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Abstract: We present examples of Padé approximations of the α-effect and eddy viscosity/diffusivity
tensors in various flows. Expressions for the tensors derived in the framework of the standard
multiscale formalism are employed. Algebraically, the simplest case is that of a two-dimensional
parity-invariant six-fold rotation-symmetric flow where eddy viscosity is negative, indicating
intervals of large-scale instability of the flow. Turning to the kinematic dynamo problem for
three-dimensional flows of an incompressible fluid, we explore the application of Padé approximants
for the computation of tensors of magnetic α-effect and, for parity-invariant flows, of magnetic eddy
diffusivity. We construct Padé approximants of the tensors expanded in power series in the inverse
molecular diffusivity 1/η around 1/η = 0. This yields the values of the dominant growth rate to
satisfactory accuracy for η, several dozen times smaller than the threshold, above which the power
series is convergent. We do computations in Fortran in the standard “double” (real*8) and extended
“quadruple” (real*16) precision, and perform symbolic calculations in Mathematica.

Keywords: incompressible fluid; magnetic mode; alpha-effect; eddy diffusivity; eddy viscosity;
Padé approximant

1. Introduction

Power series expansion of analytic functions is perhaps the most powerful tool of numerical
analysis. Let us just note that most algorithms for the numerical integration of ordinary differential
equations, such as the Runge–Kutta methods, rely on Taylor series expansions for derivation.
The truncated series—i.e., polynomials—are easy to compute, and thus provide an important basic
algorithm for the evaluation of many analytic functions.

However, there are two caveats. One is related to the finite precision of computations, stemming
from the hardware architecture and employed in the overwhelming majority of computer codes.
A well-known example of the resultant failure of a computational procedure is the straightforward
attempt to compute an exponent of a real large negative number by this technique [1]. Mathematically,
this does not present any difficulty—the large individual terms in the Taylor expansion around zero are
guaranteed to mutually cancel out and yield the final result, which is less than unity. For finite-precision
computations, however, the cancellation is no longer guaranteed, and the initial growth of individual
terms can result in the ultimate loss of accuracy.

The other stems from the finiteness of the radius of convergence of most power series encountered
in computational practice. A complementary technique is then needed to analytically continue
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a function defined by the power series outside its circle of convergence. This can be achieved by
constructing the so-called Padé approximants [2–4], i.e., an implementation of the continuation in the
form of the ratio of two polynomials. Let us cite the words of appraisal in [5]: “Padé approximation
has the uncanny knack of picking the function you had in mind from among all the possibilities.
Except when it doesn’t! That is the downside of Padé approximation: it is uncontrolled. There is,
in general, no way to tell how accurate it is, or how far out in x it can usefully be extended. It is
a powerful, but in the end still mysterious, technique”.

A no less mysterious notion is that of eddy diffusivity [6], also known as eddy (or turbulent)
viscosity when fluid viscosity, the source of diffusion in hydrodynamics, is considered. Like the
magnetic α-effect and anisotropic kinetic alpha (AKA)-effect, eddy diffusivities are often encountered
in magnetohydrodynamics when the generation of large-scale magnetic fields by flows of electrically
conductive fluids is considered. At first sight, it is in direct contradiction with the second principle of
thermodynamics. Of course, in fact no physical laws are violated. Both notions just describe the mean
influence of the small scales on large-scale structures.

According to the modern paradigm, cosmic magnetic fields (such as the solar or geomagnetic
field) exist due to the dynamo processes in the moving, electrically conductive medium (such as melted
rocks in the outer Earth’s core) [7]. The generating flows are typically turbulent and feature a vast
hierarchy of spatial and temporal scales. Small-scale fluctuations of the flow (called “cyclonic events”
by Parker) give rise to small fluctuations in the magnetic field. The interaction of the small-scale
components of the magnetic field and the flow velocity produces a mean electromotive force (e.m.f.)
that may have a non-zero component parallel to the mean magnetic field, and this can be beneficial
for magnetic field generation [8]. The part of the mean e.m.f. linear in the mean field gives rise to
the so-called magnetic α-effect. If the flow is parity-invariant, the α-effect disappears and the impact
of yet smaller spatial scales becomes apparent; the mean e.m.f. is then a linear combination of the
first-order spatial derivatives of the mean field, giving rise to eddy (turbulent) diffusivity. These
physical ideas are treated under various simplifying assumptions in mean-field electrodynamics [9,10],
and relying only on the first principles, by asymptotic methods of homogenization of elliptic operators
in magnetohydrodynamic multiscale stability theory [11–17]. Weakly nonlinear stability problems are
also amenable to these methods [18].

The analysis of equations makes it evident that eddy viscosity/diffusivity acquires unusual
properties because it acts on mean fields only, i.e., essentially an open physical system is considered.
In fact, in this class of MHD systems, the inverse energy cascade is important, with energy proliferating
from small scales toward large ones; the source of energy for the developing large-scale magnetic,
hydrodynamic, or combined MHD perturbation is the forcing applied to maintain the perturbed (also
sometimes called basic) fluid flow.

Evaluation of the α-effect and eddy diffusivity tensors involves solving the so-called auxiliary
problems, which are linear problems for the respective elliptic operators of linearization. In the
large-scale dynamo problem, computing the magnetic α-effect tensor requires considering three such
problems; the number increases to 12 when the tensor of eddy diffusivity is sought (unless auxiliary
problems for the adjoint operator come into play, decreasing the number of auxiliary problems to
be treated to just 6, see, e.g., [19,20]). Interesting results (e.g., instability to large-scale perturbation
or dynamos) are typically obtained for relatively small molecular viscosity or magnetic diffusivity.
Consequently, high spatial resolution is needed when solving the auxiliary problems, which makes the
problems computationally intensive. However, the tensors can be easily expanded in the respective
Reynolds number (i.e., in the inverse viscosity or diffusivity, provided the size of the flow periodicity
box and the flow velocity are order unity) when it is small, i.e., for large viscosities and diffusivities.
When the parameter tends to the critical value for the onset of the small-scale instability (i.e., in the
dynamo context, to the value for which the generation of small-scale magnetic fields starts), the tensors
usually exhibit singular behavior [20–23] of a simple pole type, bounding from above the radius of
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convergence of the series. This suggests trying Padé approximants for computing the tensors and the
respective large-scale magnetic field/instability growth rates.

Here, we report numerical experiments exploring these ideas. The paper is organized as follows.
In Section 2, we apply the Padé approximants techniques for evaluation of the eddy viscosity in
a two-dimensional flow with two symmetries, in whose presence the eddy viscosity tensor reduces to
a scalar. In view of the first caveat discussed in the beginning of this introduction, we have chosen
to perform the calculations in precise arithmetics allowing an arbitrary number of correct digits; for
this purpose, we have used the programming language Mathematica, giving an opportunity to make
symbolic computations. In Section 3, we revert to the standard “double precision” computations
(real*8, in Fortran speak) of the magnetic α-effect tensor, using the “quadruple precision” (real*16)
computations for comparison. In Section 4, we again employ the symbolic capabilities of Mathematica
to evaluate the magnetic eddy diffusivity tensor. Our findings are summarized in Section 5.

2. Calculation of Eddy Viscosity

No truly two-dimensional flows exist in nature, but they mimick properties of natural objects,
such as the atmosphere or ocean [24–26]. We analyze the eddy viscosity tensor, εijk` [11], of
a two-dimensional flow of incompressible fluid that has two symmetries: parity invariance (S1)
and six-fold rotation symmetry (S2).

Since an S1-symmetric flow has a center of symmetry, it cannot possess the large-scale anisotropic
kinetic α-effect [27]. This is important because in the presence of the AKA effect, the large-scale
dynamics are essentially dispersive and non-diffusive, concealing the impact of the eddy viscosity.
The symmetry S2 implies the isotropy of fourth-order tensors (see, for instance, [28]), in particular,
εijk` = νEδijδk`, where the scalar νE is the (standard) eddy viscosity and δmn is the Kronecker symbol.
Although the assumption that a flow features the two symmetries is mathematically convenient, it
may be non-realistic when considering natural or engineering problems [29].

Two-dimensional flows endowed with the symmetries S1 and S2 can be constructed as follows.
A space-periodic flow is assumed, the periodicity cell being the rectangle

[0, L1]× [0, L2] 3 x = (x1, x2) , L1 =
√

3L2 = 2π .

Its stream-function Ψ(t, x) is then a sum of Fourier modes whose wave vectors are p(2, 0) + q(1,
√

3),
where p and q are integers. Any two such modes that have wave vectors mutually related by rotations
by π/3 must both be involved in the sum with the same real amplitude.

We begin this section by recalling the expression for scalar eddy viscosity in terms of the solutions
to two auxiliary problems and the analytical framework for evaluating the expansion of the eddy
viscosity tensor in powers of the inverse of the molecular viscosity. We carry on by recalling the
standard terminology and definitions of Padé approximants to a series. Finally, we discuss our results
and conclusions.

2.1. Eddy Viscosities and Multiscale Techniques

For parity-invariant and six-fold rotation-symmetric flows of an incompressible fluid, eddy
viscosities were calculated in [11] by multiscale techniques. They can be expressed in terms of solutions
to two auxiliary problems, which can be solved analytically only in special cases [11] (e.g., if the flow
depends only on a single spatial coordinate).

Briefly, the eddy viscosity in an isotropically forced two-dimensional flow is calculated as
follows [11,30]. In terms of the stream-function Ψ(t, x), the two-dimensional forced Navier–Stokes
equation for incompressible fluid takes the form

∂t∇2Ψ + J(∇2Ψ, Ψ) = ν∇2∇2Ψ + ∂ f1/∂x2 − ∂ f2/∂x1 .
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Its solution, Ψ, defines a basic flow. Here, J(g1, g2) = (∂g1/∂x1)(∂g2/∂x2)− (∂g1/∂x2)(∂g2/∂x1) is
the Jacobian determinant of functions g1(x1, x2) and g2(x1, x2), the operator ∇2 = ∂2/∂x2

1 + ∂2/∂x2
2 is

the Laplacian, ν the kinematic molecular viscosity, and f = ( f1, f2) the external force. (In our numerical
examples, the flow norm and the size of the small-scale periodicity cell are order unity; thus, the inverse
molecular viscosity can be regarded as the local Reynolds number, which is the key dimensionless
parameter of the problem.) Now assume that the basic flow possesses the symmetries S1 and S2.
Then the (scalar) eddy viscosity coefficient, νE = νE(Ψ, ν), which depends only on the basic flow and
molecular viscosity, is [30]

νE(Ψ, ν) = ν−
〈(

Q + 2
∂S
∂x1

)
∂Ψ
∂x2

〉
. (1)

Here, the angle brackets denote the average over the periodicity cell,

〈g(x1, x2)〉 =
1

L1L2

∫ L1

x1=0

∫ L2

x2=0
g(x1, x2)dx2 dx1 ,

the scalar functions Q(x1, x2) and S(x1, x2) are solutions to two auxiliary problems

GQ =
∂∇2Ψ

∂x2
, GS = Q

∂∇2Ψ
∂x2

+ 2J
(

Ψ,
∂Q
∂x1

)
−∇2Q

∂Ψ
∂x2

+ 4ν
∂∇2Q

∂x1
, (2)

and G denotes the linearization of the Navier–Stokes equation around Ψ,

G : ψ 7→ J(∇2ψ, Ψ) + J(∇2Ψ, ψ)− ν∇2∇2ψ .

We restrict it to zero-mean functions of the same space periodicity as the basic flow. In this functional
space, we can define the inverse Laplace operator, which we denote as ∇−2. A field G from this space
can be expressed as a Fourier series

G(x1, x2) = ∑
p,q∈Z

Ĝp,q exp(2πi(px1/L1 + qx2/L2)) , (3)

where 〈G〉 = Ĝ0,0 = 0 . The equation ∇2F = G ⇔ F = ∇−2G can now be readily solved: given
〈F〉 = 0, we find

∇−2G = −(2π)−2 ∑
p,q∈Z\{0}

Ĝp,q

(p/L1)2 + (q/L2)2 exp(2πi(px1/L1 + qx2/L2)) . (4)

The existence of a deterministic time-independent space-periodic flow, which has an isotropic
negative eddy viscosity when the molecular viscosity is below a critical value, was established in [31].
The so-called decorated hexagonal flow (DHF), on which we will also focus here, is

Ψ(x1, x2) =
[
− cos 2x1 − cos(x1 +

√
3x2)− cos(x1 −

√
3x2)

+ cos(4x1 + 2
√

3x2) + cos(5x1 −
√

3x2) + cos(x1 − 3
√

3x2)

− cos 4x1 − cos(2x1 + 2
√

3x2)− cos(2x1 − 2
√

3x2)

+ cos(4x1 − 2
√

3x2) + cos(5x1 +
√

3x2) + cos(x1 + 3
√

3x2)
]
/2 .

(5)

The phenomenon of negative eddy viscosity is quite common among two-dimensional
divergenceless space-periodic basic flows with the symmetries S1 and S2: about 1/3 of such flows
feature negative eddy viscosity for sufficiently low molecular viscosity [30]. The auxiliary problems
(2) can be solved either numerically by spectral methods or by expanding in powers of ν−1 to high
orders and afterwards extending analytically (relying on their meromorphy [30]) beyond the disk of
convergence. We examine the latter method, enabling us to perform all calculations exactly.
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2.2. Eddy Viscosity Expansion in Powers of ν−1

Let us expand (1):

νE(Ψ, ν) = ν +
∞

∑
n=1

ν
(n)
E (Ψ)ν−n. (6)

To calculate ν
(n)
E , we expand the solutions Q and S to (2) in Maclaurin series in ν−1:

Q =
∞

∑
n=1

Q(n)ν−n, S =
∞

∑
n=1

S(n)ν−n.

Substituting the series into (1) and integrating by parts yields

ν
(n)
E (Ψ) =

〈
−Q(n) ∂Ψ

∂x2
+ 2S(n) ∂2Ψ

∂x1∂x2

〉
. (7)

Here, Q(1) = −∇−2(∂Ψ/∂x2) and S(1) = −4∇−2(∂Q(1)/∂x1) , and the subsequent terms satisfy the
recurrence relations:

Q(n) = BQ(n−1) , (8)

S(n) = BS(n−1) −∇−2∇−2

[
Q(n−1) ∂∇2Ψ

∂x2
+ 2J

(
Ψ,

∂Q(n−1)

∂x1

)
−∇2Q(n−1) ∂Ψ

∂x2
+ 4

∂∇2Q(n)

∂x1

]
, (9)

where the operator B is defined as

B : f 7→ ∇−2∇−2
[

J(∇2 f , Ψ) + J(∇2Ψ, f )
]

.

Since here we consider parity-invariant flows, their stream-functions being even, i.e., Ψ(−x) = Ψ(x),
the series (6) involves only odd powers of ν−1 [30], i.e., ν

(n)
E = 0 for all even n.

By definition, the [L/M] Padé approximant to a series, whose first m ≥ L + M + 1 terms are
known, is the ratio of a polynomial of degree ≤ L to a polynomial of degree ≤ M, such that the first
L + M + 1 terms of the expansion of the ratio coincide with the respective terms of the series.

We use Padé approximants to reconstruct the dependence of the eddy viscosity on the inverse
molecular viscosity employing the expansion (6). The Padé approximation techniques can also be
naturally applied for exploring the poles of the eddy viscosity. A pole on the real axis can usually be
linked to the onset of linear instability to small-scale perturbations, or sometimes (if it appears again
on decreasing ν > 0) to its cessation.

2.3. Results of Calculations

The performance of present-day computers and efficiency of symbolic programming software
gives an opportunity to calculate the coefficients (7) using recurrence relations (8)-(9) and construct
the Padé approximants exactly. All calculations reported in this section are performed with full
precision by Mathematica [32]. Table 1 shows some of the first twenty non-zero coefficients ν

(n)
E

(n = 1, 3, 5, ..., 39) for the DHF. One of the reasons for performing full precision symbolic computations
with Mathematica has been a hope of discovering useful relations between the coefficients of the
approximants. Unfortunately, none are visible in the data in Table 1.

We truncate the series (6) at orders up to 39, even terms missing. Roots of their Padé approximants
quickly stabilize near ν = ν? ≈ 0.58 (see Figure 1), indicating a transition to negative eddy viscosity at
lower molecular viscosities. The root ν? is simple; a sharpened estimate is 1/ν? = 1.72144± 10−5.
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Table 1. The first 39 non-zero coefficients of (6) for the decorated hexagonal flow (DHF, prime
decomposition where presented). The first 5 significant figures of these coefficients are given in [31].
”a ≪ p ≫ c” denotes a natural number containing p decimal digits between a and b.

n Coefficient ν
(n)
E (Exact Rational Number)

1 3
22

3 − 3×5×11×1931×80491
29×74×132×192

5 − 3×532×222967×1994517983033813651288306079222192539
219×52×79×136×197×313×372×433×612

7 33×23×17401×11608063×570396658307516795186040829874710499×595146062519802577066082838776447096016784218965582671080441286999
225×52×717×1310×1911×315×377×435×616×673×733×793×973×1032×1092

9 − 9606359879 ≪188≫ 5777697637
233×52×724×112×1314×1915×317×3711×437×6110×675×735×795×975×1033×1096×1273×1393×1513×1572×1632

11 − 7129561983 ≪324≫ 7108258721
8493879641 ≪326≫ 4312960000

...
...

39 − 1648936106 ≪9785≫ 2091564067
3775138782 ≪9788≫ 0000000000

Figure 1. Padé approximants (vertical axes) [L/L]νE (ν) (top) and [L/L]νE/ν(ν
−1) (bottom) for 6 ≤ L ≤

14 step 2. Horizontal axes: ν (top), ν−1 (bottom). In the bottom panel, we extend ν to negative values
on purpose to highlight that the Maclaurin expansion of νE

(
ν−1) /ν is an even function of ν−1.
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These results indicate that Padé approximants are a reliable alternative to other methods for the
calculation of the point of the onset of large-scale instability in this type of flow. Not only do they
furnish stable estimates (provided the approximated function is meromorphic and the series is long
enough), but they also serve as precursors to future work. An illustration is Figure 1 (right), where
the [14/14] approximant (as many others) exhibits a singular behavior near 1/ν ≈ 2.81 apparently
related to the onset of linear instability to small-scale perturbations. The non-monotonicity of the eddy
viscosity as a function of ν can be regarded as a manifestation of the complexity of the two-dimensional
turbulent flow.

3. Computation of the Magnetic α-Effect Tensor

As we have seen in the previous section, the use of Padé expansions for reconstructing the
dependence of eddy viscosity on the molecular one is possible and does not require very high degrees
of the polynomials involved, at least for moderate (not very small) molecular viscosities. However,
for 3D fields, arbitrary-precision symbolic calculations cannot be regarded as a practical realization of
the approximation algorithm. Here, we construct Padé approximants for evaluation of the magnetic
α-effect tensor using arithmetics of floating point numbers of the conventional double (real*8) and
the extended quadruple (real*16) precision. The problem now at hand is to construct approximations
applicable for small magnetic molecular diffusivities.

3.1. The Multiscale Formalism Revealing the Magnetic α-Effect

We review here the multiscale expansions [17] describing the kinematic generation of large-scale
magnetic fields by small-scale zero-mean space-periodic steady flows. Our magnetic modes depend
on two three-dimensional spatial variables, the fast, x, and slow, X = εx, one (the flow v depends
exclusively on x). A magnetic mode b is an eigenfield of the magnetic induction operator L :

Lb = λb , (10)

L : b 7→ η∇2b +∇× (v× b) . (11)

Here, η is the magnetic molecular diffusivity and Re λ the growth rate of the mode b. Both the mode
and flow are solenoidal.

The scale ratio ε is a small parameter of the problem, in which the magnetic mode b and its growth
rate are expanded:

b =
∞

∑
n=0

bn(X, x) εn , (12)

λ =
∞

∑
n=0

λnεn . (13)

By substituting the expansions into (10) and the solenoidality conditions, we derive a hierarchy of
equations for the coefficients in (12) and (13).

As in the previous section, we denote by angle brackets the mean over the periodicity cell T3 in
the fast variables and by the braces, the fluctuating part:

〈f〉 = (2π)−3
∫
T3

f(X, x) dx =
3

∑
k=1
〈f〉k ek , {f} = f− 〈f〉 .

Here, ek are unit Cartesian coordinate vectors.
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The relevant solution to the first (order ε0) equation Lb0 = λ0b0 is λ0 = 0 and a linear combination
b0 = ∑3

k=1 〈b0〉k sk of small-scale solenoidal neutral magnetic modes sk(x) that are solutions to the
three so-called auxiliary problems of type I:

Lsk = 0, 〈sk〉 = ek. (14)

Averaging the second (order ε1) equation,

Lb1 + 2η(∇ · ∇X)b0 +∇X × (v× b0) = λ1b0, (15)

we obtain an eigenvalue problem

∇X × (A 〈b0〉) = λ1 〈b0〉 , ∇X · 〈b0〉 = 0 (16)

(the subscript X denotes differentiation in the slow variables). Here, A is the tensor of the magnetic
α-effect. The kth column of this 3× 3 matrix is

Ak = 〈v× sk〉 , (17)

in agreement with Parker’s [8] concept of the interaction of fine structures of the flow, v, and magnetic
field, ∑3

k=1 〈b0〉k {sk}, giving rise to a mean e.m.f., A 〈b0〉, linear in the large-scale magnetic field 〈b0〉.
For space-periodic mean fields

〈b0〉 = Beiq·X, B · q = 0, (18)

where q is an arbitrary unit vector, straightforward algebra [20] yields solutions to the eigenvalue
problem (16):

λ1±(q) =
i
2

(
(A2

3 −A3
2)q1 + (A3

1 −A1
3)q2 + (A1

2 −A2
1)q3

)
±
√

a, a = q · (det sA) sA−1q. (19)

Here, sAl
k = (Al

k +Ak
l )/2 are entries of the symmetrized α-tensor sA = (A+A∗)/2.

For a ≤ 0, the α-effect just sustains harmonic oscillations of the mean magnetic field in the slow
time T1 = εt. When a > 0, the slow-time growth rate Re λ1(q) =

√
a of the large-scale magnetic mode

depends only on the symmetrized tensor sA, whose eigenvalues αi are real. In the Cartesian coordinate
system, whose axes coincide with eigenvectors of sA, (19) takes the form

a = α1α2(q′3)
2 + α2α3(q′1)

2 + α1α3(q′2)
2,

where q′i are components of q in this basis. Thus,

γα ≡ max
|q|=1

Re λ1±(q) =
√

max(α1α2, α2α3, α1α3) (20)

is the maximum slow-time growth rate of large-scale magnetic modes generated by the α-effect. While
the entries of the α-effect tensor, Ak

l , are smooth functions of η, the graph of γα (20) has cusps at the
points η, where α1 < α2 = 0 < α3 [20] (see, e.g., two such cusps in Figure 2).

When a 6= 0 and the kernel of the magnetic induction operator L does not involve small-scale
zero-mean modes (generically both conditions are satisfied), all terms in the expansions (12) and
(13) can be determined from the hierarchy of equations obtained by substituting the series into the
eigenvalue Equation (10). If the symmetrized tensor sA is positively or negatively defined (and if the
spatial periodicity of the eigenfunction is compatible with that of the flow), then the series (12) and
(13) are summable [16] for sufficiently small ε and constitute an analytical in the ε eigensolution for
the large-scale magnetic induction operator; a unique ε-parameterized branch of the eigenvalues (13)
originates from any simple eigenvalue λ1 of the α-effect operator.
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3.2. Padé Approximation

The modes sk (and consequently, elements of the magnetic α-effect tensor) are functions of
molecular eddy diffusivity η, meromorphic in this parameter. (By contrast, the slow-time growth rates
of modes generated by the α-effect are not, because the square root present in (19) gives rise to branch
points.) A power series expansion of sk in η−1 for large η can be constructed like in the hydrodynamic
problem considered in the previous section. We divide (14) by η to obtain

∇2sk = −η−1∇× (v× sk).

Consequently, the coefficients in the expansion

sk =
∞

∑
n=0

s(n)k η−n (21)

satisfy the recurrence relations

s(0)k = ek, s(n)k = −∇−2
(
∇× (v× s(n−1)

k )
)

for n ≥ 1 (22)

(cf. (5.14)–(5.15) in [13]). Here, ∇−2 denotes the inverse Laplacian in the fast variables acting in the
functional space of zero-mean fields. (Actually, we consider the problem for a flow, whose r.m.s.
velocity is unity; the size of the periodicity box also being order unity, the inverse molecular diffusivity
η−1 can be regarded, like in the hydrodynamic case, to be equal to the local magnetic Reynolds number,
the dimensionless parameter characterizing the mathematical properties of the problem. (21) can thus
be understood as an expansion in a small Reynolds number.) These recurrence relations can be used
to compute the coefficients in (21) by pseudospectral methods. It must be noted that mathematically,
they are perfectly suitable for numerical work: indeed, the presence of the inverse Laplacian in the
second relation (22) suggests that on increasing the number n of the coefficient s(n)k , they become
smoother and their energy spectrum decay is steeper. This is in sharp contrast, for instance, with the
recurrence relations for the Lagrangian time-Taylor coefficients in the expansions of solutions to the
Euler equation for incompressible fluid flow [33].

It is straightforward to determine the radius of convergence of the series (21), ρ, regarded as
a function of 1/η. The recurrence relations (22) involve the operator

M : s 7→ −∇−2 (∇× (v× s)) (23)

acting in the functional space of solenoidal zero-mean space-periodic fields. Since it is compact, its
spectrum consists of a countable set of eigenvalues µi, tending to zero. Consequently, ρ ≥ 1/ maxi |µi|;
generically the equality holds, but ρ > 1/ maxi |µi| if the expansion of s(1)k in the basis of eigenfunctions
of the operator M does not involve eigenfunctions associated with any eigenvalue µi such that
|µi| = maxi |µi|. Therefore, generically the radii of convergence of the series for all the three sk are
the same.

Clearly, the radius of convergence of the ensuing series for the α-effect tensor (17),

Ak =
∞

∑
n=1

A
(n)
k η−n, A

(n)
k =

〈
v× s(n)k

〉
, (24)

is not smaller than that of the series (21) for sk. Let us note a symmetry property of (24). Denote by the
superscript minus objects pertinent to the reverse flow −v:

L− : b 7→ η∇2b−∇× (v× b), L−s−k = 0,
〈
s−k
〉
= ek, A−k =

〈
−v× s−k

〉
. (25)
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The α-effect tensor A− for the reverse flow −v is obtained from the tensor A for v by transposition,
i.e., (A−k )l = (Al)k [20]. Since the recurrence relations (22) are linear in v,

s(n)k = (−1)n(s−k )
(n), (26)

where (s−k )
(n) denote the coefficients in the expansion of s−k in power series (21). This implies

(Al)
(n)
k = (A−k )

(n)
l =

〈
−v× (s−k )

(n)
〉

l
= (−1)n+1

〈
v× s(n)k

〉
l
= (−1)n+1(Ak)

(n)
l .

Therefore, the coefficients in the series (24) are symmetric matrices for odd n and antisymmetric ones
for even n. In other words, the symmetrized α-effect tensor sA involved in the computation of the
discriminant a in (19) is expanded in odd powers of η−1, and of the common imaginary part of λ1±(q)
in even powers; the latter expansion is not needed when computing just the growth rates.

3.3. Numerical Results

Here, we construct Padé approximants for the α-effect tensor (24) for a sample solenoidal flow
and compare the maximum growth rate values γα (20) obtained for the approximated tensor to those
computed directly at individual values of η by spectral methods.

For this purpose, a sample solenoidal flow has been synthesized as a Fourier series with
pseudo-random coefficients, corrected to make it solenoidal and zero-mean. It involves Fourier
harmonics for wave numbers not exceeding 10. The coefficients are scaled so that the energy spectrum
decays exponentially by 10 orders of magnitude and the r.m.s. velocity is unity.

Solutions to auxiliary problems have been computed by the code in [34] employing standard
pseudo-spectral methods. For η > 0.05, the problem was preconditioned by the operator (−∇2)−1/2,
readily available in the Fourier space. The resolution of 643 Fourier harmonics was used. Energy
spectra of the neutral modes sk decay for this flow by at least 9 orders of magnitude for the smallest
considered η = 0.035. The Lebesgue space L2 norms of s(n)k from n = 0 to n = 128 decay by 38 orders
of magnitude, and hence the power series (21) and (24) converge for η & 0.50.

3.3.1. Approximation by the Algorithm I

We have tried two approaches for the construction of Padé approximants of the entries of the
α-effect tensor. Here we discuss the results obtained by the algorithm proposed in [35].

Padé approximant [M/L] f of a function f (y) = ∑∞
n=0 f (n)yn is the ratio of two polynomials of

degrees M (numerator) and L (denominator), whose M + L + 1 first Taylor expansion coefficients
coincide with those of f . For the sake of argument, let us assume M ≥ L. Then L + 1 coefficients of the
denominator d(y) = ∑L+1

n=0 dnyn satisfy the linear system of equations of the form
f (M+1) f (M) ... f (M+2−L) f (M+1−L)

f (M+2) f (M+1) ... f (M+3−L) f (M+2−L)

...
f (M+L−1) f (M+L−2) ... f (M+2) f (M+1)

f (M+L) f (M+L−1) ... f (M+1) f (M)




d0

d1

...
dL−1

dL

 = 0. (27)

(finding the coefficients of the numerator upon solving (27) is straightforward; see [3,4] for details).
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Figure 2. Maximum slow-time growth rates γα (20) (vertical axis) of large-scale magnetic modes
generated by the α-effect as a function of the molecular diffusivity η (horizontal axis), computed using
the α-effect tensor, Padé-approximated by the algorithm in [35] for a varying tolerance tol. Thin solid
line: the dependence determined by computation of γα at individual η values (red solid circles) by
spectral methods (resolution 643 Fourier harmonics), thick dashed line: the approximate dependence.

In our case, the coefficients s(n) are obtained by iteratively applying the operator M (23). It is
compact, and its eigenvalues, except for a finite number of them, are below unity in absolute value. The
respective spectral components decay during the iterations according to the power law and sooner or
later reduce in magnitude below the accuracy of computations. Consequently, for large L the Toeplitz
matrix of size L× (L + 1) in the l.h.s. of (27) becomes numerically degenerate, i.e., its rank effectively
falls below L. To construct an approximant under such adverse numerical conditions, it was proposed
in [35] to compute the singular value decomposition of this matrix and to regard its effective rank as
equal to the number of singular values whose absolute value exceeds the given relative tolerance tol
(i.e., is not smaller than tol‖( f (1), f (2), ..., f (M+L−1), f (M+L))‖, where ‖ · ‖ is the standard Lebesgue
space L2 norm), decreasing the degrees of the polynomials involved in the Padé approximation, M and
L, by the number of the “missing” dimensions. To counter noise due to rounding errors, tol = 10−14

was often used in [35].
Beyond the poor spectral properties of the system of equations for the Padé coefficients, there

exist two other reasons for amplification of the numerical noise originally due to round-off errors:

• Pseudospectral methods used in the computation of space-periodic solutions sk to the auxiliary

problems (14) and their coefficients s(n)k (22) involve fast Fourier transforms. These algorithms are
very efficient. However, they operate by computing various linear combinations of the Fourier
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coefficients. Typically, at least for moderate molecular diffusivities, the energy spectra of these
fields decay fast. In a sum of a large coefficient with a small (in absolute values) one, a significant
part of the accuracy of the smaller coefficient is lost.

• Insufficiency of the spatial resolution can result in significant numerical errors. We may note that
while increasing the resolution improves solutions, it aggravates the FFT accuracy problems.

We have tried the algorithm in [35] for a set of tol values ranging between 10−10 and 10−20 using
the MATLAB procedure provided by the authors of [35]. We have computed 65 first coefficients of
the power series expansions of the symmetrized α-effect tensor entries (sAk)

(n)
l (which involve only

odd powers of 1/η; see Section 3.2) up to order η−129 terms with the spatial resolution of 643 Fourier
harmonics. The MATLAB procedure has been requested to construct the [63/64] Padé approximants
for each entry. The results are shown in Figure 2. We observe that the approximations of the maximum
growth rates γα are relatively accurate for tol = 10−12 and 10−16 for η & 0.1. This bound is roughly
5 times smaller than the minimal η for which the power series for sAl

k converge. Table 2 sheds light on
the reasons why the gain is unsatisfactory (for η ≥ 0.1 spectral computations of the α-effect, growth
rates for individual η’s are efficient): since the rank decreases, when small in absolute value, singular
values are discarded, and the algorithm ends up with very moderate orders [2L/2L− 1].

Table 2. Order parameter L of the Padé approximants [2L − 1/2L] (ratios of polynomials in 1/η)
constructed by the algorithm in [35] for six independent entries of the symmetrized α-effect tensor sA.

tol sA1
1

sA2
1

sA3
1

sA2
2

sA3
2

sA3
3

10−10 5 5 6 5 5 5
10−12 6 6 6 6 6 6
10−14 7 7 8 7 7 7
10−16 8 8 9 8 8 8
10−18 9 8 10 10 9 9
10−20 10 10 11 10 10 10

The four remaining panels in Figure 2 reveal the presence of the so-called Froissart doublets in
the approximants of some entries. Froissart doublets is a factor of the form (1/η − a)/(1/η − ã) in the
approximant, where the two constants a and ã are close but distinct. Such a factor implies a singular
behavior of the approximant for 1/η close to ã, not altering its behavior much at distances from ã
significantly larger than |a− ã|. Often, such factors are artifacts emerging due to noise in the data.
Almost vertical segments of the plots are signatures of the Froissart doublets (see Figure 2). They
extend to both positive and negative infinity in the graphs of the approximants, but since (20) are
nonlinear functions of the tensor entries, the respective segments of graphs of γα may be bounded
from below and/or above. (Their detection has proven unexpectedly difficult; in order to reliably
show their full range in the vertical direction, we have plotted the approximation step 10−9 along
the abscissa.) We thus see that although the algorithm in [35] is supposed to be robust, it is prone to
yielding approximants involving Froissart doublets.

3.3.2. Approximation by the Algorithm II

Since we have failed to obtain satisfactory results with the use of the algorithm I in [35], we
have also tested the algorithm II in [5]. Quoting from [5], although the equations for the coefficients
of the approximant involve a matrix in the Toeplitz form, “experience shows that the equations are
frequently close to singular, so that one should not solve them by the methods” relying on this form,
“but rather by full LU decomposition. Additionally, it is a good idea to refine the solution by iterative
improvement (routine mprove in §2.5)”. This is implemented in their pade procedure. We have used
it with one alteration: the routine mprove stops when the discrepancy increases; instead, it has been
allowed to make up to 1000 improvement iterations, permitting the discrepancy to temporarily grow
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and storing the minimum-discrepancy solution obtained in the course of these iterations (however, it
has often been forced to stop before the allowed number of iterations has been performed, the iterative
process blowing up with an overflow).

Approximate maximum slow-time growth rates (20) of large-scale magnetic modes generated by
the α-effect have been computed for the same flow again using [2L− 1/2L] Padé approximants for
the entries sAk

l (η). They are compared in Figure 3 for increasing orders L with the actual maximum
growth rates obtained by direct computation of the fields sk using spectral methods for individual
molecular diffusivities η.

Four Padé approximants [2L− 1/2L] of the entries of the α-effect tensor have been constructed for
each considered L, using the resolution of 643 or 5123 Fourier harmonics and running our code with
the double (real*8) or extended quadruple (real*16) precision of the floating-point number arithmetics.
In computers built around Intel and compatible processors, the former is standard, and the latter
is not supported by hardware but is software-emulated; however, many compilers do not require
modifying the Fortran source code to use it, all of the floating-point data and computations can be
readily promoted to the real*16 precision by using the appropriate compiler option such as −r16.
Higher precision and resolution has been expected to improve the accuracy of the coefficients of the
approximants, to augment the orders of the approximants beyond those produced by the algorithm
in [35], and to increase the η interval, where the growth rate values determined for the approximated
α-effect tensor are close to the actual growth rates.

In Figure 3, we show the resultant approximations of γα for L = 4, 8, 14, 20, and 28 to 31. The four
graphs for L = 4 are visually indistinguishable, and we show only one of them; the same holds true for
L = 8. For L = 14 and 20, the plots of the approximated γα, computed with quadruple precision for
the two spatial resolutions, also visually coincide (Figure 3d,f,h,j), but this is wrong for the respective
double precision approximations. For higher L, all four plots are visually distinct. The quadruple
precision approximations are plagued much less by the Froissart doublets (and never involve multiple
occurrences of the doublets) than the double precision ones. Three high-L quadruple precision
approximations are reasonably accurate for L = 28 and the 5123 resolution for η ≥ 0.055 (Figure 3n),
for L = 29 and the 643 resolution for η ≥ 0.05 (Figure 3p), and for L = 30 and the 643 resolution for
η ≥ 0.05 (Figure 3t). Thus, the left end of the interval of validity of Padé approximations has decreased
roughly twice compared to that obtained by the algorithm in [35]. All other quadruple-precision
approximations for L ≥ 29 (Figure 3r,v,x,z) can also give reasonable accuracy for η & 0.06÷ 0.07 upon
removal of Froissart doublets from the affected approximants of sAk

l .
These results suggest that Padé approximants are useful for representing the functional

dependence of the slow-time growth rates (20) of large-scale magnetic modes generated by the α-effect
for fairly low magnetic molecular diffusivities. However, for the construction of Padé approximants,
accurate enough to serve small η, the quadruple precision arithmetics must be used, and hence run
times become comparable to those of direct computation of the growth rates at individual ηs (note that
real*16 computations are typically ten times slower than real*8 ones). Therefore, another strategy is
perhaps also sensible: in computations for an individual η, to use relatively low-order, not very precise
Padé approximants for neutral modes sk (constructed, for instance, at each point in space or for each
Fourier harmonics within the employed resolution) as the initial data for further refinement by the
usual iterative methods.
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Figure 3. Approximate dependencies of the maximum slow-time growth rates γα (17) (vertical axis)
of large-scale magnetic modes generated by the α-effect on molecular diffusivity η (horizontal axis).
Padé approximants [2L− 1/2L] of α-effect tensor entries are constructed by the algorithm [24] for the
specified L. Resolution 643 (c), (d), (g), (h), (k), (l), (o), (p), (s), (t), (w), (x) and 5123 (other panels) Fourier
harmonics, computations with the double (real*8, left panels except (a)) and quadruple (real*16, right
panels and (a)) precision. Thin solid line: the dependence revealed by computation of γα at individual
η values (red solid circles) by spectral methods (resolution 643 Fourier harmonics), wide dashed line:
Padé approximants.

Figure 3. Approximate dependencies of the maximum slow-time growth rates γα (20) (vertical axis)
of large-scale magnetic modes generated by the α-effect on molecular diffusivity η (horizontal axis).
Padé approximants [2L− 1/2L] of α-effect tensor entries are constructed by the algorithm in [5] for
the specified L. Resolution of 643 (c,d,g,h,k,l,o,p,s,t,w,x) and 5123 (a,b,e,f,i,j,m,n,q,r,u,v,y,z) Fourier
harmonics, computations with the double (real*8, left panels except (a)) and quadruple (real*16, right
panels and (a)) precision. Thin solid line: the dependence revealed by computation of γα at individual
η values (red solid circles) by spectral methods (resolution 643 Fourier harmonics), wide dashed line:
Padé approximants.

4. Computation of the Magnetic Eddy Diffusivity Tensor

As discussed in Section 2, an important class are parity-invariant flows. This symmetry is
compatible with the equations of fluid dynamics (the Navier–Stokes or Euler equations) provided
the forcing has the same property. For such a flow, the domain of the operator of magnetic
induction L splits into the subspaces of parity-invariant fields (such that f(−x) = −f(x)) and of
parity-anti-invariant ones (such that f(−x) = f(x)). Solutions to the auxiliary problems (14), sk(x),
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are therefore parity-anti-invariant. This implies A = 0 (see (17)), i.e., no α-effect acts in such flows,
and hence λ1 = 0.

4.1. The Multiscale Formalism Revealing the Magnetic Eddy Diffusivity

By (15),

b1 =
3

∑
k=1

3

∑
m=1

∂ 〈b0〉k
∂Xm

gmk ,

where the small-scale zero-mean (non-solenoidal!) fields gmk(x) solve nine auxiliary problems of
type II:

Lgmk = −2η
∂sk
∂xm
− em × (v× sk) . (28)

For parity-invariant v, gmk(x) are also parity-invariant. Moreover, bn are parity-anti-invariant for all
even n and parity-invariant for odd n [17] in the expansion (12), and no odd powers of ε enter the
series (13) for the eigenvalue λ.

Averaging the third (order ε2) equation in the hierarchy yields

η∇2
X 〈b0〉+∇X ×

3

∑
k=1

3

∑
m=1

Dmk
∂ 〈b0〉k

∂Xm
= λ2 〈b0〉 , (29)

where
Dmk = 〈v× gmk〉 (30)

is the so-called tensor of magnetic eddy diffusivity correction. Again assuming that the mean field
〈b0〉 is a Fourier harmonic (18), we find [20]

λ2±(q) = −η − 1
2 ∑

j,l,n
(Dl

n − Dn
l )qj ±

√
d , (31)

d = ∑
j,l,n

(
((sDl

n)
2 − sDl

l
sDn

n)q
2
j − 2qjqn(

sDl
n

sDl
j − sDl

l
sDn

j )
)

, (32)

where both sums are over even permutations of indices 1, 2, and 3 (i.e., (j, l, n) are combinations (1,2,3),
(2,3,1), and (3,1,2)), and it is denoted

Dl
n = ∑

m
Dl

mnqm , sDl
n = (Dl

n + Dn
l )/2 . (33)

The minimum
ηeddy ≡ min

|q|=1
(−Re λ2±(q)) (34)

is called the minimum magnetic eddy diffusivity. When it is negative, the interaction of the fluctuating
small-scale velocity and magnetic field is capable of generating large-scale magnetic fields. For this
reason, this quantity is of prime interest in large-scale dynamo theory.

Expression (30) can be transformed into

Dl
mk =

〈
Zl ·

(
2η

∂sk
∂xm

+ em × (v× sk)

)〉
, (35)

where Zl are zero-mean solutions to three auxiliary problems for the adjoint operator:

L∗Zl = v× el , (36)
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and L∗ : z 7→ η∇2z− {v× (∇× z)} is the operator adjoint to L acting in the space of zero-mean
space-periodic fields.

4.2. Padé Approximation

Relation (30) suggests constructing expansions of the solutions to the auxiliary problems in the
inverse molecular diffusivity, (21), and

gmk =
∞

∑
n=1

g(n)
mk η−n. (37)

Dividing (28) by η yields

∇2gmk = −η−1∇× (v× gmk)− 2
∂sk
∂xm
− η−1em × (v× sk),

whereby

g(1)
mk = −∇−2

(
2

∂s(1)k
∂xm

+ em × (v× ek)

)
, (38)

g(n)
mk = −∇−2

(
∇× (v× g(n−1)

mk ) + 2
∂s(n)k
∂xm

+ em × (v× s(n−1)
k )

)
for n > 1 . (39)

Clearly, the flow being parity-invariant, all s(n)k are parity-anti-invariant and all g(n)
mk , parity-invariant.

By (30) and (37),

Dmk =
∞

∑
n=1

D
(n)
mk η−n, D

(n)
mk =

〈
v× g(n)

mk

〉
. (40)

Thus, algorithm I consists of the following steps:

• find the fields s(n)k employing (22);

• find the fields g(n)
mk employing (38) and (39);

• calculate the coefficients D(n)
mk employing (40).

Expressions (40) reveal symmetry properties of coefficients in the eddy diffusivity tensor
expansion (similar to those of the coefficients of the α-effect tensor expansion). Eddy diffusivity
tensor for the reverse flow −v is related to that of the flow v by the relations (D−ml)k = −Dl

mk [19].

By (38) and (39), g(n)
mk = (−1)n(g−mk)

(n). Thus, identities, analogous to those used in the case of the
α-effect tensor, reveal that for each fixed m, the coefficients (Dl

mk)
(n) in the series (40) are symmetric

3× 3 matrices for even n, and antisymmetric ones for odd n. This implies that the symmetrized
matrix sD (33), determining the discriminant d (32), is expanded in even powers of 1/η, and the
antisymmetric one D− sD, determining the common part of λ2±(q) (31), in odd powers.

It is simple to show that, like in the case of α-effect dynamos, for a given flow v, the radius of
convergence of all of the series (37) and (40) (regarded as functions of 1/η) is generically equal to
1/ maxi |µi|, where µi are eigenvalues of the compact operator M (23); convergence of the series is
guaranteed for η > maxi |µi|.

An alternative form of the eddy diffusivity tensor can be exploited. Comparing (14) and (36),
we find

el +∇× Zl = s−l ⇒ Zl = η−1∇−2(v× s−l ), (41)
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where the superscript minus denotes objects pertinent to the reverse flow −v (see (25)). Using (41) to
eliminate sk in (35) yields [19]

Dl
mk = η

〈
Zl ·

(
2∇× ∂Z−k

∂xm
− em ×∇2Z−k

)〉
. (42)

By (41), all Zl are parity-invariant, and hence (36) is equivalent to

∇2Zl = η−1(v× (el +∇× Zl)),

which implies a power series expansion

Zl =
∞

∑
n=1

Z(n)
l η−n, (43)

where the coefficients satisfy recurrence relations

Z(1)
l = ∇−2(v× el), Z(n)

l = ∇−2(v× (∇× Z(n−1)
l )) for n > 1. (44)

By linearity of (44) in v, the coefficients of such an expansion for the reverse flow are linked:

(Z−l )
(n) = (−1)nZ(n)

l .

This implies algorithm II for calculation of (Dl
mk)

(n) based on (42):

• find the fields Z(n)
l applying (44);

• for n ≥ 1 calculate

(Dl
mk)

(n) =
n

∑
j=1

(−1)j

〈
Z(n+1−j)

l ·
2∇× ∂Z(j)

k
∂xm

− em ×∇2Z(j)
k

〉 . (45)

Using (41), it is straightforward, albeit tedious, to transform (42) into

Dl
mk = η

〈
{s−l } × {sk} − {sk}∇ · Zl + {s−l }∇ · Z−k

〉
m . (46)

Relations (41) imply

∇× Z(n)
l = (−1)ns(n)l , Z(n)

l = (−1)n−1∇−2(v× s(n−1)
l ) for n ≥ 1. (47)

Thus, the coefficients in the expansion (40) have the entries

(Dl
mk)

(n) =
n

∑
j=1

〈
(−1)js(j)

l × s(n+1−j)
k − s(n+1−j)

k ∇ · Z(j)
l − (−1)ns(n+1−j)

l ∇ · Z(j)
k

〉
m

. (48)

Algorithm III consists of the following steps:

• determine coefficients in the expansion of the neutral magnetic modes sk applying recurrence
relations (22);

• in the course of these calculations, determine coefficients in the expansion of ∇ · Zl using (47);

• calculate the coefficients (Dl
mk)

(n) applying (48).

If the flow v involves a small number of Fourier harmonics, it is unclear a priori which of the
three algorithms is more efficient. Algorithm I involves the computation of two sets of coefficients,
for sk and gmk, algorithm II, only of the set of coefficients for Zl , and algorithm III is an intermediate
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case involving two sets of coefficients, for sk and ∇ · Zl . However, the calculation of the n-term sums
(45) and (48) in algorithms II and III, respectively, is computer-intensive.

4.3. Numerical Results

For numerical experimentation, we have applied two types of flows: the so-called cosine flows
introduced in [20], and their curls, considered in [21]. They are of interest in that the latter have
a point-wise zero vorticity (kinematic) helicity, and the former have a point-wise zero velocity helicity,
but nevertheless they are capable of both small- and large-scale magnetic field generation (see ibid.).
Involving a small number of trigonometric functions, they are particularly useful for calculating the
Taylor series coefficients (40).

The cosine flows are defined as follows:

v1 = βn(b1 sin(a · x) + a1 sin(b · x)) cos nx3,

v2 = βn(b2 sin(a · x) + a2 sin(b · x)) cos nx3, (49)

v3 = −β(a · b)(cos(a · x) + cos(b · x)) sin nx3.

Here, a = (a1, a2, 0) and b = (b1, b2, 0) are constant horizontal vectors, and

β = 2(n2(|a|2 + |b|2) + 2(a · b)2)−1/2,

so that the r.m.s. flow velocity is unity.
Because of many symmetries of the cosine flows, all entries of the eddy diffusivity tensor D

vanish, except for five pairs (see [20]):

D2
31 = −D1

32, D3
12 = −D2

13, D1
23 = −D3

21, D3
22 = −D2

23, D1
13 = −D3

11.

Consequently, the minimum eddy diffusivity (34) takes a simple form:

ηeddy = η −max
(
D2

31,
1
2

(
D3

12 +D1
23 +

√
(D3

12 −D1
23)

2 + (D3
22 +D1

13)
2
))

. (50)

We have considered the particular sample flow for

a = (1, 0, 0), b = (1, 1, 0), n = 1 (51)

and used Mathematica again to implement algorithm I: we have calculated exactly the coefficients of
the expansions (21) and (37) of solutions to the auxiliary problems (14) and (28) using the recurrence
relations (22) and (38) and (39), and of the coefficients D

(n)
mk of the series (40) up to order η−49.

The precise coefficients s(49)
k and g(49)

mk require about 2 Gbytes of memory for storage (in the ASCII

form). For the flow (49), the coefficients D
(n)
mk turn out to be rational; in the ASCII form, the vectors

D
(49)
mk occupy 10 to 20 Kbytes of memory.

Figure 4 shows the sequence of the ratios |(Dl
mk)

(2n−1)/(Dl
mk)

(2n+1)|1/2 for five independent
entries. The limit of this sequence for n → ∞ is equal to the radius of convergence of the series (40)
(regarded as a function of 1/η) for the respective entry (note that due to the antisymmetry in l and k,
the entries involve only odd powers of 1/η). The figure demonstrates that the series for the five entries
have the same radius of convergence and converge for η & 0.5 .

Because precise Mathematica calculations require considerable computer resources, we
have not considered high-order Padé approximants. The amount of calculations reduces if
meromorphic functions

q1 = D2
31, q2 = (D3

12 +D1
23)/2, q3 = ((D3

12 −D1
23)

2 + (D3
22 +D1

13)
2)/4 (52)



Fluids 2019, 4, 110 21 of 26

are approximated only, in terms of which (see (50))

ηeddy = η −max(q1, q2 +
√

q3). (53)

The poor quality of the resultant approximation (see Figure 5a) is due to the presence of two Froissart
doublets in the approximants of q2 and q3 (Figure 5b). Gaps are present in the plot in Figure 5a, where
the approximant of q3 becomes negative due to its singular behavior, and thus the square root in (53)
cannot be extracted. Upon factoring the doublets out (which is simple in Mathematica) in the two
plagued approximants, the quality of the approximation becomes very similar to that obtained by
using [18/18] approximants of qi (see Figure 5c). Increasing the orders to [24/24] does not significantly
improve the approximated ηeddy (see Figure 5d). A better approximation is obtained if the elements of
the eddy diffusivity tensor D are Padé-approximated individually (see Figure 6); this gives reasonably
accurate values of ηeddy for η & 0.02, which is roughly 25 times larger than the minimum η, for which
the power series in 1/η for the fields sk and gmk, as well as the elements of the tensor D, are convergent.

Upon shifting by a quarter of the period in the vertical coordinate x3, the curl of (49) takes the form

v1 = β
(
((a · b)a2 + n2b2) sin(a · x) + ((a · b)b2 + n2a2) sin(b · x)

)
cos nx3,

v2 =− β
(
((a · b)a1 + n2b1) sin(a · x) + ((a · b)b1 + n2a1) sin(b · x)

)
cos nx3, (54)

v3 = βn(a2b1 − a1b2)(cos(a · x)− cos(b · x)) sin nx3,

where we now assume the normalizing factor

β = 2
(
(n4 + (a · b)2)(|a|2 + |b|2) + 2n2((a · b)2 + |a|2|b|2)

)−1/2
,

for which the r.m.s. flow velocity is again 1. Since this flow possesses all the symmetries of (49),
the expression (50) for the minimum eddy diffusivity still applies.

Following algorithm II, for a sample flow (54) for

a = (0, 1, 0), b = (2, 2, 0), n = 1, (55)

we have calculated with Mathematica 49 coefficients D(n)
mk of the series (40) up to order η−49. The graph

of the ratios |(Dl
mk)

(2n−1)/(Dl
mk)

(2n+1)|1/2 for the five independent entries (see Figure 7a) of the eddy
diffusivity tensor shows that the series (40) converge for η & 2.2. The highest-order (for this set of
coefficients) [25/24] approximants of the entries are free of Froissart doublets (see Figure 7b). They
yield a satisfactory approximation of dependence on η of the minimum magnetic eddy diffusivity for
η & 0.03, which is roughly 70 times smaller than the bound obtained for convergence of the Taylor
series (40) for Dl

mk (see Figure 7c,d). However, their fidelity is insufficient to reproduce the singularity
of the minimum eddy diffusivity observed in Figure 7c,d.

The symmetries of the flow (54), (55) imply that the neutral modes sk reside in invariant subspaces
of the magnetic induction operator, which can be categorized in terms of the Fourier harmonics bnein·x,
comprising the Fourier series for sk (by virtue of the mode periodicity, the wave vectors n have integer
components). Only the harmonics that have the following properties enter the Fourier series for sk:

• bn = b−n are real;
• the numbers n1 and n1/2 + n2 + n3 are even;
• s1 and s2 are symmetric in x3 (i.e., b1

n = b1
n∗ , b2

n = b2
n∗ , b3

n = −b3
n∗ ), and s3 is antisymmetric in x3

(i.e., b1
n = −b1

n∗ , b2
n = −b2

n∗ , b3
n = b3

n∗ ), where n∗ = (n1, n2,−n3).

We have checked that for η > ηcr = 0.00420516, small-scale modes from the subspace, where
s1 and s2 are located, are not generated, but at η = ηcr the small-scale generation starts in the
subspace, where s3 resides. It is known [20,21,23] that the point of the onset of the small-scale
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generation is typically associated with a singularity of the α-effect or eddy diffusivity tensors; this
is the case for the flow under consideration. In Figure 7d, we observe that the least-squares fit by
a hyperbola through 20 computed values of minimum eddy diffusivity at equispaced points in the
interval 0.0045 ≤ η ≤ 0.014 is very accurate (only 19 points out of the 20 are shown; for the smallest
η = 0.0045, eddy diffusivity –20.217501, also well approximated by the hyperbola, is out of the vertical
range of Figure 7d). The hyperbolic fit yields the location of the singularity at η = 0.0041988 (the
vertical asymptote is shown by a dashed line in Figure 7d), which is very close to the point of the onset
of the small-scale generation ηcr = 0.00420516 computed by spectral methods; the hyperbola through
the three smallest η from this interval yields a closer value 0.00420233.

Figure 4. The ratios |(Dl
mk)

(2n−1)/(Dl
mk)

(2n+1)|1/2 (vertical axis) versus n > 0 (horizontal axis) for five
independent entries of the eddy diffusivity tensor for the cosine flow (49), (51).

(a) (b)

(c) (d)

Figure 5. Minimum eddy diffusivity (53) (vertical axis) for the sample flow (49), (51) computed using
Padé approximants of the quantities qi (52) of orders [20/20] (a), [18/18] (green line) and regularized
[20/20] (black line) (c), and [24/24] (d). Behavior of the [20/20] Padé approximants of qi (vertical
axis) near the points, where Froissart doublets are located (b). Horizontal axis: magnetic molecular
diffusivity η. Red dots: minimum eddy diffusivity computed by spectral methods (resolution of 1283

Fourier harmonics) individually for the respective η values.
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Figure 6. Minimum eddy diffusivity (53) (vertical axis) for the sample flow (49), (51) computed by
Padé approximation of the individual entries of the eddy diffusivity tensor D of orders [23/22] for
varying magnetic molecular diffusivity η (horizontal axis).

(a)

(b)

(c) (d)

Figure 7. The ratios |(Dl
mk)

(2n−1)/(Dl
mk)

(2n+1)|1/2 (vertical axis) versus n > 0 (horizontal axis) for
five independent entries of the eddy diffusivity tensor for the flow (54), (55) (a). The [25/24] Padé
approximants for the five entries Dl

mk (vertical axis) versus η (horizontal axis) (b) and minimum eddy
diffusivity (53) (vertical axis) computed using these approximants for varying η (horizontal axis)
(c). Red dots: minimum eddy diffusivity computed by spectral methods (resolution of 1283 Fourier
harmonics) individually for the respective η values. Zoomed-in view of plot (c) for small η (black
line) and a hyperbolic fit (blue line) through the 20 spectral eddy diffusivity values for 20 η points in
the interval 0.0045 ≤ η ≤ 0.014 step 0.0005 (d). The dashed line shows the vertical asymptote of the
minimum eddy diffusivity at the onset of a small-scale dynamo in the symmetry subspace, where the
neutral mode s3 resides.

5. Conclusions

We have tested Padé approximants of the α-effect and eddy diffusivity tensors, responsible for
generation of large-scale fields, as functions of the respective molecular diffusivity: the viscosity ν

when hydrodynamic perturbations are studied, and the magnetic diffusivity η when the kinematic
dynamo problem is under scrutiny. We have tried different computational tools: Fortran codes relying
on floating point arithmetics and Mathematica for symbolic and arbitrary precision calculations.
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A relatively high (several dozens) order of Padé approximants is needed to obtain a reasonable
accuracy of approximation of the tensor entries. For this, a high precision of computations (in
particular, the quadruple precision in Fortran) has proved indispensable. For our sample flows,
the Padé-approximated tensors yield large-scale magnetic field growth rates to satisfactory accuracy
for η, several dozen times smaller than those for which power series in the inverse molecular diffusivity
converge, for both large-scale generating mechanisms (the α-effect and negative magnetic eddy
diffusivity).

The application of these techniques in computational fluid dynamics and magnetohydrodynamics
seems natural for estimating transport coefficients quantifying the influence of small scales on the
evolution of large-scale fields in the spirit of large eddy simulation methods. Our findings, while
promising, suggest that to achieve this goal, additional algorithms are needed for the determination

• of Froissart doublets in approximants of tensor entries and their elimination (the approach of [36]
may prove useful for monitoring the absence of the doublets);

• of the interval in molecular diffusivity, where the approximation is sufficiently accurate;
• of the realistic orders of a Padé approximant, for which the length of such intervals is close to

the maximum.

It is relatively easy to perform these tasks manually by trial-and-error methods—the difficulty
lies in performing them automatically.
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