities in MHD turbulence often take thin sheet-shapes, vortex and current sheets, as
shown in Figure 8a (see also the textbook by Biskamp [24] and references therein.) However, these
structures are changed in Figure 9b,c. There are many vortex tubes and very small pieces of the current
sheets in Figure 9b,c.

The difference of Figure 9a from Figure 9b,c can be partially understood as the Hall effects.
We reported a transition of the spatial structures induced by the Hall term in homogeneous and
isotropic turbulence [20]. The introduction of the Hall term changes the frozen-in condition of the
magnetic field to velocity field in the limit of ideal (zero-dissipation) MHD equations. The magnetic
field in the Hall MHD equations is frozen to the electron velocity field in the limit of zero-dissipation,
so that the current field can be separated from the (ion) velocity field. Furthermore, the Hall term
excites high wave-number Fourier components of the magnetic field and enhances the dissipation
there in the case of turbulence in [20]. Since the velocity (vorticity) field is free from the restriction by
the magnetic (current density) field through these processes, the vorticity field is enabled to roll up
from sheets to tubes, as shown in Figure 9b,c.
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Figure 8. The PDFs of the three components of: (a) the vorticity and (b) the current in run iXMHD-2 at
t ' 1, normalized by the deviation σω

i for (a) and σ
j
i for (b).

A new finding in this visualization is in the current structures. Isosurfaces of I appear as many
small pieces of sheets, as shown in Figure 9b,c. However, we find that some of the isosurfaces of I
are tubular, not sheets, being separated from tubular vortices. (A part of Figure 9b,c is magnified in
Figure 10a,b, respectively, to observe current tubes more closely.) A current sheet is closely related with
some important physics such as magnetic reconnection, and has been a major and important structure
in plasma physics [24]. On the other hand, there have not been many reports on tubular currents.

One possible understanding regarding the appearance of the current tubes is that current sheets
are entrained into roll-up of strong vortices from sheets to tubes before the current density form current
sheets. Since a current structure can travel much faster than a vortex structure when the Hall term
is finite (consider whistler waves, for example), a current structure can be separated from a vortex
tube either in the course of vortex-roll-up or after the roll-up process. The former process can result in
formation of a current sheet independently from a vortex tube. On the other hand, the latter process
can result in formation of a current tube, which travels along the magnetic field line away from the
vortex tube, which has given the tubular shape to the current field.

Another possible understanding is the formation of current tubes associated with some specific
types of magnetic reconnection [25,26]. While the current tubes can be originated by these magnetic
reconnection, we need careful studies on the possibility. We must clarify whether these types of
magnetic reconnection can occur frequently in the course of time evolution of turbulence, and whether
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these types of magnetic reconnection result in formation of the turbulent current tubes we have
presented above. Furthermore, if these types of magnetic reconnection can happen frequently, we
should study why they do not happen in simulations starting from another type of initial spectrum [20]
or other forced turbulence studies. Since the study of the origin of the current tubes exceeds the scope
of this article, we leave this as a future subject.

(a)

Figure 9. Cont.
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(b)

Figure 9. Cont.
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(c)

Figure 9. Isosurfaces of the enstrophy density q = ωiωi/2 (green) and the current density I = Ji Ji/2
(grey) in the runs: (a) iMHD-2; (b) iHMHD-2; and (c) iXMHD-2. The thresholds of the isosurfaces are
given by three times the deviation above the average value of these quantities. The isosurfaces were
drawn using the VISMO in-situ visualization library [27].
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(a)

Figure 10. Cont.



Fluids 2019, 4, 46 22 of 28

(b)

Figure 10. Magnification of isosurfaces of: (a) q and I in Figure 9b; and (b) q and I in Figure 9c.

4. Concluding Remarks

Incompressible magnetohydrodynamic (MHD) turbulence under influences of the Hall and
the gyro-viscous terms was studied numerically. Direct numerical simulations of freely decaying,
homogeneous and approximately isotropic turbulence governed by incompressible MHD, Hall MHD,
and extended MHD models were carried out for parameter sets such that the dissipation scale is
smaller than the ion skin depth and the ion Larmor radius. The comparisons among the three
models revealed some basic roles of the Hall term and the gyro-viscosity under the incompressible
assumption. The gyro-viscosity can work as a kind of hyper-diffusivity in incompressible turbulence
simulations. While the Hall term excites the high-wave-number components of the magnetic field,
the gyro-viscosity can suppress the high-wave-number components. Backward energy transfer in the
equations of motions can be suppressed both in the Hall and in the extended MHD models.

We have found in the analysis of the PDFs of the vorticity that the extended MHD turbulence
can be more intermittent than that in MHD turbulence, even though the gyro-viscosity suppresses
turbulent actions at high wave-numbers. These observations in the PDF can be closely related with
other theoretical aspects of turbulence intermittency such as the anomalous scaling. With respect
to the anomalous scaling in MHD turbulence, there has been progress in the framework of the
renormalization group approach on the Kazantsev–Kraichnan model of passively advected vector
quantity [28,29], showing that the magnetic field behaves much more intermittently in turbulent



Fluids 2019, 4, 46 23 of 28

environments than passively advected scalar fields. These natures can be related with the change
of the intermittency by the gyro-viscosity in our study. The presence of the compressibility and
helicity, which can play a role analogous to the gyro-viscosity in this paper, has also been shown to
lead to more pronounced intermittency than the non-helical cases [30,31]. Since the compressibility
and thermodynamic variables are also necessary to study nuclear fusion plasmas, influences of the
compressibility in extended MHD turbulence with the gyro-viscosity should in the context of the
works be one of our future studies.

We note here that this subject can be shared with some other targets such as solar wind and space
plasma studies [21,22,32–35] extensively. While we recognize that a ratio of ν/η � 1 (high magnetic
Prandtl number) is often expected in these studies [36], we focused on the case η = ν in this study.
By adopting a higher magnetic Prandtl number, waves associated with the magnetic field such as
the whistler wave can be more dominant. This tendency becomes clearer for a larger Hall parameter.
These natures of turbulence with high magnetic Prandtl number will be studied in a future paper [37].

An interesting and new observation in our simulations is the appearance of a current tube as a
turbulent structure. The change of the structure is also considered closely related with the intermittency.
Since the appearance of this structure can be influenced by the initial spectrum, we need to study it
further by various initial spectra and/or by means of forced turbulence simulations, considering some
types of magnetic reconnection as the candidate for the formation mechanism of the current tubes.

Finally, we remark on the stiffness of the extended MHD model. The incompressible extended
MHD simulations in this article did not show a very stiff nature as are often seen in compressible
extended MHD simulations. The incompressible assumption omits fast compressible modes and
makes the time step width larger, of course. Furthermore, the stiffness did not appear partially because
the Reynolds numbers were not sufficiently high. Because a shear-layer-thinning process by the
gyro-viscosity is terminated by the normal viscosity, the high-vorticity or high-current events are
suppressed. In fact, we have been carrying out DNS with N3 = 10243 or larger with smaller ν and η,
which are not presented in this article. The time step width in the simulations often becomes very small
once the ion Larmor radius and the dissipation scales are well separated, making the computations
much more difficult than the computations in this article. This suggests that the stiffness can appear
with a strong intermittent nature of the extended MHD turbulence when the dissipation scale is well
separated from the ion Larmor radius.

These new features in Hall and extended MHD simulations highlight fluid-dynamic turbulent
structures in sub-ion-scales governed by the ion skin depth and the ion Larmor radius, and can be
used as basic information to develop SGS models for plasma turbulence with small collisionality.
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Appendix A. Code Verification and Convergence Check on Hall MHD Simulation

Appendix A.1. Code Validation

The numeral simulation code in this paper has been used in the author’s earlier works of Hall
MHD turbulence [20,23,38]. In the earlier works, the numerical results have been validated by
reproducing mathematical natures of Hall MHD turbulence as well as by reproducing turbulent energy
spectra in other works. For example, we can see in Ref. [38] that the numerical code reproduces
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propagation of nonlinear waves described by the Hall MHD equations well. Because the numerical
code has been updated since the publication in Ref. [38], we revisited a result in the reference and
verified the numerical result.

In Ref. [38], a set of variables ui and Bi, which satisfy the relation in the Fourier space

B̃k = α(k)ũk, (A1)

ũk = gk
(
êx + iêy

)
exp ik(z + αat), (A2)

α2 =

(
1− α2k2

4

)(
1− α2 V2

A
c2

k2
s

k2

)
, (A3)

satisfies the incompressible Hall MHD equations under the presence of the uniform magnetic field B0,
where c, ks, êx, êy, a, and gk are the speed of the light, projection of the wave vector to the mean
magnetic field vector field (z-direction in the reference), the unit vector to the x- and y-directions,
the inner product of the unit vector of the mean magnetic field direction and the z-direction (unity in
the reference), and the initial Fourier amplitude of ũk, respectively. A noticeable feature of the solution
in Equations (A1)–(A3) is that the linear superposition of the solution over k is allowed: if we take the
sum of the solution for multiple k, the new variable also satisfies the Hall MHD equations. (According
to the notation in Ref. [38], we do not normalize Equations (A1)–(A3).)

We conducted numerical simulations of the solution with N3 = 1283 and verified that the
numerical solutions reproduce the mathematical nature in the above. In Figure A1, time evolution of the
phase of the Fourier component of the velocity field Φk = tan−1 [< (ũk) /= (ũk)], which corresponds to
Figure 4a in Ref. [38] are shown for k ≤ 7. (Refer to Ref. [38] for detail of the computation.) We can see
that the phase Φk changes with the constant phase speed for each k. This shows that the waves travel
without interacting each other among various Fourier coefficients even though the Fourier coefficients
have finite amplitude. Although we avoid presenting all figures corresponding to numerical works
in Ref. [38], our updated simulation code reproduces the mathematical solution of the Hall MHD
equations appropriately. We can also reproduce results in Refs. [20,23], which are consistent with other
incompressible Hall MHD simulations such as Refs. [21,22]. In this sense, our numerical code was well
verified and validated by earlier works.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  5  10  15  20  25  30

Φ k
t

k=1

k=2

k=3

k=4

k=5

k=6

k=7

Figure A1. Time evolution of the phase of the Fourier component of the velocity field component ũk,
which corresponds to Figure 4a in Ref. [38] for k ≤ 7.

With respect to the gyro-viscosity, to the best of the author’s knowledge, this article is the first
study of an incompressible turbulence simulation under the triple periodic boundary condition. Thus,
there are no reference data available for the validation of the turbulence simulations presented in this
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paper. However, our earlier study on Rayleigh–Taylor instabilities are for an compressible extended
MHD system, and the numerical results have been validated to the linear stability analysis [9,10].
Furthermore, the gyro-viscous term in the incompressible code used in this article has been ported
from the compressible simulation code. Thus, we can consider that the numerical results can be well
validated against earlier works.

Appendix A.2. Convergence Check

As we can be seen in Figure 3, the tail of EM(k, t) of the run iHMHD-2 is raised, suggesting
insufficiency of the numerical convergence of the run. To check influence of this insufficiency on
observations and discussions in this paper, we conducted an additional simulation, iHMHD-3, with a
larger number of grid points, N3 = 10243. In Figure A2a, EM(k, t) and EK(k, t) of both runs iHMHD-2
and iHMHD-3 at t ' 1 are presented. We can find in this figure that the magnetic energy spectrum
EM(k, t) of iHMHD-3 decays almost monotonically toward large k except very high wave-number
k > 300 while the spectrum in iHMHD-2 is raised at k > 100. In Figure A2b,c, the time-averaged energy
transfer functions of the run iHMHD-3 are compared to those of the run iHMHD-2, corresponding
to Figures 4b and 5b (for iHMHD-2), respectively. The outlines of the transfer functions of the run
iHMHD-3 are quite similar to those of iHMHD-2, except k > 100 where the transfer becomes large
rapidly in the run iHMHD-2. At k < 100, on the contrary, the energy budget among the rhs-terms in
the equations of motions (Equation (1)) and the magnetic field Equations (4) and (6) are qualitatively
similar between iHMHD-2 and iHMHD-3. In summary, although small changes in turbulent energy
budget can be caused by the insufficiency of the numerical resolution in the iHMHD-2, the insufficiency
does not necessarily change the observations and discussions in this paper qualitatively.
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Figure A2. (a) Energy spectrum EK(k, t) and EM(k, t) at t ' 1, and the energy transfer function for
(b) the kinetic and (c) the magnetic energy spectra.
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