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Abstract: To have a safe structural design, an analysis of the dynamic behavior of a Francis turbine
runner with consideration of the added mass effects of surrounding water is necessary during design
phase. Both in design and at off-design operations, large-scale forms of attached cavitation may
appear on runner blades and can change the added mass effects of the surrounding fluid in relation
to a single water domain. Consequently, a numerical investigation of the modal response of a Francis
runner has been carried out by reproducing the presence of various sizes of leading edge cavitation
(LEC) and trailing edge cavitation (TEC). The fluid–structure interaction problem has been solved by
means of an acoustic-structural coupling method. The calculated added mass effects with cavitation
have been compared with those corresponding to the pure water condition without cavitation. Firstly,
a single blade has been investigated to evaluate the level of significance for the proposed cavity
shapes and dimensions. Afterwards, based on the results obtained, the complete runner structure has
been considered, factoring in similar cavity shapes and locations. The results prove that significant
added mass effects are induced on the entire runner by the attached cavitation that increase the
natural frequencies of the first modes. Moreover, the added mass effects increase with cavity size and
amplitude of blade deformation below the cavity.

Keywords: added mass effect; attached cavitation; Francis runner; fluid-structure coupling; frequency
reduction ratio; blade deformation

1. Introduction

Hydropower, a clean and renewable energy resource, has been developed worldwide for the
economic growth and improvement of people’s living standards. It has also been frequently used to
improve the stability and safety of smart power grids.

Depending on the water head available at hydropower plants, various types of hydraulic turbines
such as Francis, Kaplan and Pelton can be selected to maximize energy conversion efficiency. Francis
turbines, which combine radial and axial flows, are the most common type in use nowadays because
they can operate in a quite wide water head range. In order to meet the ever-changing power
requirements of the electrical grid, Francis turbines have to work under various operating conditions
from no-load to maximum load. At a given water head, the power output of Francis turbines can be
controlled by adjusting the flow discharge with the wicket gate opening. However, this changes the
flow pattern dramatically within the runner blade channels. Furthermore, extreme hydrodynamic
conditions, provoking strong pressure reductions, are found by the irregular flow inside the runner
channels when the turbine operates both at low part loads and over loads, below and above the best
efficiency point, respectively. Consequently, both at off-design and at design operation conditions,
two-phase flows with large scale cavitation forms may occur inside the Francis runners [1]. Cavitation
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is the condition when local pressure reaches vapor pressure, causing vapor cavities to form and grow
within a liquid. Within flowing water, cavitation can take the form of bubbles, macro-cavities that
develop and attach to the solid walls or vortices. Moreover, the plant cavitation number or Thoma
number [2] can change due to unavoidable variations of the tail water level during operation at a given
condition, which can increase the risk of cavitation.

Cavitation phenomena in Francis runners have been well investigated with model tests and site
measurement campaigns [3]. The typical blade-attached forms of cavitation in a Francis runner are
leading edge cavitation (LEC) and trailing edge cavitation (TEC). LEC appears on the suction side of
runner blades due to operation at a higher head than the machine design head when the incidence
angle of the inlet flow is positive and largely deviated from the design value. TEC appears as separated
bubbles attached to the blade suction side, located near the mid-chord next to the trailing edge. These
travelling bubbles appear due to a low plant cavitation number reaching their maximum when the
machine operates in overload condition with the highest flow rate.

In order to avoid damages provoked by vibration resonances and material fatigues due to hydraulic
excitations [4,5], the structural behavior of the turbine runner has to be carefully investigated during the
design phase. Extensive research has been carried out to measure and characterize the vibrations and
dynamic stresses induced by pressure fluctuations in Francis turbines [6,7] and pump-turbines [8,9].
Many research works have been carried out to predict the dynamic behavior of Francis runners in
air and still water based on both measurements and simulations in reduced scale models of Francis
runners [10,11] and pump-turbines [12,13]. The final objective is to identify the natural frequencies and
the damping ratios of the runner, taking into account the added mass and damping of the surrounding
water, because it has been demonstrated that these effects can considerably affect the results [14].
Moreover, additional boundary conditions such as the proximity of walls can also influence the added
mass effects, which have been investigated from simple structures like disks [15] to actual prototype
structures [16–18].

However, the possible effect of cavitation inside hydraulic turbines has not been sufficiently
addressed, and only one recent work has numerically investigated the possibility that inter-blade
cavitation vortices are responsible for multiple fractures that have appeared on the trailing edge of
full-scale Francis runner blades [19]. For example, the added mass effects of the presence of attached
cavitation on the runner blades have not been calculated yet. Under this condition, a significant region
of the surrounding fluid in contact with the structure is occupied by vapor instead of water, meaning
that the density is locally reduced. In particular, only limited research has been performed on hydrofoil
to investigate the added mass effects under partial cavitation, and the significance of this [20,21] has
not been demonstrated in comparison with the no cavitation condition. However, hydrofoil is only a
very simple structure compared with the complex Francis runner. Therefore, it is necessary to consider
the geometry of an actual Francis runner with all its complexity.

Consequently, a Francis runner with 13 blades and a diameter of 2.12 m (Figure 1) has been
selected to carry out the structural behavior analysis by numerical simulation. The objective of the
current work is to quantify the influence that the presence of cavitation might have on the modal
behavior of the runner. For that, both LEC and TEC of different sizes have been considered, and the
added mass effects have been compared with those corresponding to the pure water condition without
cavitation. A review of the numerical results of cavitation in Francis turbine runners [22] and the visual
observations from reduced scale models [23] and full-scale Francis prototypes [24] has permitted us
to determine the most probable locations and sizes of cavitation, as shown in Figure 2. First of all,
a single blade has been investigated to evaluate the level of significance for the proposed cavity shapes
and dimensions. Furthermore, based on the results obtained, the complete runner structure has been
considered with similar cavity shapes and locations on all the blades.
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Figure 1. Geometry and the main dimensions of the investigated Francis runner. 
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Figure 2. (a) Sizes and locations of the simulated leading edge cavitation on the single blade; (b) sizes 
and locations of the simulated trailing edge cavitation on the single blade. 
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The concept of added mass was developed by several authors like Lamb [25] and Milne-
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with velocity U and density 𝜌. In this case, the kinetic energy per unit thickness of the fluid is given 
by 𝑇௙ = 12 𝜋𝜌𝑎ଶ𝑈ଶ (1)

Let 𝑀ᇱ = 𝜋𝜌𝑎ଶ, then 𝑀ᇱ is the mass of the liquid (per unit thickness) displaced by the cylinder. 
If 𝑀 is the mass of the cylinder (per unit thickness), the total kinetic energy of the fluid and the 
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2. Added Mass and Frequency Reduction Ratio

The concept of added mass was developed by several authors like Lamb [25] and
Milne-Thomson [26] for the two-dimensional case of a circular cylinder of radius a moving forward in
liquid with velocity U and density ρ. In this case, the kinetic energy per unit thickness of the fluid is
given by

T f =
1
2
πρa2U2 (1)

Let M′ = πρa2, then M′ is the mass of the liquid (per unit thickness) displaced by the cylinder.
If M is the mass of the cylinder (per unit thickness), the total kinetic energy of the fluid and the

cylinder is

T =
1
2
(M + M′)U2 (2)

Let F be the external force in the direction of motion of the cylinder necessary to maintain the
motion. Then, the rate at which F does work must be equal to the rate of increase of the total kinetic
energy, and therefore

FU =
dT
dt

= (M + M′)U
dU
dt

(3)
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F−M′
dU
dt

= M
dU
dt

(4)

Thus, the cylinder experiences a resistance to its motion due to the presence of the liquid, and the
amount of resistance per unit thickness equals

M′
dU
dt

(5)

Therefore, the presence of the liquid effectively increases the mass of a moving circular cylinder
from M to M + M′ that is called the “virtual mass” of the liquid displaced. The virtual mass is obtained
by adding the mass M and the added mass or hydrodynamic mass M′.

As analogously explained by Brennen [27], whenever acceleration is imposed on a fluid flow by
acceleration of a body, additional fluid forces will act on the surfaces in contact with the fluid due to the
added mass. These inertial fluid forces can be of considerable importance in many engineering problems
if a structure is submerged in water. For example, the added mass of the cylinder with potential flow for
rectilinear motion is equal to the mass of the fluid displaced by the cylinder, as previously expressed in
Equation (1). However, this should be regarded as coincidental, because there is no general correlation
between the added mass and displaced fluid mass. Furthermore, in general, the value of the added
mass depends on the direction of acceleration. Therefore, the added mass must be characterized with
the added mass matrix.

The added mass matrix provides a method of expressing the relationship between the six force
components imposed on the body by the inertial effects of the fluid due to the three translation
accelerations in three perpendicular directions and the three angular accelerations. Unfortunately for
complex geometry, the added mass matrix cannot be theoretically predicted with sufficient accuracy.

If a solid body is vibrated, the general equation of a motion is

Ms
..
x + Cs

.
x + Ksx = F (6)

where Ms is the mass, Cs is the damping, Ks is the stiffness, F is the force applied to the body and x,
.
x

and
..
x are displacement, velocity and acceleration, respectively. When this body is surrounded by a still

fluid then the equation of motion is(
Ms + M f

) ..
x +

(
Cs + C f

) .
x +

(
Ks + K f

)
x = F (7)

where Mf is the added mass, Cf is the added damping and Kf is the added stiffness.
When the body is considered to be lightly damped to vibrate in-vacuum conditions without any

surrounding fluid, the natural frequency of a mode of vibration is expressed as

fvacuum =

√
k
m

(8)

where k and m are the modal stiffness and modal mass, respectively. However, its dynamic response is
significantly changed when it is submerged in a fluid with high density, such as water. The added
modal mass, mf, then reduces the new natural frequency to

f f =

√
k

m + m f
(9)

The frequency reduction ratio (FRR) of a vibration mode can be calculated relative to in-vacuum
conditions as expressed with

δ f = 1−
f f

fvacuum
= 1−

√
1

1 +
m f
m

(10)
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3. Acoustic Fluid–Structural Coupling Method and Numerical Model

The acoustic fluid–structural coupling method (AFSCM) is commonly used to calculate the added
mass effects of fluid on structures submerged in dense fluids like water. In our study, we used the finite
element analysis tool available in ANSYS Mechanical, which takes into account the fluid–structure
interaction phenomena, as described in [28].

Using the finite element method (FEM), the structural dynamic equilibrium equation is expressed as

Ms
..
u + Cs

.
u + Ksu = fs(t) (11)

where Ms, Cs and Ks are the structure mass, damping and stiffness matrices, respectively; u,
.
u,

..
u

are nodal displacement, velocity and acceleration vectors, respectively; fs(t) represents the externally
applied force vector and t is time.

With consideration of the acoustic fluid pressure acting at the interface, Equation (11) can be
described as

Ms
..
u + Cs

.
u + Ksu = fs(t) + ffs(t) (12)

where ffs(t) = −Kfs p is the acoustic fluid pressure load vector at the interface, Kfs is the equivalent
coupling stiffness matrix and p is the acoustic pressure vector.

In AFSCM, it is assumed that the fluid is compressible (density changes due to pressure variations)
and that there is no mean flow of the fluid. To describe the fluid effect on the submerged structures,
the discretized Helmholtz acoustic equation is adopted as

Mf
..
p + Cf

.
p + Kfp = fsf(t) (13)

where Mf, Cf and Kf are the acoustic fluid equivalent mass, damping and stiffness matrices, respectively,
and fsf(t) = −Mfs

..
u is the fluid load produced by the structure displacement at the interface and Mfs is

the equivalent coupling mass matrix.
Finally, the complete finite element discretized equations with assembled form expressed in

Equation (14) can be used to solve acoustic fluid–structural coupling problems by considering
Equations (12) and (13) simultaneously:[

Ms 0
Mfs Mf

]{ ..
u
..
p

}
+

[
Cs 0
0 Cf

]{ .
u
.
p

}
+

[
Ks Kfs
0 Kf

]{
u
p

}
=

{
fs(t)

0

}
(14)

Several works devoted to investigating the modal behavior and dynamic responses of hydraulic
turbine runners both in air and water can be found in the literature based on FEM and AFSCM [4–15].
In all cases, the numerical results have shown a good agreement with the corresponding measured
ones, which fully validates the feasibility of FEM and AFSCM for the current study.

The single blade and the whole runner structure domains are built with high order tetrahedral
structural elements that are suitable for modelling complex geometries. The fluid domains comprising
the cavities and surrounding water have been meshed with tetrahedral acoustic elements, which are
also typically used to solve fluid–structure coupling problems.

The proposed attached cavities with different dimensions and locations are modelled on the
suction side of the runner blade (Figure 2). The thickness of attached cavities is assumed to be 0.0225 m,
which is three times the blade trailing edge thickness.

The dimensions of the attached cavities have been calculated relative to the surface of the blade
suction side in percentage and presented as the cavity to blade surface ratio (CSR), which is defined by

CSRCavity = 100 × SCavity/SSuction_side (15)

where SCavity is the area of the cavity, and SSuction_side is the area of the blade suction side. These results
are listed in Table 1, where LECS and LECL indicate small (S) and large (L) sizes of leading edge
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cavitation, respectively, and TECS and TECL indicate small (S) and large (L) sizes of trailing edge
cavitation, respectively.

Table 1. Cavity to blade surface ratio of small leading edge cavitation (CSRLECS), of large leading
edge cavitation (CSRLECL), of small trailing edge cavitation (CSRTECS) and of large trailing edge
cavitation (CSRTECL).

CSRLECS CSRLECL CSRTECS CSRTECL

2.0 5.9 11.0 21.1

To guarantee the accuracy and convergence of the numerical model, results sensitivity to mesh size
and density was analyzed based on previous experience first [9]. For that, three meshes with increasing
numbers of elements were constructed for both the single blade and entire turbine runner, as shown
at the top of Figure 3. The graphs present the evolutions of the predicted natural frequencies when
the element number increases, as well as how they converge towards constant values. The meshes
providing the results marked with dashed line boxes were finally selected to perform the simulations.
The corresponding numbers of elements for the structures and fluid domains are indicated in Table 2.

Moreover, based on the results obtained by Rodriguez et al. [10] with a similar runner geometry,
and in order to have a sufficiently large fluid domain, the surfaces of the fluid domain where located at
a distance around 1/3 to 1/4 of the runner height relative to the runner outer surfaces as shown at the
right of Figure 4. And the fluid domain for the single blade is shown at the left of Figure 4.
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Table 2. Number of elements of the various meshes for the structure and fluid domains.

Blade Structure Blade Fluid Runner Structure Runner Fluid

3.1 × 103 2.1 × 104 1.1 × 105 1.2 × 106

The material properties of the cavitation domains are the corresponding ones to pure saturated
vapor, assuming a vapor volume fraction of 1. As a summary, the material properties of the structure
and both fluids, water and vapor, used in the numerical calculations are tabulated in Table 3.

Table 3. Density (ρs), Young’s modulus (E) and Poisson’s ratio (ν) of the structure; density (ρw) and
sonic speed (cw) of the water; and density (ρv) and sonic speed (cv) of the vapor.

ρs [kg/m3] E [GPa] ν [-] ρw [kg/m3] cw [m/s] ρv [kg/m3] cv [m/s]

7700 206 0.3 1000 1482 0.0172 423

In order to quantitatively evaluate the added mass effects on the structures, the FRR of each mode
either submerged in pure water (δw) or with various cavities (δcavity) has been calculated based on
Equation (10). The deviation of FRRs of a specified mode due to the presence of different types of
cavitation has been calculated with

δw − δcavity = (fcavity − fw)/fvacuum (16)

where the frequency fcavity can correspond to any of the cavitation types fLECS, fLECL, fTECS and fTECL.
As the added mass effect of air on the modal behavior of structures has been experimentally and

numerically proved to be negligible in similar studies [5–10], the numerical simulation to obtain the
reference values will be performed in-vacuum conditions instead of air.

The procedure will consist of solving first the air condition, then the same case with water and
finally with both water and attached pockets of vapor. This will be done first for a single blade to
quantify the level of significance on the structure response. Then, the entire Francis runner will be
simulated with air, water and water with cavitation. To conclude, the whole set of results will be
compared among all the cases.

4. Modal Analysis of a Single Blade

4.1. Results for the Single-Phase Fluid

The dynamic response of a single blade both in air and submerged in a cylindrical water domain,
as shown in Figure 5, is analyzed in order to evaluate the added water mass effects. Since the blades
are welded to the crown and to the band to build the runner, all the degrees of freedom (DOFs) on the
two tip sections of the single blade have been constrained.
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Modal analysis of the first three modes of vibration shows that the largest blade deformations took
place at the trailing edge. For the first mode, a single nodal point (NP) is found next to the mid span
with no displacement relative to the static condition. For the second and third modes, two and three
NPs are found, respectively. As a result, the number of NPs is used to identify the modes. In Figure 6,
the blade deformation has been normalized to the maximum value for each mode where positive
versus negative values indicate opposite directions of deformation. The calculated natural frequencies
and the FRRs in air and water for the corresponding modes are indicated in Table 4.
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Table 4. Natural frequencies in air (fa) and water (fw), and frequency reduction ratios (δw) of the single
blade modes with 1, 2 and 3 nodal points (NP).

Mode fa [Hz] fw [Hz] δw [%]

1NP 513.2 323.0 37.1
2NP 589.9 360.4 38.9
3NP 826.1 531.2 35.7

It must be noted that the mode shapes in water present similar patterns to the ones obtained in air.
Therefore, the results show that the same order of modes is found in water as in air. Nevertheless,
the natural frequency of any specified mode in water is dramatically reduced due to the added water
mass effect. In particular, the FRRs of the first three modes are found in the narrow range from 35%
to 39%. These are the effects under expectation, given the fact that the deformed zones on the mode
shape will vibrate simultaneously and accelerate the surrounding water. This will cause the so-called
“added mass” of water on the structure and reduce the natural frequency.
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4.2. Results for the Two-Phase Fluid

The natural frequencies and the FRRs of the first three modes of vibration, when considering the
four different types of cavitation in the modal analysis, are listed in Table 5. They have been obtained
by keeping the same boundary conditions as the case of a single-phase fluid. It must be noted that the
presence of various types of cavities has no significant influence on the corresponding normalized
blade mode shapes.

Table 5. Natural frequencies (f ) and frequency reduction ratios (δ) of the single blade with cavitation.

Mode fLECS [Hz] fLECL [Hz] fTECS [Hz] fTECL [Hz] δLECS [%] δLECL [%] δTECS [%] δTECL [%]

1NP 323.0 323.1 326.2 327.5 37.1 37.0 36.4 36.1
2NP 361.4 363.5 365.2 394.9 38.7 38.3 38.0 32.8
3NP 531.6 531.9 548.9 557.2 35.6 35.6 33.3 32.0

Figure 7 compares the natural frequencies of the single blade with pure water and with the
different sizes and types of cavities. It is observed that, due to the presence of a vapor cavity, the natural
frequency of each mode tends to be higher than the one in water without cavitation.
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To compare the slight changes of frequencies observed for many cases with more precision,
the deviations of FRRs calculated by Equation (16) are plotted for each mode in Figure 8. It is obvious
that the deviations of FRRs observed in all the modes are almost negligible for any size of LEC.
The increases of frequency are significant only for the large TEC in the case of the 2NP and 3NP
modes, with a higher effect in 2NP. Meanwhile, for the small TEC, the 3NP mode is the most affected.
The observed effects can be explained firstly by the size of the cavity and secondly by its location
relative to the largest blade deformations for each mode shape.
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To quantify the effect of cavity size, the CSR defined by Equation (15) has been correlated to the
FRRs in Figure 9 for the three modes. It can be clearly observed that the added mass effect decreases
when the ratio increases. Obviously, TEC has a larger influence on the natural frequencies than LEC.
However, between the small and large sizes of TEC there is a sharp decrease of the FRR for the 2NP
mode compared with the behavior of the other two modes. The FRR of 2NP is the highest for the
first four cases shown in Figure 9. However, with the presence of TECL its value drops down and
lies between the FRRs of 1NP and 3NP. This behavior might be due to the effect of the cavity location
relative to the maximum blade deformations.Fluids 2019, 4, x 10 of 18 

 
Figure 9. Comparison of the FRRs of the single blade with pure water and with different cavities. 

In Figure 10, the different cavity locations and sizes have been plotted on the mode shape graphs 
for the three modes. From this information it can be confirmed that there is a significant effect when 
the cavities are located in areas with larger blade deformations. Obviously, LEC is located in a region 
with almost no blade displacement for any mode. Contrarily, TEC covers partially or fully the large 
deformation zone on the blade for each mode shape. As a result, the added mass effects for LEC are 
almost the same as the case without cavitation, but for TEC the added mass effects are clearly 
reduced. For the 3NP mode, the deformation of the blade below the cavity is larger than for the 1NP 
and 2NP modes. As a result, the blade vibration accelerates more vapor and less water than for the 
other modes and, therefore, the added water mass effects on the blade for 3NP are lower. For the 2NP 
mode, the TECS covers the trailing edge up to the nodal point (see blue zone in Figure 10). However, 
when the cavity size is increased (as with the TECL), the nodal point is overcome and the cavity spans 
to the opposite deformation region (see the red zone in Figure 10) with a similar situation as the 3NP 
mode. As a result, the FRR of 2NP approaches that obtained for 3NP. 

 
Figure 10. Cavity locations marked on the mode shape graphs of the single blade. 

5. Modal Analysis of the Entire Turbine Runner 

The investigation of the modal behavior of the entire Francis runner is necessary because the 
influence of attached cavitation on the structural response of the single blade has previously been 
proven. Based on such results, only the largest cavity dimensions for both LEC and TEC have been 
considered. For the numerical simulation, the same systematic method has been used as before. 

5.1. Results for the Single-Phase Fluid 

The Francis runners are typically fixed to the main turbine shaft with bolts. To calculate the 
structural response of the runner, all the DOFs on the contact surface between the runner and the 

Figure 9. Comparison of the FRRs of the single blade with pure water and with different cavities.

In Figure 10, the different cavity locations and sizes have been plotted on the mode shape graphs
for the three modes. From this information it can be confirmed that there is a significant effect when
the cavities are located in areas with larger blade deformations. Obviously, LEC is located in a region
with almost no blade displacement for any mode. Contrarily, TEC covers partially or fully the large
deformation zone on the blade for each mode shape. As a result, the added mass effects for LEC
are almost the same as the case without cavitation, but for TEC the added mass effects are clearly
reduced. For the 3NP mode, the deformation of the blade below the cavity is larger than for the 1NP
and 2NP modes. As a result, the blade vibration accelerates more vapor and less water than for the
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other modes and, therefore, the added water mass effects on the blade for 3NP are lower. For the 2NP
mode, the TECS covers the trailing edge up to the nodal point (see blue zone in Figure 10). However,
when the cavity size is increased (as with the TECL), the nodal point is overcome and the cavity spans
to the opposite deformation region (see the red zone in Figure 10) with a similar situation as the 3NP
mode. As a result, the FRR of 2NP approaches that obtained for 3NP.
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5. Modal Analysis of the Entire Turbine Runner

The investigation of the modal behavior of the entire Francis runner is necessary because the
influence of attached cavitation on the structural response of the single blade has previously been
proven. Based on such results, only the largest cavity dimensions for both LEC and TEC have been
considered. For the numerical simulation, the same systematic method has been used as before.

5.1. Results for the Single-Phase Fluid

The Francis runners are typically fixed to the main turbine shaft with bolts. To calculate the
structural response of the runner, all the DOFs on the contact surface between the runner and the shaft
have been fixed to reproduce the constrained boundary condition properly. A large cylindrical tank,
as shown on the right of Figure 11, has been considered to model the fluid domain surrounding the
structure. The same material properties as the ones listed in Table 3 have been considered.
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Figure 11. (a) Geometry and boundary conditions of the runner in air; (b) geometry and dimensions of
the surrounding cylindrical water domain.

Table 6 presents the natural frequencies and corresponding FRRs for the first seven modes
of vibration. The corresponding modes of vibration are shown in Figure 12, normalized by the
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corresponding maximum deformation value in each case. It can be seen that the vibration modes of the
entire runner are very complex. The maximum deformation for all the modes appears on the blades.
Because the deformation of the crown is relatively small, the mode shapes can be classified according
to the deformation of the band and blades. The nodal diameter (ND) concept, a line that bisects the
circle across the diameter, is used to characterize the mode shapes of the entire runner following the
same criteria used by other authors [4,5]. The corresponding mode shape of the entire runner in air
and in water keeps the same features.

Table 6. Natural frequencies in air (fa) and in water (fw), and frequency reduction ratios (δw) of the
runner modes from 0 to 6 nodal diameters (ND).

Mode fa [Hz] fw [Hz] δw [%]

0ND 68.4 61.4 10.2
1ND 61.7 50.0 18.9
2ND 126.6 97.5 23.0
3ND 216.8 150.3 30.7
4ND 308.9 191.5 38.0
5ND 388.1 215.6 44.4
6ND 427.5 224.2 47.5
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Depending on the energy required to excite the vibration mode of the entire runner, the order of
the mode shapes according to the frequency values indicated in Table 6 is 1ND, 0ND, 2ND, 3ND, 4ND,
5ND and 6ND. The surrounding water does not change the order of the runner modes. However,
the presence of water results in a considerable frequency reduction for each mode.

From 1ND to 6ND, the runner has double modes with repeated natural frequencies. The features
of each couple are the same, but the deformation distribution on the double modes has a spatial phase
shift (Φ) given by

Φ = π/(2 × XND) (17)

where XND is the ND number of a given mode.
Based on the observed mode shape movements represented in Figure 12, the 0ND runner mode

corresponds to a torsion motion around the axis of rotation combined with an elevation motion in the
axial direction. Moreover, all blades present the same in phase deformation and movement. For 1ND,
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the runner swings like a pendulum and the blades can be divided into two groups depending on the
relative phase of their deformation. In both groups, the blades vibrate in phase inside their own groups,
but in counter phase between the two groups. From 2ND to 6ND, high deformation also appears on
the band, although a little lower than that of the blades. Like 1ND, the blades of the modes from 2ND
to 6ND can also be divided into 2 × XND groups. The blades inside their own groups vibrate in phase,
but in the adjacent groups they vibrate in counter phase.

From the differences between natural frequencies observed in Figure 13, it is confirmed that the
added water mass effect depends on the deformation shapes of the modes. In particular, the FRR
increases with XND, as shown in Figure 14, which is used to classify the mode shapes. So, 0ND has the
lowest FRR, with a value of 10.2%, and 6ND has the maximum FRR with a value of 47.5%. This can be
explained by the fact that the two lowest modes, 0ND and 1ND, accelerate less water than the modes
with higher XND that have larger deformations in the normal directions to the blade and band surfaces.
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To finish, the regression analysis plotted in Figure 14 demonstrates an accurate linear relationship
between FRR and XND. Therefore, a simple law can be used to calculate the natural frequencies of the
submerged runner in water for any mode.
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5.2. Results for the Two-Phase Fluid

As shown in Figure 15, the large size for both types of cavitation in the single blade, LECL and
TECL, have also been modeled on all the blades of the investigated Francis runner in separate cases.
The thickness of the attached cavities is 0.225 m, the same as that of the single blade. The vapor volume
fraction is also 1, and the same material properties of structure, fluid and vapor shown in Table 3 are
used. The obtained natural frequencies and FRRs are indicated in Table 7. Then, the natural frequencies
of the runner submerged in pure water and with cavitation are compared in Figure 16.
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Table 7. Natural frequencies of the runner with cavitation (f ) and frequency reduction ratios (δ) of the
modes from 0 to 6 nodal diameters (ND).

Mode fLECL [Hz] fTECL [Hz] δLECL [%] δTECL [%]

0ND 63.2 63.3 7.6 7.5
1ND 52.6 53.1 14.7 13.9
2ND 102.8 104.6 18.8 17.4
3ND 158.1 161.2 27.1 25.6
4ND 199.9 204.8 35.3 33.7
5ND 221.6 226.4 42.9 41.7
6ND 228.3 232.4 46.6 45.6
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The presence of cavities does not change the order of the natural frequencies of the runner.
However, the cavities have a small but clear influence on the value of the natural frequencies. For all
modes shown in Figure 12, the natural frequencies of the submerged runner with cavitation are
increased compared with the corresponding ones in water without cavitation. The influence of the
TECL on the natural frequencies is larger than that of the LECL.

In order to evaluate the added mass effect of attached cavitation on each mode in detail,
the differences of FRRs of each mode when cavities exist have been plotted in Figure 17. The results
confirm that the added water mass effects are reduced with the presence of cavitation. The TECL
induces a larger reduction than the LECL as occurred on the single blade. The most influenced modes
are 1ND and 2ND, with more than 4% difference in both types of cavitation. It must be noted that for
the entire runner, the global effect of LECL is significant for all modes with values above 1%, which
was not the case with the single blade. As the ND number increases, it is also observed how the
effects decrease.
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Figure 17. Comparison of the deviation of FRRs for the runner.

Similar to the single blade, the added mass effects of cavitation attached to the blade are influenced
by the runner mode shapes and the locations of the cavities. For all extracted modes, the blade trailing
edges have a much larger deformation because they are thinner than the leading edges. Furthermore,
the TECL covers a lager deformed zone on the blade than the LECL. As a result, TECL has a larger
influence than LECL on the added water mass.

The results indicate that the most affected mode of vibration is 2ND for both types of cavitation.
This might be explained by the fact that in this case the blade surfaces covered by LECL and TECL
vibrate in their normal direction (as shown in Figure 18), which has a strong influence on the added
mass effects. For other modes with higher XND, although they also have a normal deformation on
blades, the total region in contact with the cavity surface is lower than for 2ND. Finally, 0ND and 1ND
do not present such movement, due to their completely different movement.
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Furthermore, the FRRs of all the runner modes in water with and without cavities have been
plotted in Figure 19. The results indicate that the added mass effects with cavities attached to the
blades are smaller than those with blade without cavities surrounded by only water. The FRRs of the
runner with cavities also present a very precise linear relationship with XND in all cases. Nevertheless,
the fitted line for the case without cavities has a smaller slope but larger intercept than the line estimated
for the case with cavities.
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In summary, the linear regressions permitting calculation of the FRRs of the runner when
submerged in pure water, in water with the LECL or in water with the TECL, are indicated in
Equations (18)–(20), respectively, as a function of the mode order.

δw = 6.36(XND + 1) + 4.94 (18)

δLECL = 6.78(XND + 1) + 0.45 (19)

δTECL = 6.65(XND + 1) − 0.13 (20)
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6. Conclusions

The added mass effects of attached blade cavitation on the structural behavior of a single blade
and of a complete Francis runner have been investigated numerically. The acoustic–structural coupling
method was applied to calculate the natural frequencies and mode shapes of the structure surrounded
by a fluid. The study compared the results of a single-phase fluid, water, with those of a two-phase fluid,
vapor and water, by reproducing the typical leading edge or trailing edge attached blade cavitation.

Surrounding water led to a significant reduction of natural frequencies. For the single blade,
the first three natural frequencies were reduced by around 37%. For the whole runner, the first seven
natural frequencies were reduced from around 10% to 48%, following a growing linear trend with the
nodal diameter number. Therefore, added water mass effects depend on mode shape. The modes that
present more deformation in the direction normal to the blade surface have larger added water mass
effects because they accelerate more surrounding fluid.

In general, the presence of vapor cavities on the blades provoked an increase of natural frequencies
due to a reduction of added mass for both the single blade and the whole runner.

For the single blade, only trailing edge cavitation presented more than 1% effect for the second
and third modes. The largest influence was found for the second mode, at about 6% for the large cavity
size. This behavior was determined by the effective normal deformation of the blade at the cavity
location as well as the size of the cavity. For the same reason, the effects of leading edge cavitation
were lower than 1% due to the low deformation of the blade and smaller size.

For the entire runner, both leading and trailing edge cavities induced effects higher than 1% in all
modes because the mode shapes of the blades differed in relation to the single blade case. As a result,
the maximum effects were found between 4% and 6% for modes 1ND and 2ND with both types of
cavitation. Starting from 2ND, the effects decreased with nodal number. Again, trailing edge cavitation
always had a larger effect than leading edge cavitation for any given mode.

In summary, added mass effects with cavitation attached to blades was determined by the
coincidence between the mode shape of the structure and the location and size of the cavities. However,
the main features of the mode shape were similar in all the cases considered. In reality, a Francis
runner is mounted inside a spiral case in a hydropower plant, and the added mass effects of attached
cavitation on a submerged runner with nearby boundaries should be further investigated.
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Abbreviations

AFSCM Acoustic fluid–structural coupling method
DOF Degree of freedom
FEM Finite element method
FRR Frequency reduction ratio
LEC Leading edge cavitation
LECL Large leading edge cavitation
LECS Small leading edge cavitation
ND Nodal diameter
NP Nodal point
TEC Trailing edge cavitation
TECL Large leading edge cavitation
TECS Small trailing edge cavitation
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