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Abstract: Entropy and entropy generation are abstract and illusive concepts for undergraduate
students. In general, students find it difficult to visualize entropy generation in real (irreversible)
processes, especially at a mechanistic level. Fluid mechanics laboratory can assist students in making
the concepts of entropy and entropy generation more tangible. In flow of real fluids, dissipation
of mechanical energy takes place due to friction in fluids. The dissipation of mechanical energy in
pipeline flow is reflected in loss of pressure of fluid. The degradation of high quality mechanical
energy into low quality frictional heat (internal energy) is simultaneously reflected in the generation
of entropy. Thus, experiments involving measurements of pressure gradient as a function of flow
rate in pipes offer an opportunity for students to visualize and quantify entropy generation in real
processes. In this article, the background in fluid mechanics and thermodynamics relevant to the
concepts of mechanical energy dissipation, entropy and entropy generation are reviewed briefly.
The link between entropy generation and mechanical energy dissipation in pipe flow experiments is
demonstrated both theoretically and experimentally. The rate of entropy generation in pipeline flow
of Newtonian fluids is quantified through measurements of pressure gradient as a function of flow
rate for a number of test fluids. The factors affecting the rate of entropy generation in pipeline flows
are discussed.

Keywords: undergraduate education; fluid mechanics; pipeline flow; non-equilibrium thermodynamics;
entropy generation; pressure loss; experimental studies

1. Introduction

Fluid mechanics, that is, the study of motion of fluids and forces in fluids, is relatively a less
abstract subject as compared with thermodynamics. Students find it relatively easy to visualize
and understand the motion of fluids and forces in fluids. For example, it is not difficult to convey
to the students fluid mechanics concepts such as pressure, pressure distribution, viscosity, velocity
distribution, velocity gradient, shear and normal stresses, mechanical energy dissipation and pressure
loss in flow of fluids due to friction, etc. Most fluid mechanics quantities are directly measurable.
For example, instruments are available to directly measure pressure or pressure drop, flow rate, local
velocity, shear and normal stresses, etc. Thermodynamics, on the other hand, is a very abstract subject.
Concepts such as entropy and entropy generation in real processes are illusive for students. There are
no instruments available which can be used to directly measure entropy and entropy generation in
real processes.

It is a well-known fact that students learn and understand concepts better and with relative ease
through experiential learning. It is appropriate to quote here a famous Chinese saying credited to the
Chinese philosopher Confucius, “I hear and I forget; I see and I remember; I do and I understand”.
To that end, the undergraduate laboratory experiments can play a very important role in providing
experiential learning of concepts and theory to students.
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In most undergraduate engineering programs (chemical, mechanical, civil, etc.) students are taught
fluid mechanics through in-class instruction and laboratory experiments. In a typical undergraduate fluid
mechanics laboratory, the students are required to do pipeline flow experiments involving measurement
of pressure loss as a function of flow rate for different diameter pipes. The flow rate is measured with the
help of a flowmeter and the pressure drop is measured with the help of pressure transducers. The test
fluid is usually water and the experiments are carried out at room temperature. From pressure drop
vs. flow rate experimental data, friction factor vs. Reynolds number data are calculated and compared
with the available theoretical and empirical relations. What is completely missing in the undergraduate
fluid mechanics experiments is the link between the pipeline flow experiments and the second law of
thermodynamics, that is, entropy and entropy generation in pipeline flows. In order to appreciate and
understand the second law of thermodynamics, it is important for students to be able to relate the directly
measureable quantities like pressure loss in pipeline flow to entropy generation in real flows.

The main objectives of this article are: (1) to briefly review the background in fluid mechanics and
thermodynamics related to pressure loss, mechanical energy dissipation, and entropy generation in
real flows; (2) to demonstrate the link between mechanical energy dissipation and entropy generation
in real flows; (3) to carry out experimental work to determine friction factor as a function of Reynolds
number and entropy generation rate as a function of fluid velocity in flow of emulsion-type test fluids
in different diameter pipelines; and (4) to explain mechanistically the cause of entropy generation in
real flows.

2. Background

2.1. Fluid Mechanics

Consider flow of a fluid through a stationary control volume. The macroscopic balance of any
entity (mass, momentum, energy) over the control volume can be expressed as:

Input−Output + Generation = Accumulation (1)

The application of the entity balance equation, Equation (1), to mass gives the following integral
equation [1,2]:

−

{
ρ
(
n̂·
→

V
)
dA =

*
∂ρ

∂t
dϑ (2)

where ρ is the fluid density, n̂ is the unit outward normal to the control surface,
→

V is the fluid velocity
vector, A is the control surface area, t is the time, ϑ is the volume of the control volume, the cyclic
double integral is the surface integral over the entire control surface, and the cyclic triple integral
is the volume integral over the entire control volume. It should be noted that the surface integral
v
ρ
(
n̂·
→

V
)
dA is the net outward flow of mass across the entire control surface. The volume integral) ∂ρ

∂t dϑ is the rate of accumulation of mass within the entire control volume (assumed to be fixed and
non-deforming). For a control volume with one inlet and one outlet, the macroscopic or integral mass
balance equation, Equation (2), under steady state condition, reduces to:

ρ1A1V1 = ρ2A2V2 =
.

m (3)

where V is the fluid velocity, A is the cross-section area of inlet or outlet opening, and
.

m is the mass
flow rate. The subscript 1 indicates inlet variables and the subscript 2 indicates outlet variables.

The application of the entity balance equation, Equation (1), to linear momentum gives the
following integral equation [1,2]:
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−

{
ρ
→

V
(
n̂·
→

V
)
dA +

∑→

F =

* ∂
(
ρ
→

V
)

∂t
dϑ (4)

where
→

F is the force vector. Equation (4) is often referred to as momentum theorem [1]. The surface integral
v
ρ
→

V
(
n̂·
→

V
)
dA is the net outward flow of linear momentum across the entire control surface. The volume

integral
) ∂

(
ρ
→

V
)

∂t dϑ is the rate of accumulation of linear momentum within the entire control volume
(assumed to be fixed and non-deforming). The momentum balance equation, Equation (4), is a vector
equation. In Cartesian coordinates, the vector momentum balance equation can be written as three
scalar equations:

−

{
ρVx

(
n̂·
→

V
)
dA +

∑
Fx =

*
∂(ρVx)

∂t
dϑ (5)

−

{
ρVy

(
n̂·
→

V
)
dA +

∑
Fy =

* ∂
(
ρVy

)
∂t

dϑ (6)

−

{
ρVz

(
n̂·
→

V
)
dA +

∑
Fz =

*
∂(ρVz)

∂t
dϑ (7)

where Vx, Vy, Vz and Fx, Fy, Fz are velocity and force components in x, y, z directions. For a control
volume with one inlet and one outlet, the macroscopic or integral momentum balance equations,
Equations (5)–(7), under steady state condition, reduce to:

Vx,1(ρ1A1V1) −Vx,2(ρ2A2V2) +
∑

Fx = 0 (8)

Vy,1(ρ1A1V1) −Vy,2(ρ2A2V2) +
∑

Fy = 0 (9)

Vz,1(ρ1A1V1) −Vz,2(ρ2A2V2) +
∑

Fz = 0 (10)

Using mass balance, Equation (3), Equations (8)–(10) can be further simplified as:∑
Fx =

.
m(Vx,2 −Vx,1) (11)

∑
Fy =

.
m
(
Vy,2 −Vy,1

)
(12)∑

Fz =
.

m(Vz,2 −Vz,1) (13)

Note that we are assuming velocity profiles are uniform at inlet and outlet of the control volume.
The application of the entity balance equation, Equation (1), to mechanical energy gives the

following integral equation assuming frictionless flow [1,2]:

−

{
ρ
(
n̂·
→

V
)(
ϕ+ KE +

P
ρ

)
dA−

.
Wsh =

*
∂[ρ(ϕ+ KE)]

∂t
dϑ (14)

where ϕ is the potential energy per unit mass, KE is the kinetic energy per unit mass, P is the pressure,

and
.

Wsh is the rate of shaft work. The surface integral
v
ρ
(
n̂·
→

V
)(
ϕ+ KE + P

ρ

)
dA is the net outward

flow of mechanical energy (including flow work) across the entire control surface. The volume integral) ∂[ρ(ϕ+KE)]
∂t dϑ is the rate of accumulation of mechanical energy within the entire control volume

(assumed to be fixed and non-deforming). For a control volume with one inlet and one outlet, the
macroscopic mechanical energy balance equation for frictionless flow, Equation (14), under steady
state condition, reduces to:
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(
ϕ1 + KE1 +

P1

ρ1

)
(ρ1A1V1) −

(
ϕ2 + KE2 +

P2

ρ2

)
(ρ2A2V2) −

.
Wsh = 0 (15)

Using mass balance, Equation (3), Equation (15) can be further simplified as:

.
Wsh +

.
m
[
∆ϕ+ ∆(KE) + ∆

(
P
ρ

)]
= 0 (16)

Note that mechanical energy is conserved only in frictionless flows. In real flows, however,
mechanical energy is not conserved as mechanical energy dissipation occurs due to friction in
fluids. The mechanical energy loss due to friction in real flows can be treated as negative generation
(destruction) in entity balance equation, Equation (1). Thus, Equation (16) can be modified as [2]:

.
Wsh +

.
Fl +

.
m
[
∆ϕ+ ∆(KE) + ∆

(
P
ρ

)]
= 0 (17)

where
.
Fl is the rate of mechanical energy dissipation due to friction in fluid. Equation (17) assumes

that the velocity profiles are uniform at inlet and outlet of the control volume. Furthermore any work
due to viscous effects (shear stresses and viscous normal stresses) at the control surface is assumed to
be negligible.

2.2. Thermodynamics

The first law of thermodynamics is simply the principle of conservation of energy. When applied to a
control volume, it indicates that that the rate of accumulation of total energy inside the control volume
is equal to the net rate of total energy addition to the control volume. Equation (1) is applicable to total
energy as the entity with no generation. For a stationary control volume (fixed and non-deforming
control volume), the first law of thermodynamics can be expressed as [1]:

−

{
ρ
(
n̂·
→

V
)(

e +
P
ρ

)
dA +

.
Q−

.
Wsh =

*
∂(ρe)
∂t

dϑ (18)

where e is the specific total energy (total energy per unit mass) of fluid and
.

Q is the rate of heat
transfer. The specific total energy e includes internal energy, kinetic energy and potential energy, that
is, e = u + KE + ϕ, where u is the specific internal energy. The work associated with shear stress and
viscous portion of normal stress at the control surface is assumed to be zero [1]. The surface integral
v
ρ
(
n̂·
→

V
)(

e + P
ρ

)
dA is the net outward flow of total energy (including flow work) across the entire

control surface. The volume integral
) ∂(ρe)

∂t dϑ is the rate of accumulation of total energy within the
entire control volume.

For a control volume with one inlet and one outlet, the macroscopic total energy balance (first law
of thermodynamics), Equation (18), under steady state condition, reduces to:(

e1 +
P1

ρ1

)
(ρ1A1V1) −

(
e2 +

P2

ρ2

)
(ρ2A2V2) +

.
Q−

.
Wsh = 0 (19)

Using mass balance, Equation (3), Equation (19) can be further simplified as:

.
m
[
∆
(
e +

P
ρ

)]
=

.
Q−

.
Wsh (20)

As
e +

P
ρ
= u + V2/2 + gz +

P
ρ
= h + V2/2 + gz (21)
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where g is acceleration due to gravity, z is elevation and h is specific enthalpy of fluid given as:
h = u + P/ρ, Equation (20) could also be written as:

.
m
[
∆h + ∆

(
V2/2

)
+ g∆z

]
=

.
Q−

.
Wsh (22)

For reversible (frictionless) flows, it can be readily shown that

.
Q =

.
m
[
∆h− ∆

(
P
ρ

)]
(23)

Upon substitution of
.

Q from Equation (23) into Equation (22), the mechanical energy balance
equation for frictionless flow, Equation (16), is recovered.

The second law of thermodynamics states that all irreversible (real) processes are accompanied by
entropy generation in the universe [3]. For flow through a stationary control volume, the entropy
generation rate (

.
SG) in the universe can be expressed as:

.
SG,universe =

.
SG,CV +

.
SG,Surr =

{
ρs

(
n̂·
→

V
)
dA +

*
∂(ρs)
∂t

dϑ−
∑ .

Qi
Ti
≥ 0 (24)

where s is the entropy per unit mass of fluid,
.

Qi is the rate of heat transfer to control volume from ith
heat reservoir at an absolute temperature of Ti, the subscripts CV and Surr refer to control volume
and surroundings, respectively. The equality in Equation (24) is valid for any reversible (frictionless)

process and the inequality is valid for all irreversible processes. The surface integral
v
ρs

(
n̂·
→

V
)
dA is the

net outward flow of entropy across the entire control surface. The volume integral
) ∂(ρs)

∂t dϑ is the rate
of accumulation of entropy within the entire control volume (assumed to be fixed and non-deforming).

For a control volume with one inlet and one outlet, Equation (24), under steady state condition,
reduces to:

.
SG,universe = (s2)(ρ2A2V2) − (s1)(ρ1A1V1) −

∑ .
Qi
Ti
≥ 0 (25)

Using mass balance, Equation (3), Equation (25) can be further simplified as:

.
SG,universe =

.
m(∆s) −

∑ .
Qi
Ti
≥ 0 (26)

2.3. Steady Flow in a Pipe

Consider steady flow of an incompressible fluid in a cylindrical pipe of uniform diameter (see
Figure 1). From mass balance,

.
m = ρVA = constant (27)

As ρ and A are constant, the velocity is constant,

V = constant (28)
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From momentum balance, Equation (11):∑
Fx =

.
m(Vx,2 −Vx,1) = 0 (29)

Now consider force balance over a differential control volume of length dx as shown in Figure 1:∑
Fx = PA− (P + dP)A− τW(πD)dx = (30)

where τw is the wall shear stress, D is the pipe internal diameter, and A = πD2/4. Equation (30) leads to:

− (dP/dx) =
πDτw

A
=

4τw

D
(31)

Upon rearrangement, Equation (31) gives

τw = −
(dP/dx)D

4
= −

(dP/dx)R
2

(32)

where R is the pipe radius. Equation (32) can also be applied to any radial position as:

τ = −
(dP/dx)r

2
(33)

where r is any radial position in the pipe. From Equations (32) and (33), it follows that:

τ
τw

=
r
R

(34)

Equation (34) describes the variation of shear stress with the radial position. The shear stress
varies linearly with the radial position.

Using macroscopic mechanical energy balance, Equation (17), it can be readily shown that for
steady incompressible flow in a horizontal pipe of uniform diameter:

.
Fl/L =

( .
m/ρ

)
(−dP/dx) (35)

where L is the length of the pipe. The rate of mechanical energy loss
.
Fl can further be expressed in

terms of a friction factor ( f ) defined as:

f = 2τw/
(
ρV

2
)

(36)

where V is the average velocity in the pipe. Upon substitution of τw from Equation (32) into
Equation (36), we get

f = (−dP/dx)(D)/
(
2ρV

2
)

(37)

From Equations (35) and (37), it follows that the mechanical energy loss per unit mass of fluid is:

.
Fl/

.
m = 4 f (L/D)

(
V

2
/2

)
(38)

From Equation (38), it follows that the mechanical energy loss per unit length per unit mass of
fluid is:

F′l =
.
Fl/(L

.
m) = (4 f /D)

(
V

2
/2

)
(39)

In order to calculate the mechanical energy loss in pipeline flows, the value of friction factor
is required.
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In laminar flow of Newtonian fluids (Re ≤ 2100), friction factor is related to Reynolds number
through the following theoretical relationship [1,4]:

f = 16/Re (40)

where the Reynolds number Re is defined as:

Re = ρDV/µ (41)

In turbulent flow of Newtonian fluids, friction factor is a function of Reynolds number and relative
roughness of pipe (ε/D). For hydraulically smooth pipes (ε/D→ 0), the friction factor depends
only on Re in turbulent regime. The following semi-empirical equation, often referred to as von
Karman–Nikuradse equation, describes the f vs. Re turbulent behavior of Newtonian fluids in smooth
pipes very well [1]:

1/
√

f = 4log10
(
Re

√
f
)
− 0.40 (42)

The von Karman–Nikuradse equation is not explicit in friction factor. A number of explicit f vs. Re
relations are available in the literature. One of the popular ones is the Blasius friction factor equation
for turbulent flow of Newtonian fluids in smooth pipes [4]:

f = 0.079/Re0.25 (43)

Equation (43) is accurate over a Reynolds number range of 3000 ≤ Re ≤ 100,000. For turbulent
flow in rough pipes, the following Colebrook equation [5,6] is widely accepted:

1/
√

f = −4log10

ε/D
3.7

+
1.26

Re
√

f

 (44)

This Colebrook equation is implicit in friction factor. A number of explicit f vs. Re relations are
available in the literature for turbulent flow of Newtonian fluids in rough pipes [7–9]. An explicit
equation which is very accurate for turbulent flow of Newtonian fluids in rough pipes is as follows:

1/
√

f = −4log10

[
ε/D
3.7
−

5.02
Re

log10

(
ε/D
3.7
−

5.02A
Re

)]
(45)

A = log10

(
ε/D
3.7

+
13
Re

)
(46)

This equation was originally proposed by Zigrang and Sylvester [10].

2.4. Entropy Generation in Steady Flow in a Pipe

In flow of real fluids, the dissipation of mechanical energy, and hence loss of pressure, is
simultaneously reflected in the generation of entropy [11,12]. Consequently, the pipeline flow
experiments performed by undergraduate students in the fluid mechanics laboratory can also be
used as a tool to teach the second law of thermodynamics which states that all real processes are
accompanied by generation of entropy in the universe.

For steady flow in a pipe with no heat transfer, Equation (26) reduces to:

.
SG,universe =

.
SG,CV =

.
m(∆s) > 0 (47)

There is no entropy generation in the surroundings. All the entropy is generated within the
fluid inside the pipe and the rate of entropy generation is the net rate of increase in entropy of the
flowing stream.
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We can now relate entropy change of the fluid stream to other variables. For pure substances, the
relationship between entropy and other state variables is given as [3]:

Tds = dh− (dP/ρ) (48)

where T is the absolute temperature. From the first law of thermodynamics, Equation (22), the enthalpy
change is zero in the absence of heat transfer and shaft work for steady flow in a horizontal pipe of
uniform diameter. Consequently, Equation (48) reduces to:

Tds = −(dP/ρ) (49)

Assuming incompressible flow and constant temperature, Equation (49) upon integration gives:

∆s = −
∆P
ρT

(50)

Strictly speaking, the temperature is expected to rise somewhat in adiabatic flow due to frictional
heating. However, the temperature rise is usually very small in pipeline flow experiments conducted
in the undergraduate fluid mechanics laboratory. From Equations (47) and (50), it follows that:

.
SG =

.
m
ρ

(
−

∆P
T

)
> 0 (51)

The subscript “CV” has been removed from
.
SG,CV for the sake of simplicity. We can also express

the rate of entropy generation in a pipe on a unit length basis as:

.
S
′

G =
.

m
(F′l

T

)
=

.
m
ρT

(
−

dP
dx

)
(52)

where
.
S
′

G is the rate of entropy generation per unit length of the pipe. From Equations (37) and (52), it
can be readily shown that:

.
S
′

G =
(
π
2T

)(
ρDV

3
)

f (53)

In laminar flow, the friction factor f is given by Equation (40). Consequently, Equation (53) yields:

.
S
′

G =
(8π

T

)
µV

2
(54)

Thus entropy generation rate per unit length of pipe in steady laminar flow of a Newtonian fluid
is directly proportional to fluid viscosity and square of average velocity in the pipe.

In turbulent flow of a Newtonian fluid in hydraulically smooth pipe, Equations (43) and (53) give
the flowing expression for entropy generation rate per unit length of pipe:

.
S
′

G =
(0.079π

2T

)
µ0.25ρ0.75D0.75V

2.75
(55)

In turbulent flow, the entropy generation rate per unit length of pipe also depends on pipe
diameter and fluid density, in addition to viscosity and fluid velocity dependence. Although the

viscosity dependence of
.
S
′

G in turbulent flow is less severe in comparison with laminar flow, the velocity
dependence is stronger in turbulent flow.

Figure 2 shows the plots of
.
S
′

G vs. V on a log-log scale for laminar and turbulent flows generated
from Equations (54) and (55), respectively. The fluid properties used in the equations are: µ =

1 mPa·s, ρ = 1000 kg/m3. The temperature used is 298.15 K. A single line of slope 2 is obtained for
laminar regime regardless of the pipe diameter. The entropy generation rate per unit length of the pipe



Fluids 2019, 4, 103 9 of 18

increases linearly with the increase in average velocity in the pipe. A family of parallel lines of slope
2.75 is obtained for the turbulent regime. The line shifts upward towards higher entropy generation
rate with the increase in the pipe diameter.
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3. Experimental Work

3.1. Apparatus

A flow rig consisting of five different diameter pipeline test sections (stainless steel seamless
tubes, hydraulically smooth) was designed and constructed. The pipelines were installed horizontally.
Table 1 gives the dimensions of the test sections. The test fluid was circulated through the pipeline test
sections, one at a time, using a centrifugal pump. An electromagnetic flow meter was used to measure
the flow rate of a fluid circulated through the test section. The pressure drop in a pipeline test section
was measured using pressure transducers covering a broad range of pressure drops. The pressure
drop as a function of flow rate was recorded by a computer data acquisition system. The experiments
were carried out at a constant temperature of 25 ◦C.

Table 1. Various dimensions of the pipeline flow test sections.

Pipe Inside Diameter (mm) Entrance Length (m) Length of Test Section (m) Exit Length (m)

7.15 1.07 3.05 0.46
8.89 0.89 3.35 0.48

12.60 1.19 2.74 0.53
15.8 1.65 2.59 0.56

26.54 3.05 1.22 0.67

3.2. Test Fluids

The test fluids used were surfactant-stabilized oil-in-water (O/W) emulsions. The viscosity of the
test fluid was increased by increasing the oil concentration of the emulsion. Table 2 summarizes the
viscosity and density data of the test fluids at 25 ◦C.
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Table 2. Viscosity and density of test fluids.

Test Fluid Type Viscosity, mPa·s Density, kg/m3

Aqueous surfactant solution 0.935 997.5
16.53% O/W emulsion 1.424 961.56
30.4% O/W emulsion 2.464 931.38
44.4% O/W emulsion 5.216 900.90
49.65% O/W emulsion 7.159 889.51
55.14% O/W emulsion 10.628 877.56

4. Results and Discussion

4.1. Fluid Mechanics Experiments

The experimental data obtained from pipeline flow experiments consist of pressure drop (over a
known length of pipe) versus flow rate for different diameter pipes. From pressure drop versus flow
rate data, friction factor is calculated from Equation (37), re-written as:

f = (−∆P/L)(D)/
(
2ρV

2
)

(56)

where the average velocity V is obtained from:

V = 4
.
ϑ/

(
πD2

)
(57)

Here
.
ϑ is the volumetric flow rate of fluid. The Reynolds is calculated from the defining relation,

Equation (41), re-written as:
Re = 4ρ

.
ϑ/(πDµ) (58)

The f vs. Re data are plotted on a log-log scale and compared with the predictions of available
f vs. Re theoretical and empirical relations (Equation (40) for laminar flow and Equation (43) for
turbulent flow in hydraulically smooth pipes).

Figures 3–8 show the f vs. Re data for different test fluids obtained from different diameter
pipelines. The experimental data follow the existing f vs. Re relations reasonably well in both laminar
and turbulent regimes.Fluids 2019, 4, x 10 of 18 
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4.2. Entropy Generation Results

The entropy generation rate in pipeline flow is calculated from pressure drop versus flow rate
measurements using Equation (52), re-written as:

.
S
′

G =

.
ϑ
T

(
−

∆P
L

)
(59)

where T = 25 + 273.15 = 298.15K.
The

.
S
′

G vs. V data are plotted on a log-log scale and compared with the predictions of equations
developed in Section 2.4, that is, Equation (54) for laminar flows and Equation (55) for turbulent flows
in smooth pipes.

Figures 9–14 show the
.
S
′

G vs. V data for different test fluids obtained from different diameter
pipelines. As expected from Equation (54), the experimental data corresponding to laminar flow
is independent of the pipe diameter. Also, the slope of the laminar flow line is 2 as predicted by

Equation (54). Equation (54) describes the laminar flow
.
S
′

G vs. V data adequately for all the test fluids

investigated. According to Equation (55), the turbulent flow
.
S
′

G vs. V data for a given diameter pipeline
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should follow a straight line on a log-log scale with a slope of 2.75. As expected, the experimental data
in turbulent regime follow a straight line of slope 2.75. With the increase in pipe diameter, the entropy

generation rate increases. The
.
S
′

G vs. V line shifts upward with the increase in pipe diameter but the
slope remains the same, that is, 2.75. Thus Equation (55) describes entropy generation in turbulent
flows reasonably well.
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4.3. Mechanism of Entropy Generation in Real Flows

In real flows, entropy generation is a volumetric phenomenon caused by friction (non-zero
viscosity) in fluids. Due to non-zero viscosity of real fluids, velocity gradients and viscous stresses
are set up when fluid is forced to flow through a pipe. The presence of viscous stresses and velocity
gradients in the fluid cause mechanical energy dissipation into frictional heating effect (internal
energy). The degradation of highly ordered mechanical energy into disorderly internal energy results
in entropy generation.
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The entropy generation rate per unit volume of fluid in real flows (
.
S
′′′

G ) can be expressed as [13]:

.
S
′′′

G =
1
T

(
τ
=

: ∇
→

V
)

(60)

where τ
=

is the viscous stress tensor and ∇
→

V is the velocity gradient tensor. It should be noted that
we are assuming that there are no temperature gradients in the fluid. If temperature is not uniform
and temperature gradients are present, then entropy generation can occur due to another mechanism,
namely, irreversible transfer of heat.

In general, the local entropy generation rate per unit volume of fluid (
.
S
′′′

G ) will vary with the
position coordinates. As an example, we illustrate the application of Equation (60) to steady laminar
flow in cylindrical pipes. For steady laminar flow of a fluid in a uniform diameter pipe, the term

τ
=

: ∇
→

V simplifies to:

τ
=

: ∇
→

V = τrx

(
∂Vx

∂r

)
(61)

From Equations (60) and (61), it follows that:

.
S
′′′

G =
1
T

(
τ
=

: ∇
→

V
)
=

1
T
τrx

(
∂Vx

∂r

)
(62)

From Newton’s law of viscosity,

τrx = µ

(
∂Vx

∂r

)
(63)

Consequently,
.
S
′′′

G =
1
T
τrx

(
∂Vx

∂r

)
=
µ

T

(
∂Vx

∂r

)2

(64)

The velocity distribution in steady laminar flow of a Newtonian fluid is given as:

Vx = 2V
[
1−

( r
R

)2
]

(65)

Thus,
∂Vx

∂r
= −

4r
R2 V (66)

From Equations (64) and (66), we get:

.
S
′′′

G =
µ

T

(
∂Vx

∂r

)2

=

(
16µ
T

)(
r2

R4

)
V

2
(67)

This equation describes the local rate of entropy generation per unit volume in steady laminar

flow of a Newtonian fluid in cylindrical pipe of uniform diameter. Figure 15 shows the plot of
.
S
′′′

G as a

function of radial position. The plot is generated using Equation (67).
.
S
′′′

G is zero at the centre of the
pipe as velocity gradiant and hence local dissipation of mechanical energy into frictional heating is
zero at the centre of the pipe. As we go towards the pipe wall, the local entropy generation increases
due to an increase in the velocity gradient and hence frictional heating of the fluid.



Fluids 2019, 4, 103 17 of 18

Fluids 2019, 4, x 17 of 18 

��� = � �
���
��

� (63) 

Consequently, 

��̇
��� =

1

�
��� �

���
��

� =
�

�
�
���
��

�
�

 (64) 

The velocity distribution in steady laminar flow of a Newtonian fluid is given as: 

�� = 2�� �1 − �
�

�
�
�

� (65) 

Thus, 

���
��

= −
4�

��
��  (66) 

From Equations (64) and (66), we get: 

��̇
��� =

�

�
�
���
��

�
�

= �
16�

�
��

��

��
���� (67) 

This equation describes the local rate of entropy generation per unit volume in steady laminar flow 

of a Newtonian fluid in cylindrical pipe of uniform diameter. Figure 15 shows the plot of ��̇
��� as a 

function of radial position. The plot is generated using Equation (67). ��̇
��� is zero at the centre of the 

pipe as velocity gradiant and hence local dissipation of mechanical energy into frictional heating is 

zero at the centre of the pipe. As we go towards the pipe wall, the local entropy generation increases 

due to an increase in the velocity gradient and hence frictional heating of the fluid. 

 

Figure 15. Local entropy generation rate per unit volume (��̇
���) as a function of radial position in 

laminar flow of a Newtonian fluid (R = 10 mm, T = 298.15 K, µ = 10 mPa·s, �� = 0.1 �/�). 

Finally it can be readily shown that the global rate of entropy generation (Equation (54)) follows 

from the integration of the local rate of entropy generation. The global entropy generation rate per 

unit length ��̇
�  can be expressed as: 

��̇
� =

1

�
�(��̇

���) (2��)

�

�

�� (68) 

From Equations (67) and (68), we get: 

Figure 15. Local entropy generation rate per unit volume (
.
S
′′′

G ) as a function of radial position in
laminar flow of a Newtonian fluid (R = 10 mm, T = 298.15 K, µ = 10 mPa·s, V = 0.1 m/s).

Finally it can be readily shown that the global rate of entropy generation (Equation (54)) follows
from the integration of the local rate of entropy generation. The global entropy generation rate per unit

length
.
S
′

G can be expressed as:

.
S
′

G =
1
T

R∫
0

( .
S
′′′

G

)
(2πr)dr (68)

From Equations (67) and (68), we get:

.
S
′

G =
32πµ
TR4

V
2

R∫
0

r3dr =
(8π

T

)
µV

2
(69)

This is the same result that was obtained earlier in Equation (54).

5. Conclusions

In conclusion, a novel approach is described to teach the second law of thermodynamics with the
help of an undergraduate fluid mechanics laboratory involving pipeline flow experiments. The relevant
background in fluid mechanics and thermodynamics is reviewed briefly. The link between entropy
generation and pressure loss in pipeline flow experiments is demonstrated both theoretically and
experimentally. Experimental work involving flow of emulsion-type test fluids in different diameter
pipes is carried out to determine friction factor versus Reynolds number behavior and entropy
generation rates in pipeline flows. Entropy generation in pipeline flows is explained mechanistically
considering local entropy generation in the presence of viscous stresses and velocity gradients in flow
of real fluids.
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