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Abstract: Reynolds-averaged Navier-Stokes (RANS) models are widely used for the simulation of
engineering problems. The turbulent-viscosity hypothesis is a central assumption to achieve closures
in this class of models. This assumption introduces structural or so-called epistemic uncertainty.
Estimating that epistemic uncertainty is a promising approach towards improving the reliability of
RANS simulations. In this study, we adopt a methodology to estimate the epistemic uncertainty by
perturbing the Reynolds stress tensor. We focus on the perturbation of the turbulent kinetic energy
and the eigenvalues separately. We first implement this methodology in the open source package
OpenFOAM. Then, we apply this framework to the backward-facing step benchmark case and
compare the results with the unperturbed RANS model, available direct numerical simulation data
and available experimental data. It is shown that the perturbation of both parameters successfully
estimate the region bounding the most accurate results.

Keywords: computational fluid dynamics; RANS closures; uncertainty quantification; Reynolds
stress tensor; backward-facing step; OpenFOAM

1. Introduction

The motion of a fluid in the turbulent regime is fully described by the Navier-Stokes equations.
A numerical solution encompassing all spatial and temporal scales is referred to as direct numerical
simulation (DNS). Due to the significant computational cost of DNS, approximations like large-eddy
simulation (LES) and Reynolds-averaged Navier-Stokes (RANS) have been developed and are more
widely used, in particular for practical engineering problems. RANS models use ensemble averages
of the physical quantities, thereby decreasing the computational cost of the simulations. Due to the
assumptions that are required to achieve closure, all RANS closures naturally introduce structural,
or epistemic, uncertainty.

A systematic approach of the epistemic uncertainty quantification (EUQ) in RANS models,
focusing on the Reynolds stress tensor, was first proposed by Emory et al. [1]. They introduced
perturbation on the Reynolds stress tensor using the barycentric map proposed by Banerjee et al. [2],
as a mean to visualize the degree of anisotropy. The same method was used later in a
simulation by Gorle et al. [3] comparing RANS with LES results for an under-expanded jet in a
supersonic cross flow. Another contribution, proposed by Gorle et al. [3] and further developed
by Gorle and Iaccarino [4], was to introduce the perturbation not only in the momentum equations
but also in the turbulent scalar fluxes in the scalar transport equation.

Gorle et al. [5] further developed the methodology with the goal of defining the uncertainty
in the separation region. They introduced the idea of a marker, which identifies the regions of the
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flow where the introduction of perturbations would be useful. In this case the marker is designed to
recognize regions with parallel shear flow. Emory et al. [6] recognized the importance of testing the
method for various cases and successfully applied EUQ to plane channel flow, square duct flow and a
shock/boundary layer interaction with flow separation. In their work, they showed that the method is
model-independent.

The latest contribution to EUQ taken into consideration for this research was provided
by Iaccarino et al. [7]. In their studies, they proposed a combined perturbation of different quantities in
the normalized Reynolds stress tensor. They focused on the simultaneous perturbation of eigenvalues
and eigenvectors, which is refered as eigenspace perturbation. With this approach, the ellipsoid
describing the eigenspace not only varies in its shape but also in its orientation.

This article is organized as follows. Section 2 presents the mathematical details of the EUQ
approach. This methodology is applied to a turbulent flow over a backward-facing step. Section 3
presents the behaviour of the pressure coefficient, friction coefficient, mean velocity field and Reynolds
stress tensor after perturbing the eigenvalues and the turbulent kinetic energy separately. These results
are compared to the DNS data [8] and the experimental results [9]. A summary and conclusions are
provided in Section 4.

2. Methodology

2.1. Epistemic Uncertainty

RANS models decompose the quantities into an averaged part ū and a fluctuating part u′ such that

u = ū + u′. (1)

Substituting (1) into the Navier–Stokes equations and applying Reynolds averaging leads to the
RANS equations (see e.g., [10–12])

∂tūi + ūj∂jūi = ∂i p̄ + ν∂j∂jūi − ∂jRij (2)

and the Reynolds-averaged incompressibility constraint

∂iūi = 0, (3)

where t is time, ūi is the mean velocity in the i−direction, where i = 1, 2, 3 respectively represents the
streamwise (x), wall-normal (y) and lateral (z) directions, p̄ is the mean kinematic pressure, ν is the
kinematic viscosity, and

Rij = u′iu
′
j (4)

is the Reynolds stress tensor. The Reynolds stress tensor is an extra term that arises as a result of the
Reynolds decomposition and contains the fluctuating parts of the velocity.

The closure problem in RANS amounts to finding approximations for Rij that do not include
the fluctuating part, since that information is not available in an actual RANS simulation. Yet,
any model for Rij will be an approximation that introduces an additional epistemic uncertainty.
Most popular RANS closure models are based on the Boussinesq turbulent-viscosity hypothesis (or
eddy-viscosity hypothesis) that approximates the Reynolds stress tensor as a function of the stretching
tensor (mean strain-rate tensor Sij = (∂iūj + ∂jūi)/2), the turbulent kinetic energy (k = u′iu

′
i/2) and

the turbulent viscosity (effect of turbulent eddies on the flow νt) such that

Rij =
2
3

kδij − 2νtSij. (5)
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2.2. Decomposition of the Reynolds Stress Tensor

The Reynolds stress tensor can be decomposed into components that establish its amplitude,
shape and orientation. This is done by defining the turbulence anisotropy tensor aij as

aij = Rij −
2
3

kδij. (6)

Equation (6) can be normalized by dividing by 2k, yielding

bij =
aij

2k
=

Rij

2k
− 1

3
δij. (7)

The eigenvalues of Rij are non-negative due to the condition of realizability established
by Speziale et al. [13] and the Cauchy–Schwartz inequality holds for the off-diagonal components.
Hence, the values are constrained within the intervals

bii ∈ [−1/3, 2/3] ∀i = 1, ..., 3 (8)

and
bij ∈ [−1/2, 1/2] ∀i 6= j. (9)

In view of (7), the Reynolds stress tensor can be written as

Rij =
2
3

kδij + bij2k = 2k(
1
3

δij + bij). (10)

The eigendecomposition of the normalized anisotropy tensor yields (see e.g., [14])

binvnl = vinΛnl , (11)

where

• Λnl is a diagonal tensor containing the eigenvalues of the anisotropy tensor in an order such that
λ1 > λ2 > λ3,

• vij is a tensor containing the eigenvectors of the anisotropy tensor in the same order as
the eigenvalues.

Isolating bij in (11) yields
bij = vinΛnlvl j. (12)

Substituting (12) into (10), the Reynolds stress tensor becomes

Rij = 2k(
1
3

δij + vinΛnlvl j). (13)

2.3. Perturbation of the Reynolds Stress Tensor

In Section 2.2, the Reynolds stress tensor is rearranged into components that define the amplitude
(k), shape (Λ) and orientation (v). Perturbation of these components yields an estimate on the epistemic
uncertainty. The perturbation yields

R∗ij = 2k∗(
1
3

δij + v∗inΛ∗nlv
∗
l j), (14)

where

• v∗ = v + ∆v is the perturbation on the orientation of the Reynolds stresses,
• Λ∗ = Λ + ∆Λ is the perturbation on the anisotropy of the Reynolds stresses,
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• and k∗ = [k/nk, nkk], is the amplitude of the perturbation of the turbulent kinetic energy. It is
established as a range with a minimum and a maximum k∗.

In this article, we focus on the perturbation of the turbulent kinetic energy k and the eigenvalues
Λ. The perturbation of k is realized through the parameter nk ≥ 1 that determines the limits
of perturbation. The maximum perturbation corresponds to k∗ = nkk and the minimum to
k∗ = k/nk. The perturbation of the eigenvalues is realized using the barycentric map proposed
by Banerjee et al. [2] and illustrated in Figure 1.

x1cx2c

x3c

Figure 1. Barycentric map. The limiting states are represented in the vertices as one-component X1c,
two-component X2c and three-component (isotropic) X3c turbulence. The anisotropy is zero at X3c and
maximum at X1c. The dashed line denotes plane shear flow, where at least one of the eigenvalues λl is
zero. The arrows show perturbations toward limiting states of turbulence [6].

The barycentric map can represent any stress tensor as a function of the limiting states:
one-component, two-component and three-component turbulence. The limiting states

C1c = λ1 − λ2,

C2c = 2(λ2 − λ3),

C3c = 3λ3 + 1,

(15)

are functions of the eigenvalues associated with the Reynolds stress tensor. The limiting states are
normalized such that

C1c + C2c + C3c = 1. (16)

The limiting state of the tensor can be represented in a two-dimensional coordinate system
with coordinates

x = C1cx1c + C2cx2c + C3cx3c,

y = C1cy1c + C2cy2c + C3cy3c,
(17)

or

x = Bλl

= x1c(λ1 − λ2) + x2c(2λ2 − 2λ3) + x3c(3λ3 + 1),
(18)

where B−1x1c = (2/3,−1/3,−1/3)T , B−1x2c = (1/6, 1/6,−1/3)T and B−1x3c = (0, 0, 0)T .
Once the coordinates of the anisotropy tensor are located in the barycentric map, the perturbation

is based on two parameters, the direction of the perturbation x(t) and the magnitude of perturbation
δB. The direction of the perturbation defines the chosen corner in the barycentric map and magnitude
describes the distance of displacement to the chosen corner in the barycentric map in a range of [0, 1]
as shown in Figure 1,

x∗ = x + δB(x(t) − x). (19)

The perturbed eigenvalues are calculated as [6]
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λ∗l = B−1x∗

= (1− δB)B−1x + δBB−1x(t)

= (1− δB)λl + δBB−1x(t).

(20)

Here, it is noteworthy to mention that, in the RANS simulation of two-dimensional flows using
eddy-viscosity models, at least one of the eigenvalues (λl) of the normalized anisotropy tensor (bij) is
zero. Hence, all the points in the flow domain will be located along the line representing the plane
shear flow (see Figure 1) [6].

3. Results and Analysis

We applied the previously explained methodology to the backward-facing step at Reh = 5100
(Re is dependent on the step height h, the inlet velocity u0 and the kinematic viscosity ν, Reh = u0h/ν),
for which DNS [15] and experimental data [9] are available. The backward facing step offers a
simple two-dimensional case, similar to the canonical channel flow but adds a certain component of
complexity in the physics right after the expansion appears.

The calculation was performed using the open source software OpenFOAM. The implementation
of the Reynolds stress perturbation in OpenFOAM is explained in detail in the Appendix A. The
boundary and initial conditions of the case were the same as the ones used by Le and Moin [15]
and Jovic and Driver [9], including the mean velocity profile imposed at the inlet by Spalart [16].
They are summarized in Table 1. The k-ω SST model is chosen as RANS closure. The transport
equations and their initial conditions were calculated following Ferziger and Peric [17] and Versteeg
and Malalasekera [18]. Figure 2 shows the dimensions of the flow domain and its corresponding areas.

Table 1. Description of the boundary conditions imposed in each part of the flow domain.

Boundary Velocity (ū) Pressure (p̄)

Upper Wall No-stress wall Zero gradient
Lower Wall No-slip condition Zero gradient
Inlet Non-uniform inlet Zero gradient
Outlet Zero gradient Uniform, p̄ = 0

Figure 2. Dimensions of the flow domain as a function of the step height h. The domain is divided in
seven blocks in order to design and optimize the mesh. It also shows the location of the boundaries.

The topology and mesh resolution is similar to the one described in [19]. Three different mesh
resolutions were considered to assess the sensitivity of the results to the grid. A relevant parameter to
be taken into account, in this case, is the dimensionless wall distance y+ which is defined as

y+ ≡ y
δν

=
uτy

ν
. (21)

Keeping this value below one (y+ < 1) allowed the simulation to capture the physics of the
viscous sub-layer. Figure 3 shows the mesh topology. It can be seen that the grid gets finer when
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it approaches the bottom of the domain and also when it gets closer to the step, which is the most
relevant part of the domain. Table 2 summarizes the topology and refinement used in each of the
blocks of the domain. The mesh is designed such that the size of the first and last cells can be computed
as a function of the grading and the number of cells. The grading is the ratio of the size of the last cell
divided by the size of the first cell.

Figure 3. Mesh topology in the flow domain.

Table 2. Mesh refinement and topology for each of the three types of refinements applied. The Cells
columns represent the amount of cells in each block in the x- and y-direction, respectively. The Grading
columns represent the refinement in each block in the x- and y-direction, respectively.

Coarse Mesh Intermediate Mesh Fine Mesh

Cells Grading Cells Grading Cells Grading

Block x y x y x y x y x y x y

A 40 11 50 11.29 80 21 50 10.61 160 42 50 10.91
B 21 11 1 11.29 41 21 1 10.61 81 42 1 10.91
C 40 11 50 0.09 80 21 50 0.09 160 42 50 0.09
D 21 11 1 0.09 41 21 1 0.09 81 42 1 0.09
E 21 20 1 100 41 40 1 100 81 80 1 100
F 40 20 50 100 80 40 50 100 160 80 50 100
G 40 20 0.02 100 80 40 0.02 100 160 80 0.02 100

Figure 4 illustrates the zoom into the corner where the step starts and the expansion begins. It can
be seen that the size of the cells does not change sharply. It changes smoothly in both directions and it
gets finer towards the lower wall.

Figure 4. Mesh topology in the flow domain zoomed in where the step is located and expansion starts,
x/h = 0.

In Figure 5, all three refinements were compared for the pressure coefficient, friction coefficient,
mean velocity and Reynolds stresses at x/h = 4, x/h = 6 and x/h = 10. The comparisons between
different mesh refinements show the grid convergence for the intermediate and the fine grids. The rest
of the work is based on the fine mesh described in Table 2. While the focus on the present article are the
structural uncertainties in the RANS closures, it is worth mentioning that numerical uncertainties can
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make up a significant contribution to the overall model error. For a summary of different uncertainty
contributions in computational fluid dynamics refer to the ASME standard [20] or more specifically
to Roache [21] and Roache [22] in which the estimation of the numerical uncertainty associated with
finite grid sizes is addressed.
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Figure 5. (a) Convergence of the pressure coefficients calculated at the bottom of the flow domain after
and before the expansion, computed as ( p̄− p0)/(0.5ρu2

0). (b) Convergence of the friction coefficients
calculated at the bottom of the flow domain after and before the expansion, computed as τw/(0.5ρu2

0).
(c) Convergence of the mean streamwise velocity profiles calculated at x/h = 4, x/h = 6, x/h = 10
and normalized with respect to the inlet mean velocity (ū/u0). (d) Convergence of the Reynolds shear
stress component calculated at x/h = 4, x/h = 6, x/h = 10 and normalized with respect to the inlet
mean velocity (−u′v′/u2

0).

The following subsections show the behaviour of: pressure coefficient, friction coefficient, mean
velocity profile and Reynolds stress computed at several positions in the domain (perturbed and
unperturbed). The corresponding DNS and experimental data are also included for comparison.

3.1. Pressure Coefficient

The pressure coefficient was computed at the bottom of the domain throughout the stream-wise
direction as

Cp =
p̄− p0

0.5ρu2
0

, (22)

where po is the reference wall static pressure, p is the mean pressure computed at any location in the
domain and u0 is the upstream freestream reference velocity. We can see in Figure 6 that the results are
bounded in a well defined area, thus decreasing the level of uncertainty. We can also see that a small
amount of perturbation does not capture properly the physics of the problem. When the amount of
perturbation increases, the bounds widen and they are able to cover better the discrepancy between
the RANS model and the reference DNS and experimental data.
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Figure 6. Pressure coefficients at y/h = 0, computed as: ( p̄− p0)/(0.5ρu2
0). (a) Turbulent kinetic energy

perturbation nk = 1.5, (b) turbulent kinetic energy perturbation nk = 2, (c) eigenvalue perturbation
with δB = 0.1 and (d) eigenvalue perturbation with δB = 0.25. X1c, X2c and X3c represent perturbations
toward the three corners of the barycentric map. direct numerical simulation (DNS) data [15] (−·);
experiment data [9] (•); Reynolds-averaged Navier-Stokes (RANS) k-ω SST model (−). The uncertainty
bounds are shown with gray areas.

3.2. Friction Coefficient

The friction coefficient
C f =

τw

0.5ρu2
0

, (23)

with τw the wall shear stress was computed at the bottom of the domain, throughout the stream-wise
direction. The results seen in Figure 7 show similar behavior as the one seen in Figure 6 with the
exception that the turbulent kinetic energy perturbation for nk = 2 almost entirely defines the bounds
of discrepancy between RANS and DNS and experimental results.

3.3. Mean Velocity in the x-Direction

The mean streamwise velocity ū/u0 throughout the y-axis was computed at x/h = 4, x/h = 6 and
x/h = 10, respectively. The comparison between the models with perturbed kinetic energy, perturbed
eigenvalue and the non perturbed model in Figure 8 show the pattern seen in previous parameters.
The higher the amount of perturbation, the wider the bounds, thus the proportion of data covered in
the bounds is higher. These results show the capability of the framework to capture the uncertainty in
the simulation results.

3.4. Reynolds Shear Stress

Reynolds shear stress was computed vertically at x/h = 4, x/h = 6 and x/h = 10, respectively,
and normalized with respect to the upstream reference velocity. As can be seen from Figure 9, there is
some discrepancies between the unperturbed RANS model and the reference data from experiments and
DNS. By introducing the structural uncertainties to the RANS, the model can bound the experimental
data. It is also observed that the model uncertainty is not uniformly distributed in the domain. In some
regions of the flow, the model uncertainty is larger due to the shortcoming of the model assumptions
in capturing the physics of the flow. Also, it can be seen that increasing the amount of perturbation in
both the magnitude and shape widen the gray regions that envelop the baseline results. For instance,
increasing the amount of perturbation for turbulent kinetic energy from nk = 1.5 to nk = 2 widens the
uncertainty bound (gray region) by a factor of about 2. A relatively similar trend is observed when the
injected uncertainty into the shape of the stress tensor increases from δB = 0.1 to δB = 0.25.
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Figure 7. Friction coefficients at y/h = 0. Computed as: τw/(0.5ρu2
0). (a) Turbulent kinetic energy

perturbation nk = 1.5, (b) turbulent kinetic energy perturbation nk = 2, (c) eigenvalue perturbation
with δB = 0.1 and (d) eigenvalue perturbation with δB = 0.25. X1c, X2c and X3c represent perturbations
toward the three corners of the barycentric map. DNS data [15] (−·); experiment data [9] (•); RANS
k-ω SST model (−). The uncertainty bounds are shown with gray areas.
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Figure 8. Mean streamwise velocity profiles calculated at x/h = 4, x/h = 6 and x/h = 10 and
normalized by the inlet mean velocity (ū/u0). (a) k perturbation with nk = 1.5 at x/h = 4, (b) k
perturbation with nk = 1.5 at x/h = 6, (c) k perturbation with nk = 1.5 at x/h = 10, (d) k perturbation
with nk = 2 at x/h = 4, (e) k perturbation with nk = 2 at x/h = 6, (f) k perturbation with nk = 2 at
x/h = 10, (g) eigenvalue perturbation with δB = 0.1 at x/h = 4, (h) eigenvalue perturbation with
δB = 0.1 at x/h = 6, (i) eigenvalue perturbation with δB = 0.1 at x/h = 10, (j) eigenvalue perturbation
with δB = 0.25 at x/h = 4, (k) eigenvalue perturbation with δB = 0.25 at x/h = 6 and (l) eigenvalue
perturbation with δB = 0.25 at x/h = 10. X1c, X2c and X3c represent perturbations toward the three
corners of the barycentric map. DNS data [15] (−·); experimental data [9] (•); RANS k-ω SST model
(−). The uncertainty bounds are shown with gray areas.



Fluids 2019, 4, 113 10 of 13

-5 0 5 10 15

10
-3

0

1

2

3
y
/h

(a) DNS, Le, Moin & Kim, 1997

Experiment, Jovic & Driver, 1994

RANS k-  SST

n
k
=1.5

n
k
=1/1.5

-5 0 5 10 15

10
-3

0

1

2

3

y
/h

(b) DNS, Le, Moin & Kim, 1997

Experiment, Jovic & Driver, 1994

RANS k-  SST

n
k
=1.5

n
k
=1/1.5

-2 0 2 4 6 8

10
-3

0

1

2

3

y
/h

(c) DNS, Le, Moin & Kim, 1997

Experiment, Jovic & Driver, 1994

RANS k-  SST

n
k
=1.5

n
k
=1/1.5

-5 0 5 10 15

10
-3

0

1

2

3

y
/h

(d) DNS, Le, Moin & Kim, 1997

Experiment, Jovic & Driver, 1994

RANS k-  SST

n
k
=2

n
k
=1/2

-5 0 5 10 15

10
-3

0

1

2

3

y
/h

(e) DNS, Le, Moin & Kim, 1997

Experiment, Jovic & Driver, 1994

RANS k-  SST

n
k
=2

n
k
=1/2

-2 0 2 4 6 8 10 12

10
-3

0

1

2

3

y
/h

(f) DNS, Le, Moin & Kim, 1997

Experiment, Jovic & Driver, 1994

RANS k-  SST

n
k
=2

n
k
=1/2

-5 0 5 10 15

10
-3

0

1

2

3

y
/h

(g) DNS, Le, Moin & Kim, 1997

Experiment, Jovic & Driver, 1994

RANS k-  SST

X
1c

X
2c

X
3c

-5 0 5 10 15

10
-3

0

1

2

3
y
/h

(h) DNS, Le, Moin & Kim, 1997

Experiment, Jovic & Driver, 1994

RANS k-  SST

X
1c

X
2c

X
3c

-2 0 2 4 6 8

10
-3

0

1

2

3

y
/h

(i) DNS, Le, Moin & Kim, 1997

Experiment, Jovic & Driver, 1994

RANS k-  SST

X
1c

X
2c

X
3c

-5 0 5 10 15

10
-3

0

1

2

3

y
/h

(j)
DNS, Le, Moin & Kim, 1997

Experiment, Jovic & Driver, 1994

RANS k-  SST

X
1c

X
2c

X
3c

-5 0 5 10 15

10
-3

0

1

2

3

y
/h

(k) DNS, Le, Moin & Kim, 1997

Experiment, Jovic & Driver, 1994

RANS k-  SST

X
1c

X
2c

X
3c

-2 0 2 4 6 8

10
-3

0

1

2

3

y
/h

(l) DNS, Le, Moin & Kim, 1997

Experiment, Jovic & Driver, 1994

RANS k-  SST

X
1c

X
2c

X
3c

Figure 9. Reynolds shear stress calculated at x/h = 4, x/h = 6 and x/h = 10 and normalized by the
inlet mean velocity (−u′v′/u2

0). (a) k perturbation with nk = 1.5 at x/h = 4, (b) k perturbation with
nk = 1.5 at x/h = 6, (c) k perturbation with nk = 1.5 at x/h = 10, (d) k perturbation with nk = 2
at x/h = 4, (e) k perturbation with nk = 2 at x/h = 6, (f) k perturbation with nk = 2 at x/h = 10,
(g) eigenvalue perturbation with δB = 0.1 at x/h = 4, (h) eigenvalue perturbation with δB = 0.1 at
x/h = 6, (i) eigenvalue perturbation with δB = 0.1 at x/h = 10, (j) eigenvalue perturbation with
δB = 0.25 at x/h = 4, (k) eigenvalue perturbation with δB = 0.25 at x/h = 6 and (l) eigenvalue
perturbation with δB = 0.25 at x/h = 10. X1c, X2c and X3c represent perturbations toward the three
corners of the barycentric map. DNS data [15] (−·); experimental data [9] (•); RANS k-ω SST model
(−). The uncertainty bounds are shown with gray areas.

4. Summary and Conclusions

In this article, we applied the framework, originally proposed by Emory et al. [6] for quantifying
the structural uncertainties in RANS models. The quantification consisted in bounding the regions,
where the most accurate results are certain to be located. This methodology focuses on the perturbation
of the Reynolds stress tensor in the momentum equation. The Reynolds stress tensor is decomposed
into components that represent the amplitude (turbulent kinetic energy), the shape (eigenvalues)
and the orientation (eigenvectors). This investigation focused only on the influence of the amplitude
and shape perturbations.

This perturbation is carried out by the turbulent kinetic energy and the eigenvalues of the
Reynolds stress tensor separately and is applied to the backward-facing step case using the open-source
software OpenFOAM. In this investigation, the following quantities were monitored: pressure and
friction coefficients at the wall, mean streamwise velocity field and the Reynolds stress tensor.
The investigation shows promising results. The results showed that for a specific amount of
perturbation, the model provides a range of values where the physics of the case are well represented.
An interesting feature of this research is that the perturbation of the turbulent kinetic energy shows
results as good as the perturbation of the eigenvalues. The eigenvalues have well-established limits of
the perturbation through the barycentric map, while the turbulent kinetic energy has not. This implies



Fluids 2019, 4, 113 11 of 13

that the amount of the perturbation applied to the turbulent kinetic energy is not chosen systematically,
thus it is left for future investigation.

In view of the results of this article, it is recommended for future work to focus on applying the
perturbation to other parameters of the Reynolds stress such as the eigenvectors or a combination that
optimizes the range that captures the most precise solution [7]. Recent studies [23,24] suggested that
machine learning can be used as a powerful tool to predict discrepancies in the magnitude, anisotropy
and orientation of the Reynolds stress tensor. It would be useful to continue applying this methodology
to a new set of cases to monitor its behavior.
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Appendix A. Implementation of the Reynolds Stress Perturbation in OpenFOAM

The application of the Reynolds stress perturbation results in the appearance of an extra term
(i.e., ∆Rij) in the right-hand side of Equation (2) as

∂tui + uj∂jui = ∂i p + ν∂j∂jui − ∂j(Rij + ∆Rij), (A1)

where ∆Rij is the discrepancy between the perturbed Reynolds stress tensor shown in Equation (14)
and the original one. This extra term is evaluated separately and added in OpenFOAM as a new line
of code into the momentum equations as highlighted in Figure A1.

// Momentum predictor

tmp<fvVectorMatrix> UEqn(

fvm::div(phi,U)
+turbulence->ficDevReff(U)
+fvc::div(deltaR)
==
fvOptions(U)
);

Figure A1. Modification to the Momentum predictor subroutine implemented in OpenFOAM.

Figure A2 shows the mean velocity field obtained from the baseline RANS solver. To better
describe the procedure of the Reynolds stress perturbation, three different locations are chosen and
their positions in the barycentric map are shown in Figure A3. This figure shows how the extracted
Reynolds stress tensor from the baseline case is perturbed toward different corners in the barycentric
map. This procedure is done for all the points in the domain and the perturbed Reynolds stress
tensor is computed following Equation (14). Next, the discrepancy between the perturbed Reynolds
stress tensor and the original one from the baseline case (i.e., ∆Rij) is evaluated (here using a separate
Matlab code) and added to the right-hand side of the momentum equations in OpenFOAM. The
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simulations are run again until the results are converged. The corresponding flowchart is also plotted
in Figure A4.

3

1 2

Figure A2. Mean velocity field in the x-direction, normalized with respect to the inlet velocity (ū/u0)
obtained from the baseline case. Three different locations have been chosen in the flow domain to
study their positions in the barycentric map. The points 1, 2 and 3 are respectively located at (h, 0.7h),
(10h, 0.7h) and (8h, 5h).

x1cx2c

x3c

x1cx2c

x3c

x1cx2c

x3c

(1) (2) (3)

Figure A3. Locations of the chosen points shown in Figure A2 in the barycentric map. The points were
perturbed towards the three limiting states and the amount of perturbation is δB = 0.25.

Figure A4. A flowchart describing the implementation of Reynolds stress perturbation in OpenFOAM.
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