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Abstract: This paper presents a novel and accurate method to implement the Kutta condition in
solving subsonic (subcritical) inviscid isentropic compressible flow over isolated airfoils using the
stream function equation. The proposed method relies on body-fitted grid generation and solving the
stream function equation for compressible flows in computational domain using finite-difference
method. An expression is derived for implementing the Kutta condition for the airfoils with both
finite angles and cusped trailing edges. A comparison of the results obtained from the proposed
numerical method and the results from experimental and other numerical methods reveals that they
are in excellent agreement, which confirms the accuracy and correctness of the proposed method.
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1. Introduction

Nowadays, computational fluid dynamics complements its experimental and theoretical
counterpart. Benefiting from high-speed digital computers, the use of sophisticated numerical
methods has made possible the numerical solution of fluid flow problems which were heretofore
intractable. Compressible flows over airfoils and wings play a vital role in computational aerodynamics,
and demand advanced computational techniques. Since introducing the source and vortex panel
methods in the late 1960s [1], they have become the standard tools to numerically solve low-speed
flows over bodies of arbitrary shape, and have had extensive applications in flow modeling [2–6]. The
panel methods used for the simulation of flows over an airfoil are concerned with the vortex panel
strength and circulation quantities; the evaluation of such quantities allows one to calculate the velocity
distribution over the airfoil surface, and hence, to determine the pressure coefficients. The Kutta
condition (a viscous boundary condition based on physical observation used with inviscid theoretical
model) states that the flow leaves the sharp trailing edge of an airfoil smoothly [7]. Various methods
have been proposed to impose the Kutta condition [8–10]. In panel methods, the Kutta condition is
incorporated in the numerical formulation by requiring that the strength of vortex sheet is zero at the
airfoil trailing edge. Moreover, the use of panel methods along with the compressibility corrections
such as the Prandtl-Glauert method [11] allow one to consider the compressible flows over bodies. The
panel methods have been extensively investigated in the aerodynamics literature, so these will not be
discussed further here. However, these methods often have trouble with accuracy at the trailing edge
of airfoils with zero angle cusped trailing edges [12]. Moreover, the compressibility corrections do
not give accurate results for the compressible flows over airfoils of any shape at any angle of attack.
For example, the Prandtl-Glauert method is based on the linearized perturbation velocity potential
equation, and hence, it is limited to thin airfoils at small angles of attack [4].
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In this paper, we propose a novel method to numerically solve the steady irrotational compressible
flow over an airfoil which is exempt from considerations of quantities such as the vortex panel strength
and circulation. This method takes advantage of an O-grid, generated by the elliptic grid generation
technique, over the flow field and approximates the flow field quantities such as stream function,
density, velocity, pressure, speed of sound, and Mach number at the nodal points. An accurate
Kutta condition scheme is proposed and implemented into the computational loop by an exact
derived expression for the stream function. The exact expression is general and encompasses both
the finite-angle and cusped trailing edges. Finally, the results obtained from the proposed numerical
method, and the results from experimental and other numerical methods, are compared to reveal
the accuracy of the proposed method (The material given in this article are implemented in the code
FOILcom which is freely available at: DOI:10.13140/RG.2.2.36459.64801/1).

It is worth emphasizing that the stream function equation considered in this study is completely
equivalent to the full potential equation. Here, the stream function equation is solved in
non-conservative form and can be employed to obtain accurate results for subsonic (subcritical)
inviscid isentropic compressible flow over isolated airfoils. The conservative stream function equation,
along with upwinding schemes such as artificial compressibility [13], can be used to solve transonic
flows over airfoils which is not considered in this study.

2. Governing Equations

The stream function equation for two-dimensional, irrotational, steady, and isentropic flow of a
compressible fluid in non-conservative form is as follows [14–16]

(c2
− u2)ψxx + (c2

− v2)ψyy − 2uvψxy = 0 (1)

where ψ is the stream function, u and v are the components of the velocity vector V, i.e.,V = ui + vj (i
and j are the unit vectors in x and y directions, respectively). For a two-dimensional compressible flow,

u =
ρ0

ρ
ψy (2)

v = −
ρ0

ρ
ψx (3)

c is the local sound speed [4]

c2 = c2
0 −

γ− 1
2

V2 = c2
0 −

γ− 1
2

(u2 + v2) (4)

c0 is the stagnation speed of sound, ρ is the density, ρ0 is the stagnation density, and γ = cp/cv

(cv and cp are the specific heats at constant volume and constant pressure, respectively) is the ratio of
specific heats of gas (for air at standard conditions, γ = 1.4). Dividing both sides of Equation (1) by
c2 and then substituting the expressions in Equations (2) and (3) into Equation (1) gives the stream
function equation as

[1−
1
c2 (

ρ0

ρ
)

2
ψ2

y]ψxx + [1−
1
c2 (

ρ0

ρ
)

2
ψ2

x]ψyy +
2
c2 (

ρ0

ρ
)

2
ψxψyψxy = 0 (5)

by substituting Equation (4) into Equation (5), we get

[1− 1
c2

0−
γ−1

2 (
ρ0
ρ )

2
(ψ2

x+ψ
2
y)
(
ρ0
ρ )

2
ψ2

y]ψxx + [1− 1
c2

0−
γ−1

2 (
ρ0
ρ )

2
(ψ2

x+ψ
2
y)
(
ρ0
ρ )

2
ψ2

x]ψyy+

2
c2

0−
γ−1

2 (
ρ0
ρ )

2
(ψ2

x+ψ
2
y)
(
ρ0
ρ )

2
ψxψyψxy = 0

(6)
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and from the local isentropic stagnation properties of an ideal gas, we have

ρ0

ρ
= (1 +

γ− 1
2

M2)

1
γ−1

= (1 +
γ− 1

2
u2 + v2

c2 )

1
γ−1

(7)

M = V
c is the local Mach number. Equations (6) and (7) should be solved simultaneously to obtain

the local values of ψ and ρ in the flow field.

2.1. Transformation

The solution of the governing PDE is based on transformation of the physical domain (x, y) and
the governing equations into the regular computational domain (ξ, η) (see Figure 1). Therefore, the
derivatives such as ψx, ψy, ψxx, ψyy, and ψxy in the stream function equation, Equation (1), should
be transformed from the physical domain (x, y) to the computational domain (ξ, η) [17–19]. This
transformation can be stated as

ξ ≡ ξ(x, y) (8)

η ≡ η(x, y) (9)

and the inverse transformation is given as below.

x ≡ x(ξ, η) (10)

y ≡ y(ξ, η) (11)

Since the stream function equation involves first and second derivatives, relationships are needed
to transform such derivatives from the (x, y) system to the (ξ, η) one. In order to do this, the Jacobian
of the transformation is needed, which is given below

2D : J = J(
x, y
ξ, η

) =

∣∣∣∣∣∣ xξ yξ
xη yη

∣∣∣∣∣∣ = xξyη − xηyξ , 0 (12)

As will be shown, the transformation relations involve the Jacobian in denominator. Hence, it
cannot be zero. Since we deal with the stream function equation, it is necessary to find relationships
for the transformation of the first and second derivatives of the variable ψ with respect to the variables
x and y. By using the chain rule, it can be concluded that

∂ψ

∂x
=
∂ψ

∂ξ
∂ξ
∂x

+
∂ψ

∂η

∂η

∂x
=
∂ψ

∂ξ
ξx +

∂ψ

∂η
ηx (13)

∂ψ

∂y
=
∂ψ

∂ξ
∂ξ
∂y

+
∂ψ

∂η

∂η

∂y
=
∂ψ

∂ξ
ξy +

∂ψ

∂η
ηy (14)

By interchanging x and ξ, and y and η, the following relationships can also be derived

∂ψ

∂ξ
=
∂ψ

∂x
∂x
∂ξ

+
∂ψ

∂y
∂y
∂ξ

=
∂ψ

∂x
xξ +

∂ψ

∂y
yξ (15)

∂ψ

∂η
=
∂ψ

∂x
∂x
∂η

+
∂ψ

∂y
∂y
∂η

=
∂ψ

∂x
xη +

∂ψ

∂y
yη (16)

By solving Equations (15) and (16) for ∂ψ
∂x and ∂ψ

∂y , we finally obtain

∂ψ

∂x
=

1
J
(yη

∂ψ

∂ξ
− yξ

∂ψ

∂η
) (17)
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∂ψ

∂y
=

1
J
(−xη

∂ψ

∂ξ
+ xξ

∂ψ

∂η
) (18)

where J = xξyη − xηyξ is Jacobian of the transformation. By comparing Equations (13) and (17), and
(14) and (18), it can be shown that

ξx =
1
J

yη, ξy = −
1
J

xη (19)

ηx = −
1
J

yξ, ηy =
1
J

xξ (20)

To transform terms in the stream function equation (Equation (6)), the second order derivatives
are needed. Therefore,

ψxx = (ψx)x = (
1
J
(yηψξ − yξψη))

x
(21)

ψyy = (ψy)y = (
1
J
(−xηψξ + xξψη))

y
(22)

ψxy = (ψx)y = (
1
J
(yηψξ − yξψη))

y
(23)

which result in the following expressions for the second order derivatives

ψxx =
(y2
ηψξξ−2yξyηψξη+y2

ξ
ψηη)

J2 +
(y2
ηyξξ−2yξyηyξη+y2

ξ
yηη)(xηψξ−xξψη)

J3 +
(y2
ηxξξ−2yξyηxξη+y2

ξ
xηη)(yξψη−yηψξ)

J3

(24)

ψyy =
(x2
ηψξξ−2xξxηψξη+x2

ξ
ψηη)

J2 +
(x2
ηyξξ−2xξxηyξη+x2

ξ
yηη)(xηψξ−xξψη)

J3 +
(x2
ηxξξ−2xξxηxξη+x2

ξ
xηη)(yξψη−yηψξ)

J3

(25)

ψxy = 1
J

[
−xη(

yξηψξ+yηψξξ−yξξψη−yξψξη
J −

(yηψξ−yξψη)(xξξyη+xξyξη−xξηyξ−xηyξξ)
J2 )+

xξ(
yηηψξ+yηψξη−yξηψη−yξψηη

J −
(yηψξ−yξψη)(xξηyη+xξyηη−xηηyξ−xηyξη)

J2 )
] (26)

The finite-difference method can be used to discretize the above expressions in the regular
computational domain (ξ, η). The actual values of ξ and η in the computational domain are immaterial,
because they do not appear in the final expressions. Thus, without a loss of generality, we can select
the coordinates of the node A in the computational domain as ξ = η = 1 and the mesh size as
∆ξ = ∆η = 1 [19]. Therefore, we have [17]

( fξ)i, j =
1
2
( fi+1, j − fi−1, j) (27)

( fη)i, j =
1
2
( fi, j+1 − fi, j−1) (28)

( fξξ)i, j = ( fi+1, j − 2 fi, j + fi−1, j) (29)

( fηη)i, j = ( fi, j+1 − 2 fi, j + fi, j−1) (30)

( fξη)i, j =
1
4
( fi+1, j+1 − fi−1, j+1 − fi+1, j−1 + fi−1, j−1) (31)

where f ≡ x, y,ψ.
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2.2. Boundary Conditions

Conditions at infinity: Far away from the airfoil surface (toward infinity), in all directions, the flow
approaches the free stream conditions. The known free stream conditions are the velocity V∞, the
pressure p∞, the density ρ∞, and the temperature T∞. Thus, the free stream Mach number is

M∞ =
V∞
c∞

< Mcritical (32)

and the speed of sound c∞ is
c∞ =

√
γRT∞ (33)

where R is the specific gas constant, which is a different value for different gases. For air at standard
conditions, Rair = 287J/(kg.K), γair = 1.4, ρ∞ = 1.23kg/m3, and p∞ = 1.01× 105 N/m2. The critical
Mach number Mcritical is that free stream Mach number at which sonic flow is first achieved on the
airfoil surface.

Condition on the airfoil surface: The relevant boundary condition at the airfoil surface for the inviscid
flow is the no-penetration boundary condition. Thus, the velocity vector must be tangential to the
surface. This wall boundary condition can be expressed by

∂ψ

∂s
= 0orψ = constant (34)

where s is tangent to the surface.

2.3. Grid Generation

Here, an O-grid is initially generated around the airfoil using elliptic grid generation method [17]
and then the stream function equation is solved in the computational domain. The size of mesh is
M×N where M is the number of nodes on the branch cut (a horizontal line connecting the trailing
edge to outer boundary) and N is the number of nodes on the airfoil surface (and hence, the outer
boundary), as shown in Figure 1. The physical domain before and after meshing using an O-grid of
size 110 × 101 is shown in Figure 2 (using a NACA 0012 airfoil). Moreover, the magnified view of
different parts of domain is shown in Figure 3 to highlight the orthogonality of the gridlines at airfoil
surface and outer boundary.
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2.4. Kutta Condition 

In inviscid flows, because the flow cannot penetrate the surface, the velocity vector must be 
tangential to the surface. In other words, the component of velocity normal to the surface must be 
zero and only the tangential velocity component must be considered. The unit tangent vector on the 
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2.4. Kutta Condition

In inviscid flows, because the flow cannot penetrate the surface, the velocity vector must be
tangential to the surface. In other words, the component of velocity normal to the surface must be zero
and only the tangential velocity component must be considered. The unit tangent vector on the airfoil
surface can be expressed as

τ(ξ) = n(ξ)
× k (35)

τ(η) = n(η)
× k (36)
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where n(ξ) and n(η) are the outward-pointing unit normal vector to a airfoil surface in ξ and η directions,
respectively, and k is the unit vector in z direction.

At the airfoil surface, corresponding to surface S3 in Figure 4, we have

n(ξ) = −
∇ξ

|∇ξ|
= −

ξxi + ξyj√
ξ2

x + ξ2
y

(37)

Fluids 2019, 4, x 8 of 27 

 
Figure 4. The outward—pointing unit normal vectors to ξ =constant and η =constant lines. 

From the transformation relationships (Equation (19)), we have 

+ − − +
= − =

+ −

( )

2 2

1 1( )

( ) ( )

η η η ηξ

η η

y x y xJ J
y x α
J J

i j i j
n  (38) 

where = +2 2
η ηα x y . Using Equation (35), we get 

t = × = − + × − + = +
( ) ( )

3 3

1 1 1( ) ( (- ) ) ( )
ξ ξ

S S η η η η η ηy x y x x y
α α α

n k i j k = j i i j  (39) 

The velocity component tangential to the airfoil surface ( 3S ) is 

t= = + +
3

( ) 1. ( ). ( )ξ
t η ηSV u v x y

α
V i j i j  (40) 

For compressible flows, the velocity components of u  and v  can be expressed in terms of 
stream function ψ  as 

= = − +0 0 1 ( )η ξ ξy η
ρ ρ

u ψ ψ
ρ ρ J

x ψ x  (41) 

and 

= − = −−0 0 1 ( )ηx ξ ξ ηy ψ y
ρ ρ

v
ρ J

ψψ
ρ

 (42) 

where 0ρ  is a constant. On the airfoil surface, = = 0s ηψ ψ  where s  is the distance measured 

along the airfoil surface because the airfoil contour is a streamline of the flow. Thus Equations (41) 
and (42) become 

−= 0 1 ( )η ξx
ρ
ρ

ψu
J

 (43) 

and 

= − 0 1 ( )η ξ
ρ

v
ρ J

y ψ  (44) 

1
S

2
S

3
S

4
S

1
n

2
n

3
n

4
n

�

�

Figure 4. The outward—pointing unit normal vectors to ξ = constant and η = constant lines.

From the transformation relationships (Equation (19)), we have

n(ξ) = −

1
J yηi + (− 1

J xηj)√
(

yη
J )

2
+ (−

xη
J )

2
=
−yηi + xηj
√
α

(38)

where α = xη2 + yη2. Using Equation (35), we get

τ
(ξ)

S3
= n

(ξ)

S3
× k =

1
√
α
(−yηi + xηj) × k =

1
√
α
(−yη(−j) + xηi) =

1
√
α
(xηi + yηj) (39)

The velocity component tangential to the airfoil surface (S3) is

Vt = V.τ(ξ)S3
= (ui + vj).

1
√
α
(xηi + yηj) (40)

For compressible flows, the velocity components of u and v can be expressed in terms of stream
function ψ as

u =
ρ0

ρ
ψy =

ρ0

ρ
1
J
(−xηψξ + xξψη) (41)

and
v = −

ρ0

ρ
ψx = −

ρ0

ρ
1
J
(yηψξ − yξψη) (42)

where ρ0 is a constant. On the airfoil surface, ψs = ψη = 0 where s is the distance measured along
the airfoil surface because the airfoil contour is a streamline of the flow. Thus Equations (41) and (42)
become

u =
ρ0

ρ
1
J
(−xηψξ) (43)
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and
v = −

ρ0

ρ
1
J
(yηψξ) (44)

By substituting Equations (43) and (44) into Equation (40), we get

Vt = (−
ρ0
ρ

1
J xηψξi− ρ0

ρ
1
J yηψξj). 1

√
α
(xηi + yηj) = −ρ0

ρ
1
J

1
√
α

x2
ηψξ −

ρ0
ρ

1
J

1
√
α

y2
ηψξ =

−
ρ0
ρ

1
J

1
√
α
(x2
η + y2

η)ψξ = −
ρ0
ρ

1
J

1
√
α
(α)ψξ = −

ρ0
ρ

√
α

J ψξ
(45)

Based on the Kutta condition, the velocity at the trailing edge of the airfoil must be the same when
approached from the upstream direction along the upper and lower airfoil surfaces [20] (see Figure 5).
Thus,

Vt|1,1 = Vt|1,N
= C

{
C = 0 for finite angle trailing edge
C , 0 for cusped trailing edge

(46)

For the finite angle trailing edge, we have

Vt|1,1 = 0

−
ρ0

ρ

√
α

J
ψξ

∣∣∣∣∣∣
1,1

= 0

hence
ψξ

∣∣∣
1,1 = 0ψ2,1 −ψ1,1 = 0

ψ2,1 = ψ1,1 (47)

(The above expression is based on forward finite-difference coefficient with first-order accuracy.
The forward finite-difference coefficient with second-order accuracy can be used if more accurate Kutta
condition implementation is needed.)

Therefore, the wall boundary condition for the finite angle trailing edge becomes

ψ1, j = ψ2,1( j = 1, . . . , N) (48)

because the stream function on the airfoil surface is constant.
For the cusped trailing edge, we have

Vt|1,1 = Vt|1,N−
ρ0

ρ

√
α

J
ψξ

∣∣∣∣∣∣
1,1

= −
ρ0

ρ

√
α

J
ψξ

∣∣∣∣∣∣
1,N

(49)

The points (1, 1) and (1, N) as well as the points (2, 1) and (2, N) are the same points (see Figure 5).
Therefore, ψ1,1 = ψ1,N and ψ2,1 = ψ2,N

ψξ
∣∣∣
1,1 = ψ2,1 −ψ1,1 = ψ2,N −ψ1,N = ψξ

∣∣∣
1,N

On the other hand, we know that

−
ρ0

ρ

√
α

J

∣∣∣∣∣∣
1,1

, −
ρ0

ρ

√
α

J

∣∣∣∣∣∣
1,N

(50)

Thus, the only possibility to satisfy Equation (49) is that

ψξ
∣∣∣
1,1 = ψξ

∣∣∣
1,N = 0
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which this relation again results in the same expression as for the finite angle trailing edge case. So,
the general expression to implement the Kutta condition based on the stream function for the 2D
compressible flow is

ψ1,1 = ψ2,1 (51)

which is the same as one for the incompressible flow [21]
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2.5. Computation Procedure

According to the mapping scheme adopted in Figure 1, there are four sections where the nodal
value of the flow variables fi, j ( f ≡ ψ,ρ, p, u, v, V, c, M, . . .) should be calculated.

1. Inside the domain to calculate the variables fi, j (i = 2, . . . , M− 1, j = 2, . . . , N − 1).
2. On the airfoil surface to calculate the variables f1, j ( j = 1, . . . , N).
3. At the outer boundary (far-field) to calculate the variables fM, j ( j = 1, . . . , N).
4. On the branch cut to calculate the variables fi,1 (i = 2, . . . , M− 1). We know that fi,N = fi,1.

The known free-stream variables are M∞, p∞, ρ∞, T∞, and the angle of attack α. Thus, we can write

MM, j = M∞( j = 1, . . . , N) (52)

TM, j = T∞( j = 1, . . . , N) (53)

ρM, j = ρ∞( j = 1, . . . , N) (54)

pM, j = p∞( j = 1, . . . , N) (55)

cM, j = c∞ =
√
γairRairT∞ =

√
(1.4)(287)TM, j( j = 1, . . . , N) (56)

VM, j = V∞ = M∞c∞ = MM, jcM, j( j = 1, . . . , N) (57)

from the local isentropic stagnation properties of an ideal gas, we have

ρ0M, j

ρM, j
= (1 +

γair − 1
2

M2
M, j)

1
γair−1

( j = 1, . . . , N) (58)

so the local total density ρ0M, j can be computed as

ρ0M, j = ρM, j(1 +
γair − 1

2
M2

M, j)

1
γair−1

( j = 1, . . . , N) (59)
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In a similar fashion, we can write

p0M, j = pM, j(1 +
γair − 1

2
M2

M, j)

γair
γair−1

( j = 1, . . . , N) (60)

T0M, j = TM, j(1 +
γair − 1

2
M2

M, j)( j = 1, . . . , N) (61)

c0M, j =
√
γairRairT0M, j =

√
(1.4)(287)T0M, j( j = 1, . . . , N) (62)

We know that if the general flow field is isentropic throughout, then the local total density ρ0, the
local total pressure p0, and the local total temperature T0 are constant values throughout the flow. Thus

c0i, j = c0M, j(i = 1, . . . , M, j = 1, . . . , N) (63)

ρ0i, j = ρ0M, j(i = 1, . . . , M, j = 1, . . . , N) (64)

p0i, j = p0M, j(i = 1, . . . , M, j = 1, . . . , N) (65)

T0i, j = T0M, j(i = 1, . . . , M, j = 1, . . . , N) (66)

Also, on the outer boundary (far-field) we have

uM, j = Vx∞ = V∞ cosα( j = 1, . . . , N) (67)

vM, j = Vy∞ = V∞ sinα( j = 1, . . . , N) (68)

If the number of nodes on the outer boundary (the side BG in Figure 1) is N, then, as shown in
Figure 6, the node number of two points at top (point E) and bottom (point F) of the circular outer
boundary would be (M, N+3

4 ) and (M, 3N+1
4 ), respectively.
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Then we can express the magnitude of the stream function on the outer boundary ψM, j in terms
of far-field velocity VM, j as (by considering the equal magnitudes but opposite in sign for stream
functions at top and bottom points of E and F, that is, ψF = −c and ψE = c, c is a constant)

uM, 3N+1
4

=
ρ0

M, 3N+1
4

ρ
M, 3N+1

4

∂ψ
∂y

∣∣∣∣
M, 3N+1

4

=
ρ0

M, 3N+1
4

ρ
M, 3N+1

4

(
ψ

M, N+3
4
−ψ

M, 3N+1
4

y
M, N+3

4
−y

M, 3N+1
4

) =

ρ0
M, 3N+1

4
ρ

M, 3N+1
4

(
−ψ

M, 3N+1
4
−ψ

M, 3N+1
4

y
M, N+3

4
−y

M, 3N+1
4

) = −
ρ0

M, 3N+1
4

ρ
M, 3N+1

4

(
2ψ

M, 3N+1
4

y
M, N+3

4
−y

M, 3N+1
4

)

(69)

Therefore,

ψM, 3N+1
4

= −
ρM, 3N+1

4

ρ0
M, 3N+1

4

uM, 3N+1
4

yM, N+3
4
− yM, 3N+1

4

2
(70)

Now the magnitude of the stream function on the outer boundary can be calculated as a (based
on the relation ψ = −

ρ
ρ0

Vyx + ρ
ρ0

Vxy)

ψM, j = ψM, 3N+1
4

+
ρM, j

ρ0M, j

uM, j(yM, j − yM, 3N+1
4

) −
ρM, j

ρ0M, j

vM, j(xM, j − xM, 3N+1
4

) (71)

In Equation (69), we should note that the two points E and F have the same x-coordinates and
hence ψ = −

ρ
ρ0

Vyx + ρ
ρ0

Vxy = 0 + ρ
ρ0

Vxy =
ρ
ρ0

Vxy.

The iterative process to obtain the value of ψi, j and ρi, j may be initiated by assuming
ρ0i, j
ρi, j

= 1
or ρi, j = ρ0i, j . This initial assumption implies that the magnitude of the speed of sound is infinite
(c = ∞⇒ 1

c2 = 0) and Equation (5) reduces to Laplace’s equation

ψxx +ψyy = 0 (72)

The first iteration is concerned with the solution of Laplace’s equation which is described
thoroughly in [21] and we do not elaborate further on it. After solving the Laplace’s equation to find the
value of the stream function at each node, ψi, j, in the flow field, the values of the velocity components
of ui, j and vi, j can be computed from Equations (2) and (3). Then, the value of the speed of sound
at each node, ci, j,can be calculated from Equation (4). Finally, the value of the density at each node,
ρi, j, can be determined from Equation (7). If the flow is compressible, ρi, j , ρ0i, j and from the second
iteration onwards, instead of Laplace’s equation, the stream function given in Equation (6) must be
solved by having the density ρi, j and the stream function ψi, j from the last iteration (i.e., iteration 1)
to get new values of the stream function ψi, j. The iterative process (solving Equations (6) and (7)
simultaneously) repeated until successive iterations produce a sufficiently small change in density ρi, j
and the stream function ψi, j. Equation (6) is solved by initially discretizing the partial differential terms
in Equations (21)–(26) using relations given in Equations (27)–(31) and then substituting the terms into
Equation (6), and finally, solving the obtained algebraic equation using an algebraic solver (such as
Maple) to get an explicit algebraic expression in terms of ψi, j. As stated before, the Kutta condition is
implemented as

ψ1,1 = ψ2,1 (73)

ψ1,N = ψ1,1(thesamenode) (74)

and the wall boundary condition is implemented as

ψ1, j = ψ1, j−1( j = 2, . . . , N − 1) (75)

and since the branch cut (AB or HG in Figure 1) is inside the flow field, the same procedure employed
to obtain an algebraic expression for ψi, j can also be used to obtain an expression for the stream
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function on the branch cut, ψi,1. However, some changes are needed in the terms discretized by the
finite-difference method (Equations (27)–(31)) as follows (see Figure 7)

( fξ)i,1 =
1
2
( fi+1,1 − fi−1,1) (76)

( fη)i,1 =
1
2
( fi,2 − fi,N−1) (77)

( fξξ)i,1 = ( fi+1,1 − 2 fi,1 + fi−1,1) (78)

( fηη)i,1 = ( fi,2 − 2 fi,1 + fi,N−1) (79)

( fξη)i,1 =
1
4
( fi+1,2 − fi−1,2 − fi+1,N−1 + fi−1,N−1) (80)

where f ≡ x, y,ψ.
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and on the branch cut
ψi,N = ψi,1(i = 2, . . . , M− 1) (81)

In order to solve the elliptic grid generation equations (for x and y) and the stream function
equation, the iterative method Successive Over Relaxation (SOR) is used due to its high convergence rate

f (k)i, j = ω f (k−1)
i, j + (1−ω) f (k−2)

i, j (82)

where f ≡ x, y,ψ. In these relation for SOR, k is iteration number, and ω is relaxation factor which has a
value of 1 < ω < 2. A value of ω = 1.8 is chosen in this study and the code FOILcom.

We should define the stopping criteria for convergence of solution of the stream function equation
(Equation (6) and density equation (Equation (7)). These two equations constitute the system of
equations to be solved simultaneously. The stopping criteria are defined as follows

λψ =
M−1∑
i=2

N−1∑
j=2

(ψ
(k+1)
i, j −ψ

(k)
i, j )

2 (83)

λρ =
M−1∑
i=2

N−1∑
j=2

(ρ
(k+1)
i, j − ρ

(k)
i, j )

2 (84)

where k is iteration number. A value of λψ = λρ = 10−4 can be considered to get sufficiently accurate
results. The other parameters of interest can also be computed after obtaining the density ρi, j and the
stream function ψi, j. The components of the velocity at each node, ui, j and vi, j, can be computed from

ui, j =
ρ0i, j

ρi, j
ψy

∣∣∣
i, j =

ρ0i, j

ρi, j

1
J
(−xηψξ + xξψη)

∣∣∣∣∣
i, j

(85)
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vi, j = −
ρ0i, j

ρi, j
ψx

∣∣∣
i, j = −

ρ0i, j

ρi, j

1
J
(yηψξ − yξψη)

∣∣∣∣∣
i, j

(86)

Then, the velocity at each node, Vi, j, is given by

Vi, j =
√

u2
i, j + v2

i, j (87)

and the local (nodal) Mach number can be obtained by

Mi, j =
Vi, j

ci, j
(88)

where the local speed of sound,ci, j, is calculated from Equation (4). And finally, the local pressure, pi, j,
is calculated from

p0i, j

pi, j
= (1 +

γair − 1
2

M2
i, j)

γair
γair−1

(89)

Now the values of drag and lift forces on the airfoil can be computed as follows

D = A cosα+ N sinα (90)

L = −A sinα+ N cosα (91)

where A and N are axial and normal forces, respectively (Figure 8) [4]. We can write the drag and lift
forces as

D =
N−1∑
j=1

(p1, j(y1, j − y1, j+1) cosα+ p1, j(x1, j+1 − x1, j) sinα) (92)

L =
N−1∑
j=1

(−p1, j(y1, j − y1, j+1) sinα+ p1, j(x1, j+1 − x1, j) cosα) (93)

and the drag and the lift coefficients may be expressed as

cd =
D

1
2ρ∞V2

∞

(94)

cl =
L

1
2ρ∞V2

∞

(95)

Furthermore, the flowchart of the computational procedure is presented in Figure 9.
The theoretical and computational details presented here for compressible flows are implemented

in the freely available code FOILcom. Interested readers can refer to the code and use it by changing
the airfoil shape, the free stream subcritical Mach number, and the angle of attack. The freely available
code FOILincom(DOI: 10.13140/RG.2.2.21727.15524) also takes advantage of the same computational
procedure but only for incompressible flow.
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3. Results

A few test cases are given to reveal the accuracy and robustness of the numerical scheme. Here, the
results from FOILcom are compared with experimental and numerical results (alternative numerical
schemes) to show its accuracy and efficiency.

Test case 1: Critical Mach number for the NACA 0012 airfoil at zero angle of attack.
The airfoil surface pressure coefficient distribution using FOILcom is shown in Figure 10. The

critical Mach number for the NACA 0012 airfoil at zero angle of attack is obtained as 0.722 using
FOILcom with a grid of size 110× 101 and xM,1 = 10 m. The critical Much number in references [4,22]
is obtained as 0.725 (the experimental data in [22] is investigated in [4]). A comparison of results is
shown in Figure 11 which reveals an excellent agreement.
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Test case 2: The airfoil surface pressure coefficient distribution for the NACA 0012 using a grid
of size 110 × 101, M∞ = 0.5, and α = 3◦ (Figures 12 and 13). The results from FOILcom (Figure 12)
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Figure 13. The pressure coefficient distribution. Comparison of FOILcom result and the one from
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Test case 3: The airfoil surface pressure coefficient distribution for the NACA 0012 using a grid of
size 110× 101, M∞ = 0.63, and α = 2◦ (Figures 14 and 15). In this test case, the result from FOILcom is
compared to the one from the code FLO42. There is excellent agreement between the results.
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Figure 15. The pressure coefficient distribution. Comparison of FOILcom result and the one from
FLO42 [24].

Test case 4: The airfoil surface pressure coefficient distribution for the NACA 2414. M∞ = 0.435
and α = 2◦ (Figures 16 and 17). In this test case, 19,740 nodes (mesh size of 140× 141) and 51,792 nodes
are used in FOILcom and ANSYS Fluent, respectively. The drag and lift coefficients are calculated
as follows:

FOILcom : cd = −4.362× 10−3, cl = 0.573

ANSYS Fluent : cd = 9.985× 10−4, cl = 0.574

which shows perfect agreement. The results are obtained by a FORTRAN compiler and computations
are run on a PC with Intel Core i5 and 6G RAM. A tolerance of 10−7 is used in iterative loops to increase
the accuracy of results. The computation time is about 5 min which is high due to the iterative solution
of the elliptic grid generation and the stream function equations.
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Figure 16. The pressure coefficient distribution for NACA2414 using FOILcom (M∞ = 0.435, α = 2◦).
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Test case 5: The airfoil surface pressure coefficient distribution using different grid sizes for NACA
2214 airfoil and M∞ = 0.55, α = 2◦.

Grid sizes are:

(a) 30× 41
(b) 80× 61
(c) 120× 161
(d) 200× 201

The results are shown in Figure 18. In this test case, four different grid sizes are used to obtain the
airfoil surface pressure coefficient distribution. As shown in Figure 18, the distribution can be obtained
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with reasonable accuracy using even a course grid (30× 41). The effect of grid size on the drag and lift
coefficients is depicted in Figure 19. Moreover, the drag and lift coefficients using the four different
grid sizes are compared to the ones from XFOIL (Figure 20) and are given in Table 1. As can be seen,
the results from FOILcom are in excellent agreement with the result from XFOIL.
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Figure 18. The airfoil surface pressure coefficient distribution using different grid sizes for NACA 2214
airfoil (M∞ = 0.55, α = 2◦). The code FOILcom is used.
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Figure 20. The airfoil surface pressure coefficient distribution for NACA 2214 airfoil (M∞ = 0.55,
α = 2◦) using XFOIL.

Table 1. Drag and lift coefficients using different grid sizes. Codes FOILcom and XFOIL are used.

Code and Grid Size cd cl

FOILcom: 30 × 41 −3.1764 × 10−2 0.5893
FOILcom: 80 × 61 −1.4563 × 10−2 0.5839

FOILcom: 120 × 161 −5.2130 × 10−3 0.5983
FOILcom: 200 × 201 −4.2097 × 10−3 0.6032

XFOIL −7.23 × 10−3 0.6088

Test case 6: The airfoil surface pressure coefficient distribution for NACA 64-012airfoil and
M∞ = 0.3, α = 6◦. The mesh size used in FOILcom is 50 × 141. The computation time is 46 s.
The results from two codes FOILcom and FOILincom along with the Karman-Tsien compressibility
correction are compared and depicted in Figure 21. Moreover, the convergence history of λψ and λρ
are shown in Figure 22. As can be seen, in this test case five iterations are needed to satisfy the stopping
criteria (λψ = λρ = 10−4).
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Figure 21. Comparison of surface pressure coefficient distributions for NACA 64-012 airfoil
(M∞ = 0.3, α = 6◦) using the codes FOILcom and FOILincom along with the Karman-Tsien
compressibility correction.
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Figure 22. Convergence history of λψ and λρ.

Test case 7: The airfoil surface pressure coefficient distribution for NACA 2240 airfoil and M∞ = 0.3
at two different angles of attack α = 3◦ and α = 6◦. The mesh size used in FOILcom is 120× 141. In
this test case, a thick airfoil, NACA 2240, is used to reveal the accuracy of the proposed numerical
method in dealing with thick airfoils at high angles of attack. The results from FOILcom, FOILincom
along with the Karman-Tsien compressibility correction, and XFOIL are compared and depicted in
Figure 23 for the angle of attack α = 3◦ and Figure 24 for the angle of attack α = 6◦. Furthermore, the
results from XFOIL are given in Figure 25 for the angle of attack α = 3◦ and Figure 26 for the angle of
attack α = 6◦. The drag and lift coefficients using both codes for two different angles of attack are
given in Table 2.
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Figure 23. Comparison of surface pressure coefficient distributions for NACA 2240 airfoil (M∞ = 0.3,
α = 3◦) using the codes FOILcom, FOILincom along with the Karman-Tsien compressibility correction,
and XFOIL.
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Figure 24. Comparison of surface pressure coefficient distributions for NACA 2240 airfoil (M∞ = 0.3,
α = 6◦) using the codes FOILcom, FOILincom along with the Karman-Tsien compressibility correction,
and XFOIL.
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using XFOIL.

Table 2. Drag and lift coefficients using FOILcom and XFOIL.

NACA 2240 Airfoil cd cl

M∞ = 0.3, α = 3◦ FOILcom: −0.01668
XFOIL: −0.01126

FOILcom: 0.7977
XFOIL: 0.7806

M∞ = 0.3, α = 6◦ FOILcom: −0.02684
XFOIL: −0.01418

FOILcom: 1.2714
XFOIL: 1.2718

4. Conclusions

The solution of 2D steady, irrotational, subsonic (subcritical) compressible flow over isolated
airfoils using the stream function equation and a novel method to implement the Kutta condition have
been presented. The numerical scheme takes advantage of transformation of the flow solver and the
boundary conditions from the physical domain to the computational domain. The physical domain



Fluids 2019, 4, 102 24 of 25

was meshed by an O-grid elliptic grid generation method and the transformed flow solver is discretized
by finite-difference method, a method chosen for its simplicity and ease of implementation. The
numerical scheme is exempt from considering the panels and the quantities such as the vortex panel
strength and circulation used in the panel method. An accurate Kutta condition scheme is proposed
and implemented into the computational loop by an exact derived expression for the stream function
at the airfoil trailing edge. The exact expression is general, and encompasses both the finite-angle and
cusped trailing edges. Through several test cases, the proposed numerical scheme was validated by
results from the experimental and the other numerical methods. The obtained results revealed that the
proposed algorithm is very accurate and robust.
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Nomenclature

A axial force (N)

c speed of sound (m/s)
cd drag coefficient
cl lift coefficient
D drag force (N)

J Jacobian of transformation
L lift force (N)

M Mach number (V/c)
N normal force (N)

p pressure (N/m2)

T temperature (K)

u, v velocity components (m/s)
V velocity (m/s)
x, y Cartesian coordinates in the physical domain (m)

Greek symbols

α angle of attack, metric coefficient in 2-D elliptic grid generation
γ ratio of specific heats
λ stopping criterion
ρ density (kg/m3)

ω relaxation factor
ξ, η Cartesian coordinates in the computational domain
ψ stream function

Subscripts

0 stagnation condition
∞ free stream condition
i grid index in ξ-direction
j grid index in η-direction
M number of grid points in ξ-direction
N number of grid points in η-direction

Superscript

k iteration number
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Abbreviations

PDE Partial Differential Equation
FDM Finite Difference Method
SOR Successive Over Relaxation
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