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Abstract: The non-linear Schrödinger (NLS) equation has often been used as a model equation in
the study of quantum states of physical systems. Numerical solution of NLS equation is obtained
using cubic B-spline Galerkin method. We have applied the Crank–Nicolson scheme for time
discretization and the cubic B-spline basis function for space discretization. Three numerical problems,
including single soliton, interaction of two solitons and birth of standing soliton, are demonstrated to
evaluate to the performance and accuracy of the method. The error norms and conservation laws
are determined and found to be in good agreement with the published results. The obtained results
show that the approach is feasible and accurate. The proposed method has almost second order
convergence. The linear stability of the method is performed using the Von Neumann method.
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1. Introduction

The non-linear Schrödinger (NLS) equation describes how the behavior of quantum states of a
physical system changes in time and space. The NLS equation can be used to describe the propagation
of optical pulses and waves in water and plasmas, among other things. Due to the presence of
nonlinearity and the complex nature of the problem, it is still a challenge for researchers to determine
the most suitable method. Many theoretical and numerical studies have been carried out to overcome
this difficulty. The B-spline Galerkin method is quite advanced and has been used by researchers to
solve other complex problems.

Dag [1] presented the quadratic and cubic B-spline Galerkin finite element method for solving
the Burger’s equation. This method was found to give satisfactory results for the Burger’s equation,
particularly when continuity of the solutions was essential. Dag et al. [2] also proposed a cubic
B-splines collocation method for solving the one-dimensional Burger’s equation. The proposed scheme
was easy to implement and did not require any inner iteration to deal with the nonlinear term of
the Burger’s equation. Gorgulu et al. [3] presented exponential B-splines Galerkin finite element
method for the numerical solution of the advection-diffusion equation. In this study, a new algorithm
was developed for the numerical solution of differential equations. This algorithm was obtained by
utilizing exponential B-spline functions for the Galerkin finite element method. It was reported that
the proposed method gave satisfactory results. The exponential B-splines Galerkin method for the
numerical solution of the Burger’s equation was also applied by Gorgulu et al. [4].

Saka et al. [5] proposed a quartic B-splines Galerkin finite element method for solving the
regularized long wave equation. The performance and accuracy of the method were observed.
The method has a weakness because of its large number of matrix operations. The quartic B-spline
method was found to be very useful for finding the numerical solutions of the differential equation
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when higher continuity of solutions occurs. Aksan [6] presented the quadratic B-spline finite element
method for finding the approximate solution of the nonlinear Burger’s equation. The high accuracy of
the proposed method was thoroughly examined. Gardner et al. [7] also applied a cubic B-spline finite
element method for the numerical solution of the Burger’s equation. They noticed that the proposed
finite element method gave more accurate results than other approaches.

Sheng et al. [8] solved the NLS equation using a finite difference method based on quartic spline
approximation and semidiscretization. The NLS equation was approximated using a finite element
method by Zlotnik and Zlotnik [9]. Ersoy et al. [10] studied the numerical solution of the NLS
equation using an exponential B-spline with collocation method. In that paper, they used the Crank
Nicolson formulation for time integration and exponential cubic B-spline functions for space integration.
Mokhtari et al. [11] solved the NLS equation using delta-shaped basis functions. Saka [12] solved the
NLS using the collocation method with quintic B-spline functions. The generating function of the
Hermite polynomial and the orthogonal Hermite function were introduced with ordinary Hermite
polynomials by Cesarano et al. [13]. The nature of Hermite polynomials is described in the Schrödinger
Equation. Analytical solutions of the NLS equation for certain initial and boundary conditions were
presented by Zakharov and Shabat [14]. The numerical solution of the NLS equation was obtained by
Lin [15] using a septic spline function method with the collocation method. The Galerkin finite element
method for the NLS equation was applied by Dag, with quadratic B-spline functions as the weight and
trial functions over finite elements [16]. The numerical solution of the NLS equation was also obtained
by using the collocation method based on cubic B-spline by Gardner et al. [17]. Hu [18] presented
a conservative two-grid finite element method for the numerical solution of the NLS equation and
applied one Newton iteration for the linearization of the problem by using the coarse-grid solution
as the initial guess. The Galerkin B-spline method is not often used for the numerical solution of the
NLS equation. A review of some numerical methods for solving the NLS equation indicates that most
methods use the collocation finite element method.

In this paper, we study the use of the Galerkin method with cubic B-spline function as the
weight and trial functions over finite elements to solve the NLS equation. This paper is organized
as follows. In Section 2, we discussed the governing equation and fundamentals of Cubic B-spline
Galerkin method. In Section 3, the stability analysis of the numerical scheme is analyzed using the
Von Neumann method. The numerical results and test problems are discussed in Section 4. In the last
section, the conclusions are given.

2. Governing Equation and Cubic B-Spline Galerkin Method

The NLS equation is
iut + uxx + q|u|2u = 0, (1)

The equation in (1) is called a self-focusing NLS equation when q > 0 and a defocusing NLS
equation when q < 0. The subscripts x and t denote the spatial variable and time variable respectively;
q is a positive real parameter, and i =

√
−1. u(x, t) is a complex-valued function and defined over the

whole real line. The initial condition is

u(x, 0) = f (x), x ∈ [a, b], (2)

and the boundary conditions are as follows:

u(a, t) = u(b, t) = 0. (3)

The solution u(x, t) is decomposed into its real and imaginary parts as

u(x, t) = r(x, t) + is(x, t), (4)
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Substituting Equation (4) into Equation (1), the following coupled partial differential equations
are obtained:  st − rxx − q

(
r2 + s2

)
r = 0,

rt + sxx + q
(
r2 + s2

)
s = 0.

(5)

The solution domain [a, b] is divided equally into N finite elements by the nodes xk such that
a = x0 < x1 < · · · xN = b and h = b−a

N = xk+1 − xk. In this paper, we choose cubic B-spline function
as the weight and trial function. The cubic B-splines ∅k(x), (k = −1, . . . , N + 1) are defined over the
interval [a, b] as follows [1]:

∅k(x)

= 1
h3



(x− xk−2)
3 x ∈ [xk−2, xk−1],

h3 + 3h2(x− xk−1) + 3h(x− xk−1)
2
− 3(x− xk−1)

3 x ∈ [xk−1, xk],

h3 + 3h2(xk+1 − x) + 3h(xk+1 − x)2
− 3(xk+1 − x)3 x ∈ [xk, xk+1],

(xk+2 − x)3 x ∈ [xk+1, xk+2],

0 otherwise.

(6)

The approximate solution uN(x, t) to the analytical solution u(x, t) for Equation (1) is written in
terms of the cubic B-spline function as

uN(x, t) = sN(x, t) + rN(x, t) =
N+1∑
j=−1

δ j(t)∅ j(x), (7)

where δ j(t) = ρ j(t) +ψ j(t),

sN(x, t) =
N+1∑
j=−1

ρ j(t)∅ j(x),

rN(x, t) =
N+1∑
j=−1

ψ j(t)∅ j(x).
(8)

The coefficients ρ j(t) and ψ j(t) are unknown time-dependent parameters that will be determined
from the boundary and weighted residual conditions. Since each cubic B-spline covers 4 elements,
each element [xk, xk+1] is covered by 4 splines. Using the local coordinate’s transformation η = x− xk
for 0 ≤ η ≤ h, the cubic B-spline function over the element [xk, xk+1] can be written as

∅k−1

∅k

∅k+1

∅k+2

=
1

h3


(h− η)3

4h3
− 3h2η+ 3h(h− η)2

− 3(h− η)3

h3 + 3h2η+ 3hη2
− 3η3

η3

, 0 ≤ η ≤ h. (9)

Here, all other cubic B-spline functions are zero over the finite element [xk, xk+1]. The approximation
function (Equation (8)) over the finite element can be defined in terms of the basis functions
(Equation (9)) as

sN(x, t) =
k+2∑

j=k−1
ρ j(t)∅ j(x).

rN(x, t) =
k+2∑

j=k−1
ψ j(t)∅ j(x).

(10)
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Using the B-splines basis defined in Equation (6) and the trial function stated in Equation (8),
the nodal values of sk, rk, s′k and r′k at the knots xk are determined in terms of time-dependent element
parameters ρ j and ψ j as:

sk = s(xk) = ρk−1 + 4ρk + ρk+1,

rk = r(xk) = ψk−1 + 4ψk +ψk+1,

hs′k = hs′(xk) == 3(ρk+1 − ρk−1),

hr′k = hr′(xk) == 3(ψk+1 −ψk−1),

h2s′′ k = h2s′′ (xk) == 6(ρk−1 − 2ρk + ρk+1),

h2r′′ k = h2r′′ (xk) = 6( ψk−1 − 2ψk +ψk+1),

(11)

where the prime denotes differentiation with respect to x.
Applying the Galerkin approach to Equation (5) with the weight function W(x), the weak form of

Equation (5) over the finite element [xk, xk+1] is

xk+1∫
xk

[Wst + Wxrx − zkWr]dx = 0,

xk+1∫
xk

[Wrt −Wxsx + zkWs]dx = 0,

(12)

where
zk = q(r2 + s2). (13)

Using the weight function W as the cubic B-spline and substituting Equations (10) into (12) with
some manipulations, the following differential equations are obtained:

k+2∑
j=k−1

 h∫
0
∅m∅ jdη

 .
ρ j +

 h∫
0
∅′m∅′ jdη

ψ j −

zk

h∫
0
∅m∅ jdη

ψ j

 = 0,

k+2∑
j=k−1

 h∫
0
∅m∅ jdη

 .
ψ j +

 h∫
0
∅′m∅′ jdη

ρ j −

zk

h∫
0
∅m∅ jdη

ρ j

 = 0,

(14)

Equation (14) can be written in matrix form as Ae .
ρ

e
+ Beψe

− zkCeψe = 0,

Ae
.
ψ

e
− Beρe + zkCeρe = 0,

(15)

where ρe = (ρk−1,ρk,ρk+1,ρk+2)
T and ψe = (ψk−1,ψk,ψk+1,ψk+2)

T are the element parameters and
dot (·) represents differentiation with respect to t. The element matrix Ae

mj, Be
mj and Ce

mj are given by

Ae
mj = Ce

mj =

h∫
0

∅m∅jdη, Be
mj =

h∫
0

∅′m∅′jdη. (16)
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where m, j = k− 1, k, k + 1, k + 2. The element matrix (16) is calculated as

Ae
mj = Ce

mj =
h∫

0
∅m∅jdη = h

140


20 129 60 1.0
129 1188 933 60
60 933 1188 129
1.0 60 129 20

,

Be
mj =

h∫
0
∅′m∅′jdη = 1

10h


18 21 −36 −3.0
21 102 −87 −36
−36 −87 102 21
−3.0 −36 21 18

.
zk values are calculated by writing s = sm+sm+1

2 and r = rm+rm+1
2 in Equation (13). Using the values of

sN and rN at the points xk, we obtain

zk = q

 (ρk−1 + 5ρk + 5ρk+1 + ρk+2)
2

4
+

(ψk−1 + 5ψk + 5ψk+1 +ψk+2)
2

4

. (17)

Assembling the contributions from all of the elements, Equation (15) becomes A
.
ρ+ Bψ−C(zk)ψ = 0,

A
.
ψ− Bρ+ C(zk)ρ = 0,

(18)

where ρ = (ρ−1,ρ0, . . . ,ρk,ρk+1)
T and ψ = (ψ−1,ψ0, . . . , ψk,ψk+1)

T are global element parameters
and the matrices A, B and C(zk), which are global matrices with a generalized kth row, have the
following form:

A = h
140 (1, 120, 1191, 2416, 1191, 120, 1),

B = 1
10h (−3,−72,−45, 240,−45,−72,−3),

C(zk) =
h

140
(z1k, 60z1k + 60z2k, 129z1k + 933z2k + 129z3k, 20z1k + 1188z2k

+1188z3k + 20z4k, 129z2k + 933z3k + 129z4k, 60z3k + 60z4k, z4k).

(19)

where
z1k =

q
4

[
(ρk−2 + 5ρk−1 + 5ρk + ρk+1)

2 + (ψk−2 + 5ψk−1 + 5ψk +ψk+1)
2
]
,

z2k =
q
4

[
(ρk−1 + 5ρk + 5ρk+1 + ρk+2)

2 + (ψk−1 + 5ψk + 5ψk+1 +ψk+2)
2
]
,

z3k =
q
4

[
(ρk + 5ρk+1 + 5ρk+2 + ρk+3)

2 + (ψk + 5ψk+1 + 5ψk+2 +ψk+3)
2
]
,

z4k =
q
4

[
(ρk+1 + 5ρk+2 + 5ρk+3 + ρk+4)

2 + (ψk+1 + 5ψk+2 + 5ψk+3 +ψk+4)
2
]
.

(20)

Discretization by the Crank-Nicolson method gives us ρ =
(
ρn + ρ(n+1)

)
/2 and

ψ =
(
ψn +ψn+1

)
/2. Similarly, the time discretization by finite difference scheme gives us

.
ρ =

(
ρn+1

− ρn
)
/∆t and

.
ψ = (ψn+1

−ψn)/∆t. Substituting these discretizations into Equation (18),
we obtain the following system:{

Aρn+1 + 0.5∆t(B−C(zk))ψ
n+1 = Aρn

− 0.5∆t(B−C(zk))ψ
n,

Aψn+1
− 0.5∆t(B−C(zk) )ρ

n+1 = Aψn + 0.5∆t(B−C(zk))ρ
n.

(21)

Using the boundary conditions in Equation (21) yields a septadiagonal matrix. This system is
solved by an appropriate method in MATLAB.
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First, the initial vectors of parameters ρ0 =
(
ρ0

0, . . . ,ρ0
N
)

and ψ0 =
(
ψ0

0, . . . ,ψ0
N
)

are calculated
to solve System (21) with the use of the initial condition using the relations

sN(x, 0) =
∑N+1

j=−1
∅ j(x)ρo

j and rN(x, 0) =
∑N+1

j=−1
∅ j(x)ψo

j , (22)

where all parameters ρ0 and ψ0 are determined. sN and rN require the following relations to be satisfied
at points xk:

sN(xk, 0) = s(xk, 0),

rN(xk, 0) = r(xk, 0), k = 0, 1, . . . , N.
(23)

The initial vectors ρ0 and ψ0 can be calculated using the initial and boundary conditions from the
following matrix equations:

4 1 0 0 0
1 4 1 0
0 1 4 1

. . . . . . . . .
1 4 1
0 1 4 1

0 0 1 4





ρ0
0

ρ0
1

ρ0
2

...
ρ0

N−2

ρ0
N−1


=



s0
0

s0
1

s0
2

...
s0

N−3

s0
N−2

s0
N−1


,

and 

4 1 0 0 0
1 4 1 0
0 1 4 1

. . . . . . . . .
1 4 1
0 1 4 1

0 0 1 4





ψ0
0

ψ0
1

ψ0
2

...
ψ0

N−2

ψ0
N−1


=



r0
0

r0
1

r0
2

...
r0

N−3

r0
N−2

r0
N−1


.

This system is solved using a suitable method in MATLAB. The approximate numerical solution
of sN(x, t) and rN(x, t) is obtained from the ρn and ψn using Equation (21).

3. Stability Analysis

Stability analysis of the numerical scheme is carried out using the von Neumann method.
The coupled system of Equation (5) is written as

∂U
∂t

+ M
∂2U
∂x2 + G(U)U = 0, (24)

where U =

[
s
r

]
, M =

[
0 −1
1 0

]
and G(U) =

[
0 −µ1

µ2 0

]
.

To perform linear stability analysis, we further linearize the nonlinear term in Equation (24) by
taking G(U) = µM. Here µ = max[µ1,µ2]. Therefore, the linearized form of Equation (24) is as follows:

∂U
∂t

+ M
∂2U
∂x2 + µMU = 0. (25)

The discretization of linear Equation (24) by the proposed scheme is given by

AUn+1
m −MDUn+1

m = AUn
m + MDUn+1

m , (26)
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where D = B− µI.
We use the following Fourier modes analysis for Scheme (25)

Un
m = PGneimυ. (27)

Here i =
√
−1, P ∈ R2 and G ∈ R2×2 is the amplification matrix. Equation (26) is substituted into

Equation (25) to obtain the value of the amplification G. After tedious algebra, we obtain the value of G
as follows

G =
[A + MD

A−MD

]
(28)

Matrix M is a skew symmetric matrix, and therefore both the matrices A + MD and A−MD have
the same eigen values. Thus, the maximum value of |G| = 1. Hence, the linearized Scheme (25) is
unconditionally stable.

4. Numerical Results and Test Problems

Three test problems, including the single soliton, interaction of two solitons and birth of
standing soliton, are presented to evaluate the effectiveness and performance of the proposed method.
The accuracy of the proposed method is examined using the error norms L2andL∞ and conservation
laws defined as

L2 = ||uexact
− uN ||2 =

√
h

N∑
k=0

∣∣∣uk
exact − (uN)k

∣∣∣2,

L∞ = ||uexact
− uN ||∞ = max

0≤k≤N

∣∣∣uk
exact
− (uN)k

∣∣∣. (29)

Moreover, Equation (1) must satisfy the two conservation laws

I1 =
b∫

a
|u|2dx,

I2 =
b∫

a

(
|ux|

2
−

1
2 q|u|4

)
dx.

(30)

4.1. Single Soliton Solution to the NLS Equation

The analytical single soliton solution to the NLS equation is given as [2]:

u(x, t) = β


√

2
q

expi
[1
2

Sx−
1
4

(
S2
− β2

)
t
]
sech(βx− βSt), (31)

where S is the speed of the soliton solution whose magnitude depends on the parameter β.
The numerical solution is computed using the following parameters: q = 2, S = 4, β = 1,

xL = −20, and xR = 20. The conservative quantities I1 and I2 and error norms L∞ and L2 are calculated.
Numerical simulations were carried out at different space steps and time steps for comparison with the
published results of the previous methods. The results are documented in Tables 1 and 2. The numerical
simulations and the absolute numerical error are shown at different times in Figure 1.

Table 2 displays a comparison between the results obtained by the proposed method and published
results. The results of the proposed method are in agreement with analytical solutions within very
satisfactory limits, and the proposed method exhibits the same results as the quintic B-spline collocation
method and quadratic B-spline method, as can be seen from the comparison in Table 2. We found good
results even for large step sizes. It is noted that the error norms of the Galerkin cubic B-spline are lower
than Explicit method [3], Implicit/explicit [3], and Split-step Fourier method [3] when we compare the
results of the proposed method with those referenced in [1,4,19].
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Table 1. Error norms and conservation laws for single soliton: with h = 0.04, q = 2, S = 4, β = 1.

∆t = 0.0025 ∆t = 0.005

t L∞ L2 I1 I2 L∞ L2 I1 I2

0.5 0.0000896 0.0000914 2.0 7.33333332 0.00018 0.00018 2.0 7.33333327
1 0.0000896 0.0000914 2.0 7.33333332 0.00018 0.00018 2.0 7.33333327

1.5 0.0000896 0.0000914 2.0 7.33333332 0.00018 0.00018 2.0 7.33333327
2 0.0000896 0.0000914 2.0 7.33333331 0.00018 0.00018 2.0 7.33333327

2.5 0.0000896 0.0000914 2.0 7.33333330 0.00018 0.00018 2.0 7.33333325
3 0.0000896 0.0000914 2.0 7.33333223 0.00018 0.00018 2.0 7.33333219

3.5 0.0000896 0.0000914 1.99999 7.33327430 0.00018 0.00018 1.99999 7.33327425Fluids 2019, 4, x FOR PEER REVIEW 9 of 15 
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Table 2. Comparisons of the present results with those of Taha et al. [20]., amplitude = 1 at time = 1.

h ∆t L∞ L2 I1 I2 L∞ [20]

0.05 0.0025 0.0001086 0.0001106 2.0 7.33333330 0.008
0.05 0.000625 0.0000272 0.0000277 2.0 7.33333333 0.006
0.05 0.001 0.0000435 0.0000443 2.0 7.33333333 0.006
0.08 0.002 0.0000628 0.0000639 2.0 7.33333330 0.005

0.3125 0.00026 0.0003174 0.0004973 2.00001 7.33332035 0.005
0.3125 0.020 0.0024417 0.0038252 2.00010 7.33320599 0.005

0.05 0.0005 0.0000217 0.0000221 2.0 7.33333333 0.008
0.3125 0.0026 0.0003174 0.0004973 2.00001 7.33332035 0.006

The rate of convergence for spatial and temporal directions is calculated using the formula [21]:

rate of convergence ≈ log2
error(2h, 2∆t)
error(h, ∆t)

,

where error(2h, 2∆t) is the error norms L∞ and L2 in spatial and temporal directions. The error norms
L∞, L2 and order of convergence rate at time t = 1 are shown in Table 3.

Table 3. Rate of convergence in spatial and temporal directions at t = 1 with h = ∆t.

h L∞ Order L2 Order

0.050000 0.0020492 − 0.0019146 -
0.025000 0.0005730 1.83 0.0005302 1.85
0.012500 0.0001507 1.93 0.000139 1.93
0.001625 0.0000386 1.97 0.0000356 1.96
0.003125 0.00000965 2.00 0.0000089 2.00

In Table 4, the results are documented for when the soliton amplitude is equal to 2. It was
found that the results of the error norms at different times increase very slightly, as shown in Table 4.
One soliton solution with amplitude = 2 is calculated, and simulations are shown in Figure 2.

Table 4. Error norms and conservation laws for single soliton with h = 0.05, ∆t = 0.0025 h = 0.05,
q = 2,S = 4, β = 2.

t L2 L∞

0.5 0.0005580 0.0007595
1 0.0005580 0.0007595

1.5 0.0005580 0.0007595
2 0.0005580 0.0007595

2.5 0.0005580 0.0007595
3 0.0005580 0.0007595

3.5 0.0005580 0.0007595
4 0.0005580 0.0007595

Table 5 displays the approximate results obtained using the proposed method compared with the
published methods listed in the reference for single soliton when the amplitude is 2. These results are
in good agreement with the analytical solution.
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Table 5. Comparisons of single soliton with those of Taha et al. [20], amplitude = 2 at time = 1.

h ∆t L∞ L2 L∞ [20]

0.02 0.0025 0.0003909 0.0002859 0.0011
0.066 0.002 0.0009658 0.0007168 0.006
0.02 0.0001 0.0000156 0.0000114 0.009
0.03 0.00022 0.0000143 0.0000105 0.008
0.1 0.0025 0.0016852 0.0012732 0.0004

0.1563 0.0011 0.0010143 0.0007852 0.008

4.2. The Interaction of Two Solitons for the NLS Equation

In the second problem, we discuss the interaction of two solitons moving in opposite directions,
have the same amplitude of magnitude 1 with initial conditions as follows [16,17,20]

u(x, 0) =
2∑

k=1
uk(x, 0),

uk(x, 0) = βk

(√
2
q

)
expi

[
1
2 S(x− xk)

]
sech(βk(x− xk)).

(32)

where βk, q and xk are constants.
The numerical solution is computed by using the following parameters x1 = 10, x2 = −10,

q = 2, β1 = β2 = 1, S1 = −4 and S2 = 4. The first soliton is placed at x = 10 and is moving to the left
with speed 4, and the second soliton is placed on the other side at x = −10, traveling to the right with
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speed 4. Both solitons are moving in opposite directions, and they collide and separate. The interactions
of these two solitons are visualized in Figure 3. The error norms L∞ and L2 are computed at different
times and at different space steps and time steps. The calculated results are tabulated in Table 6.Fluids 2019, 4, x FOR PEER REVIEW 12 of 15 

 
Figure 3. Interaction of two solitons, amplitude = 1 at different space and time steps. 
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Figure 3. Interaction of two solitons, amplitude = 1 at different space and time steps.

The error norms L∞ and L2 are very small compared with those of Taha et al. [20], as shown in
Table 7. It can be clearly seen that the error norms L∞ and L2 obtained by the present method are
smaller than those of previous methods [20], as shown in Table 7.
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Table 6. Two-solitons, amplitude = 1 at different space and time steps.

t h ∆t L∞ L2

1 0.0667 0.0025 0.0001601 0.0002367
1.5 0.133 0.01 0.0012135 0.0018299
2 0.133 0.01 0.0011711 0.0017397

3.5 0.133 0.01 0.0012135 0.0018299
4.5 0.133 0.01 0.0012144 0.0018317
0.5 0.625 0.005 0.0018529 0.0030593
1 0.625 0.005 0.0017864 0.0030560
1 0.05 0.001 0.0000486 0.0000716

1.5 0.05 0.001 0.0000485 0.0000715
3 0.5 0.0036 0.0011024 0.0017556
3 0.5 0.0025 0.0007655 0.0012192
5 0.1 0.0025 0.0002342 0.0003495

Table 7. Comparisons of two solitons with Taha et al. [20], amplitude = 1.

Galerkin Cubic B-spline (Present Method) Taha et al. [20]

t h ∆t L∞ L∞

1.6 0.05 0.001 0.0000485 0.00173
1.8 0.07 0.07 0.0047374 0.00158
1 0.05 0.0025 0.0001214 0.00096
1 0.05 0.001 0.0000486 0.00141
1 0.625 0.0071 0.0025367 0.00122
1 0.130 0.0036 0.0004304 0.00141

4.3. Birth of Standing Soliton with the Maxwellian Initial Condition

If
∞∫
−∞

u(x, 0) ≥ π, (33)

a soliton should appear over time with initial values greater than π, otherwise the soliton will decay
away [22].

Consider the birth of soliton with the Maxwellian initial condition given by [16]:

u(x, 0) = A exp
(
−x2

)
, (34)

The values of all parameters are chosen to be h = 0.08, ∆t = 0.004 and q = 2 for the domain
[−45, 45] to exhibit the birth of a soliton. The numerical simulations are shown at different times for
the values of A = 1.78 over the domain [−45,45] in Figure 4. With A = 1, the soliton decays away
as expected.

The conserved quantities I1 and I2 are computed using the Maxwellian initial condition (34).
Analytical conserved quantities can be computed as:

I1 = A2
√
π
2 = 3.97100051267043,

I2 = 1
4 A2

(
2
√

2− qA2
)√
π = −4.92561762132093,

The conserved quantities I1 and I2 are tabulated in Table 8. The numerical results obtained are
compared with the published results of Mokhtari et al. [11] and the exact solution, as shown in Table 8.
The proposed method conserves I1 to 7 decimal places and I2 to 3 decimal places.
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Table 8. Comparison of conserved quantities of the birth of a standing soliton with Mokhtari et al. [11],
h = 0.08, ∆t = 0.004 and q = 2.

Galerkin Cubic B-spline (Present Method) Mokhtari et al. [11]

t I1 I2 EI1 EI2 EI1 EI2

1 3.97100052134110 −4.925146 8.67067 × 10−9 4.7 × 10−4 3.5 × 10−11 4.8 × 10−10

2 3.97100050351461 −4.925347 2.08442 × 10−8 2.7 × 10−4 3.8 × 10−11 6.9 × 10−10

3 3.97100050291892 −4.925138 2.02485 × 10−8 4.8 × 10−4 1.1 × 10−10
−6.4 × 10−9

4 3.9710005812876 −4.925325 6.86172 × 10−8 2.9 × 10−4
−2.0 × 10−8

−4.5 × 10−6

5 3.97100055661924 −4.925367 4.39488 × 10−8 2.5 × 10−4
−9.2 × 10−7

−4.7 × 10−5

6 3.97100053521529 −4.925432 2.25449 × 10−8 1.9 × 10−4
−6.0 × 10−6

−9.8 × 10−5

5. Conclusions

The approximate solution of the NLS equation was investigated using the Galerkin finite element
method with a cubic B-spline shape function. Three numerical problems, including single soliton,
interaction of two solitons, and birth of a standing soliton with the Maxwellian initial condition,
were demonstrated to evaluate to the performance and accuracy of the method. Furthermore,
we simulated the numerical solution by choosing different parameters for motion of the single soliton,
the interaction of two solitons and the birth of the standing soliton. The error norms L∞ and L2 and
conservation laws I1 and I2 were determined and compared with published results [11,16,17,20]. It was
seen that all of our results for the problems were computed to be reasonably low, and were found to be
in good agreement with the analytical solution. The present method was shown to be unconditionally
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stable. The method has almost a second-order convergence. In conclusion, the proposed scheme with
cubic B-spline presents an acceptable result for the NLS equation.
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