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Abstract: One of the key factors in simulating realistic wall-bounded flows at high Reynolds numbers
is the selection of an appropriate turbulence model for the steady Reynolds Averaged Navier–Stokes
equations (RANS) equations. In this investigation, the performance of several turbulence models
was explored for the simulation of steady, compressible, turbulent flow on complex geometries
(concave and convex surface curvatures) and unstructured grids. The turbulence models considered
were the Spalart–Allmaras model, the Wilcox k-ω model and the Menter shear stress transport (SST)
model. The FLITE3D flow solver was employed, which utilizes a stabilized finite volume method
with discontinuity capturing. A numerical benchmarking of the different models was performed
for classical Computational Fluid Dynamic (CFD) cases, such as supersonic flow over an isothermal
flat plate, transonic flow over the RAE2822 airfoil, the ONERA M6 wing and a generic F15 aircraft
configuration. Validation was performed by means of available experimental data from the literature
as well as high spatial/temporal resolution Direct Numerical Simulation (DNS). For attached or mildly
separated flows, the performance of all turbulence models was consistent. However, the contrary was
observed in separated flows with recirculation zones. Particularly, the Menter SST model showed the
best compromise between accurately describing the physics of the flow and numerical stability.

Keywords: Navier–Stokes equations (RANS); Direct Numerical Simulation (DNS); turbulence models;
compressible flow

1. Introduction

Wall-bounded turbulent flows at high Reynolds numbers are mainly characterized by a wide range
of time and length scales (Pope [1]). In Direct Numerical Simulation (DNS), the full Navier–Stokes
(NS) equations are generally solved to capture all time scales and eddies in the flow. This is
an accurate approach that supplies extensive information, but it demands the use of a very fine
mesh, and significant computational resources, to properly capture features in the order of the
Kolmogorov scales [2]. Filtered Navier–Stokes equations, with an additional sub-grid scale stress
term, are employed in Large Eddy Simulation (LES), in which large scales or eddies are directly
resolved and the effects of the small scales are modeled [3]. The LES approach still requires high
mesh resolution in boundary layer flows, particularly, in the near-wall region. Furthermore, the use
of hybrid approaches (RANS-LES) to overcome the fine resolution needed in wall-bounded flows is
an emerging and promising area [4]; nevertheless, there is still much ground to cover for industrial
applications. From the perspective of performing turbulent industrial flow simulations, the workhorse
is still the use of the Reynolds Averaged Navier–Stokes equations (RANS), which are obtained by time
averaging the full NS equations. In this approach, almost the full power spectra of velocity fluctuations
and turbulent kinetic energy are modeled, while capturing the very large turbulent scales of low
frequencies. These equations require a model or closure to compute the Reynolds stresses, which arise
from the convective terms of the NS equations after applying the time averaging process. The selection
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of an appropriate turbulence model is crucial to accurately represent important physical aspects of
the flow, such as boundary layer separation and shock–boundary layer interaction [5]. Catalano and
Amato [5] tested five different turbulence models in 2D and 3D classical aerodynamic applications:
Spalart–Allmaras, Myong and Kasagi k-ε, Wilcox k-ω, Kok turbulent/non-turbulent (TNT), and Menter
SST, where k is the turbulent kinetic energy, ε is the turbulent dissipation and ω is the specific rate
of dissipation. They concluded that the Menter shear stress transport (SST) model exhibited the best
balance between the physical capabilities and the numerical robustness for the transonic and high-lift
flows explored. Knight et al. [6] performed a review of recent CFD simulations of shockwave turbulent
boundary layer interactions. In addition, Knight et al. [6] tested five different configurations: 2D
compression corner, 2D shock impingement, 2D expansion-compression corner, 3D single fin and
3D double fin in structured and unstructured grids by considering several two-equation turbulence
models. In general, they reported a fair agreement between RANS results to experiments, except
for heat transfer predictions of strong separated shock wave turbulent boundary layer interactions
where turbulence models still need to make some improvements. In addition, Manzari et al. [7]
successfully tested the k-ω turbulence model in 3D compressible flows on unstructured tetrahedral
grids. Furthermore, the use of multi-grid techniques for solution acceleration in 3D turbulent flows on
unstructured meshes constitutes a challenging problem [8].

In the present study, the one-equation Spalart–Allmaras model and the two-equation Wilcox k-ω
and Menter SST turbulence models were implemented within an innovative unstructured mesh finite
volume flow solver. We computed and validated not only global quantities (e.g., lift, drag and moment
coefficient) but also local and boundary layer parameters such as displacement/momentum thickness,
pressure coefficient, skin friction coefficient and streamwise velocity profiles. Consequently, this study
represents an extensive and thorough analysis of popular turbulence models in large scale systems at
experimental Reynolds numbers in compressible flows.

2. Governing Equations

The unsteady compressible Navier–Stokes equations are expressed, over a 3D domain Ω ⊂ <3

with closed surface Γ, in the integral form∫
Ω

∂Ui
∂t

dx +
∫

∂Ω
Fijnjdx =

∫
∂Ω

Gijnjdx, (1)

where~n = (n1, n2, n3) is the unit normal vector to Γ. In addition, the unknown vector of conservative
variables is expressed as

Ui =

 ρ

ρui
ρε

 (2)

where ρ is the fluid density, ui denotes the ith component of the velocity vector and ε is the specific
total energy and the inviscid and viscous flux vectors are expressed as

Fij =

 ρuj
ρuiuj + pδij
ui(ρε + p)

 Gij =

 0
τij

ukτkj − qj

 (3)

respectively. The quantity

τij = −
2
3

µ
∂uk
∂xk

δij + µ

(
∂ui
∂xj

+
∂uj

∂xi

)
, (4)

is the deviatoric stress tensor, where µ is the dynamic viscosity and δij is the Kronecker delta.
The quantity qj = −k∂T/∂xj is the heat flux, where k is the thermal conductivity and T is the
absolute temperature. The viscosity varies with temperature according to Sutherlands’s law and the
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Prandtl number is assumed to be constant and equal to 0.72. In addition, the medium is assumed to be
calorically perfect.

3. Solution Procedure

3.1. Hybrid Unstructured Mesh Generation

The computational domain was represented by an unstructured hybrid mesh for viscous problems.
The process of mesh generation began with the discretization of the domain boundary into a set of
triangular or quadrilateral meshes that satisfy a mesh control function specified by the user [9].
Additionally, the distribution of the mesh parameters [10], such as spacing, stretching and direction of
stretching, were described by a background mesh as well as point, line and planar sources. For viscous
flows, the boundary layers were generated using the advancing layer method [11] and the rest of the
computational domain was filled with tetrahedral elements using a Delaunay incremental Bowyer
Watson point insertion [12]. Hybrid unstructured meshes were constructed by merging certain elements
of this tetrahedral mesh in the boundary layers.

3.2. Spatial Discretization

The discretization of the governing equations can be performed in a number of different ways.
A computationally efficient approach was implemented, consisting on a cell vertex finite volume
method. This involved the identification of a dual mesh, with the medial dual being constructed
as an assembly of triangular facet, ΓK

I , where each facet was formed by connecting edge midpoints,
element and face centroids in the basic mesh, in such a way that only one node was contained within
each dual mesh cell. Hence, the dual mesh cells formed the control volumes for the finite volume
process. When hybrid meshes are employed, the method for constructing the median dual has to
be modified to ensure that no node lies outside its corresponding control volume. To perform the
numerical integration of the fluxes, a set of coefficients was calculated for each edge using the dual
mesh segment associated with the edge. The values of the internal edge coefficients, CI J

j , and the

boundary edge coefficients, DI J
j , are defined as follows,

CI J
j = ∑

K∈ΓI J

AΓK
I

nΓK
I

j , DI J
j = ∑

K∈ΓB
I J

AΓK
I

nΓK
I

j , (5)

where AΓK
I

is the area of facet ΓK
I , nΓK

I
j is the outward unit normal vector of the facet, ΓB

I J is the set of

dual mesh faces on the computational boundary touching the edge between nodes I and J and nΓK
I

j
denotes the normal of the facet in the outward direction of the computational domain. The numerical
integration of the fluxes over the dual mesh segment associated with an edge was performed by
assuming the flux to be constant, and equal to its approximated value at the midpoint of the edge,
i.e., a form of mid point quadrature. The calculation of a surface integral for the inviscid flux over the
control volume surface for node I is defined as follows,

∫
∂ΩI

Fjnjdx ≈ ∑
J∈ΛI

CI J
j

2

(
FI

j + FJ
j

)
+ ∑

J∈ΛB
I

DI J
j FI

j , (6)

where ΛI denotes the set of nodes connected to node I by an edge and ΛB
I denotes the set of nodes

connected to node I by an edge on the computational boundary. Thus, the last term is non-zero only in
a boundary node. Similar formula can be implemented for the viscous fluxes. The use of edge based
data structure has become widely used due to its efficiency in terms of memory and CPU requirements,
compared to the traditional element based data structure, especially in three dimensions.
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The resulting discretization is basically central difference in character. Therefore, the addition of
a stabilizing dissipation is required for practical flow simulations. This was achieved by replacing the
physical flux function by a consistent numerical flux function, such as the Jameson–Schmidt–Turkel
(JST) flux function [13] or the Harten–Lax–van Leer-Contact (HLLC) solver [14]. Discontinuity
capturing may be accomplished by the use of an additional harmonic term in regions of high pressure
gradients, identified by using a pressure switch.

3.3. Relaxation Scheme

The FLITE3D flow solver [15] can simulate both unsteady and steady problems. However, in this
investigation, a steady flow analysis was performed. Therefore, the relaxation scheme employed
consisted of a three-stage Runge–Kutta approach with local time stepping. The viscous and artificial
dissipation terms were only computed one time at every time step to reduce the computational
requirements of the scheme. The stability limit of this scheme or maximum CFL is 1.8, where CFL
is the Courant–Friedrich–Levy number. The local time step values for the momentum and energy
equations were computed based on inviscid and viscous term contributions [16]. Similarly, local time
steps were implemented for the solution of the corresponding transport equations of the turbulence
model approaches (either one- or two-equation models in the present study) with contributions of the
inviscid and viscous parts as well as a source term correction. More details can be found in [16].

4. Solver Parallelization

A parallel implementation of the flow solver was achieved by using the single program multiple
data concept in conjunction with standard Message Passing Interface (MPI) routines for message
passing. In the parallel implementation, at the start of each time step, the interface nodes of the
sub-domain with the lower number obtained contributions from the interface edges. These partially
updated nodal contributions were then broadcasted to the corresponding interface nodes in the
neighboring higher-number domains. A loop over the interior edges was followed by the receipt of
the interface nodal contributions and the subsequent updating of all nodal values. The procedure
was completed by sending the updated interface nodal values from the higher domain back to the
corresponding interface nodes of the lower domain. In addition, the computation and communication
processes took place concurrently. The employed approach was a global procedure in which the
agglomeration was performed across the parallel domain boundaries. Global agglomeration ensures
equivalence with a sequential approach for any number of domain, but increases the communication
load in the inner–grid mapping [8,16].

5. Turbulence Modeling in RANS

To obtain the compressible RANS equations, unsteady equations (Equation (1)) were averaged
in time to smooth the instantaneous turbulent fluctuations in the flow field, while still allowing the
capture of the time-dependency in the large time scales of interest. In many engineering problems,
this assumption is valid, but this averaging procedure breaks down if the time scale of the physical
phenomena of relevance is similar to that of the turbulence itself. For compressible flows, the density
weighted Favre averaging procedure is mostly employed [16]. The Favre averaging procedure applied
to Equations (1) generates the extra convective term:

τR
ij = −ρu′′i u′′j , (7)

which is the Favre averaged Reynolds stress tensor. The most straightforward approach is to associate
the unknown Reynolds stresses with the computed mean flow quantities by means of a turbulence
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model or closure. If the Boussinesq hypothesis is applied, this results in a linear relationship to the
mean flow strain tensor through the eddy viscosity µt [17],

τR
ij = µt

(
∂Ui
∂xj

+
∂Uj

∂xi
− 2

3
∂Uk
∂xk

δij

)
− 2

3
ρkδij, (8)

where k is the turbulent kinetic energy. The eddy viscosity depends on the velocity and the length scales
of the turbulent eddies, i.e., µt ∼ k1/2`, where ` is the turbulence length scale. In this study, one- and
two-transport-equation models were considered, in which additional partial differential equations
were solved to describe the transport of the eddy viscosity. Consequently, nonlocal and history
effects on µt were taken into account. In the one-equation turbulence model of Spalart–Allmaras [18],
a combination of the turbulent scales, through the viscosity-like variable, ν̄, is obtained by solving
an empirical transport equation. Two-equation turbulence models are complete, because transport
equations are solved for both turbulent scales, i.e., the velocity and the length scale. The original
k-ω model [17] exhibits a freestream dependency of ω, which is generally not present in the k-ε
model. Menter [19] combined the advantages of both models by means of blending functions,
which permits the switching from k-ω, close to a wall, to k-ε, when approaching the edge of a boundary
layer. A further improvement by Menter [19] is a modification to the eddy viscosity, based on the
idea of the Johnson–King model, which establishes that the transport of the main turbulent shear
stresses is crucial in the simulations of strong Adverse Pressure Gradient (APG) flows. This new
approach is called the Menter shear–stress transport model (SST). In particular, the Menter SST
turbulence model is well-known for its good performance in boundary layer flows subjected to APG,
with eventual separation.

5.1. Turbulent Transport Equations

In this section, a brief description of the governing equations for the three turbulence models
is presented. The differential equations are presented in the normalized form. A convenient scaling
guarantees a unit order of all variables, which decreases round-off errors of calculations. The reader
is referred to Appendix B of Sørensen’s thesis [16] for the scaling and the normalized version
of momentum and energy equations employed in the present study; however, the normalization
symbol ∗ is dropped here for simplicity. Furthermore, the dimensionless Spalart–Allmaras transport
equation [18] is expressed as;

1
St∞

∂ν̃

∂t︸ ︷︷ ︸
transient term

+ Uj
∂ν̃

∂xj︸ ︷︷ ︸
conv. term

= cb1[1− fv1]Sν̃︸ ︷︷ ︸
production term

+
1

Re∞σ

{
∂

∂xj

[
(ν + ν̃)

∂ν̃

∂xj

]
+ cb2

∂ν̃

∂xj

∂ν̃

∂xj

}
︸ ︷︷ ︸

diffusion term

− 1
Re∞

(
cw1 fw −

cb1

κ2 ft2

)( ν̃

d

)2

︸ ︷︷ ︸
dissipation term

+ Re∞ ft1(∆U)2︸ ︷︷ ︸
transition term

,

(9)

In Equation (9), the normalized quantity ν̃ is related to the eddy viscosity by

µt = ρν̃
χ3

χ3 + c3
v1

, (10)

where ν is the molecular kinematic viscosity of the fluid, χ = ν̃/ν, and cv1 is equal to 7.1.
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Additionally, St∞ = U∞t/L and Re∞ = ρU∞L/µ∞ are the Strouhal and Reynolds numbers,
respectively; Uj represents the time Favre-averaged velocity; and µ∞ is the freestream dynamic
viscosity. The rest of the parameters and constants are defined as follows:

S = |ω|+ ν̃

Re∞κ2d2 fv2, (11)

fv2 = 1− χ

1 + χ fv1
, (12)

fω = g

(
1 + c6

w3

g6 + c6
w3

) 1
6

, (13)

g = r + cw2r
(

r5 − 1
)

, (14)

r = min
(

ν̃

Re∞Sκ2d2 , 10
)

, (15)

ft2 = ct3exp(−ct4χ2), (16)

ft1 = ct1gtexp
[
−ct2

ω2
t

(∆U)2

(
d2 + g2

t d2
t

)]
, (17)

gt = min
(

0.1,
∆U

ωt∆x

)
, (18)

where |ω| is the vorticity magnitude, d is the distance from a given point to the nearest wall, cb1 = 0.1355,
σ = 2/3, cb2 = 0.622, κ = 0.41, cω1 = cb1/κ2 + (1 + cb2)/σ, cω2 = 0.3, cω3 = 2, ct1 = 1, ct2 = 2, ct3 = 1.1,
and ct4 = 2. Moreover, the variable ∆U is the difference in velocity between the point and the
associated trigger point, dt indicates the closest distance to such a trigger point or curve, ωt is the
vorticity magnitude at the associated trigger point, and ∆x is the surface grid spacing at this point.
The convective term is conveniently rewritten in conservative form,

Uj
∂ν̃

∂xj
=

∂(Ujν̃)

∂xj
− ν̃

∂Uj

∂xj
, (19)

which introduces an extra source term. Nevertheless, the contribution of this source term is
negligible [20]; thus, it is ignored in the present formulation.

Furthermore, the corresponding normalized transport equations in the Wilcox k-ω model [17]
for the turbulent kinetic energy, k, and the specific dissipation rate, ω, in compressible flows read
as follows:

1
St∞

∂(ρk)
∂t︸ ︷︷ ︸

transient term

+
∂(ρUjk)

∂xj︸ ︷︷ ︸
conv. term

= τij
∂Uj

∂xj︸ ︷︷ ︸
production term

− βkρωk︸ ︷︷ ︸
dissipation term

+
1

Re∞

∂

∂xj

[(
µ +

µt

σk

)
∂k
∂xj

]
︸ ︷︷ ︸

diffusion term

(20)

1
St∞

∂(ρω)

∂t︸ ︷︷ ︸
transient term

+
∂(ρUjω)

∂xj︸ ︷︷ ︸
conv. term

= α
ω

k
τij

∂Uj

∂xj︸ ︷︷ ︸
production term

− βωρω2︸ ︷︷ ︸
dissipation term

+
1

Re∞

∂

∂xj

[(
µ +

µt

σω

)
∂ω

∂xj

]
︸ ︷︷ ︸

diffusion term

, (21)

where βk = 0.09, βω = 3/40, σk = 2, σω = 2 and α = 5/9. The normalized eddy viscosity is defined as:

µt = Re∞ρk/ω. (22)
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In the Menter SST model for the ω equation, an extra term is considered in Equation (21), which
is called the cross-diffusion term,

2(1− F1)
ρσω2

ω

∂k
∂xj

∂ω

∂xj︸ ︷︷ ︸
cross-diffusion term

, (23)

where σω2 = 0.856. F1 is a blending function defined as,

F1 = tanh

{[
min

(
max

( √
k

βkωy
,

500ν

y2ωRe∞

)
,

4ρσω2k
CDkωy2

)]}
, (24)

and

CDkω = max

(
2ρσω2

ω

∂k
∂xj

∂ω

∂xj
, 10−10

)
. (25)

Thus, the blending function F1 generates values close to one far from the wall (k-ε model) and
almost zero values near the edge of the boundary layer (k-ω model). More details can be found in [19].
The main differences of Menter SST equations with respect to the Wilcox k-ω equations [17] can be
summarized as follows: (i) the consideration of a cross-diffusion term in the ω equation (k-ε model),
which makes the model insensitive to the freestream boundary condition of ω; (ii) the implementation
of a stress limiter for the maximum value of ω as well as a production limiter to impede the build-up
of turbulence in stagnation zones; and (iii) the application of a blending function to compute the
corresponding constants of the k-ε and k-ω models.

5.2. Discretization of the Turbulent Transport Equations

The turbulence model equations involve the solution of partial differential equations, which are
discretized in a similar manner as the governing equations of the flow. Nevertheless, to avoid
instabilities from the convective term, a first order upwind discretization was used plus the addition
of a term to introduce adequate dissipation for stabilization purposes:

∫
∂ΩI

Uj tu nj dx ≈ ∑
J∈ΛI

CI J
j

2

(
U I

j tuI + U J
j tuJ

)
−

CI J
j

U J
j tuJ −U I

j tuI

tuJ − tuI

 (tuJ − tuI)+

∑
J∈ΛB

I

DI J
j FI

j ,
(26)

where tu stands for turbulence unknowns (ν̃, k and ω). Furthermore, the volume integrals were
calculated using the midpoint rule and the gradients appearing in the model were calculated as follows:∫

ΩI

∂Ui
∂xj

dx =
∫

∂ΩI

Ui nj dx, (27)

Equation (27) in discrete form reads,

∂Ui
∂xj
|I ≈ ∂h

j U I
i ≡

1
VI

 ∑
J∈ΛI

CI J
j

2

(
U I

i + U J
j

)
+ ∑

J∈ΛB
I

DI J
j U I

i

 , (28)

where VI is the volume of the control volume. Equations (27) and (28) are expressed only for the
velocity but can be applied to any flow parameter. The second-order diffusion term was calculated
using the compact stencil form according to Equation (3.38) in [16], where the gradient along the edges
are evaluated by means of the compact finite difference scheme.
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6. Initial and Boundary Conditions

Generally speaking, all run tests were started from freestream conditions. Due to the similarity of
the two-equation models, the steady solution by the Wilcox k-ω model was used as starting condition
for the Menter SST model to save computational resources. The boundary conditions for the flow
parameters (i.e., velocity, density and total energy) are discussed in [15]. In this section, focus is given
to the corresponding boundary conditions of the turbulence variables. Furthermore, the boundary
conditions employed in this investigation were classified as: solid wall, inflow, outflow, symmetry and
engine boundaries.

6.1. Solid Wall Boundary

In the Spalart–Allmaras model, the eddy viscosity was set to zero since no velocity fluctuations
were present at such locations. Similarly, the turbulent kinetic energy, k, was assigned a zero value
at the wall. The specific dissipation rate, ω, did not possess a natural boundary condition at the
wall. However, based on the asymptotic solution given by Wilcox [17], the following value for ω was
prescribed according to the implemented normalization:

ωo =
6νw

βy2
wReL

, (29)

where νw is the laminar kinematic viscosity at the wall, β is a constant (= 3/40), yw is the local first
off-wall point and ReL is the Reynolds number.

6.2. Inflow and Outflow Boundaries

In the Spalart–Allmaras turbulence model, the independent variable, ν̃, was set to ten percent
of the laminar viscosity at the inflow and outflow. In a similar way and based on recommendations
by Spalart and Rumsey [21], the following values for k∞/U2

∞ and ω∞/(U∞/L) were adopted in the
two-equation turbulence models at these boundaries: 1× 10−6 and 5, respectively.

6.3. Symmetry Boundary

A symmetry condition is defined as a boundary where the normal velocity component is zero,
being the density and total energy normal derivative zero, as well. Furthermore, a symmetry condition
can also be compared to an inviscid wall (streamline). Hence, the turbulent eddy viscosity was
set to zero at this location in turbulence models. If the configuration of the problem possesses a
symmetry plane, this represents a very convenient way to significantly reduce the computational
resources required.

6.4. Engine Boundary

Some test cases in the present study considered jet engines, such as the F15 aircraft. The internal
parts of the engines were assumed to be outside the computational domain. Therefore, it was necessary
to prescribe the corresponding boundary conditions at the engine inlets and outlets. For engine inlets,
the mass flow, me, is defined as follows:

me = −
∫

Γe
ρujne

j dx, (30)

where Γe is the inlet engine surface and ne
j is the corresponding unit normal. Furthermore,

the independent variables of the turbulence model equations were prescribed fixed values at engine
inlets and outlets. In general, freestream values for the turbulence variables were set at the engine
inflow and outflow.
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7. Results and Discussion

The Spalart–Allmaras, Wilcox k-ω and Menter SST turbulence models were implemented in the
FLITE3D flow solver [15]. The results of classical aerodynamic test cases are presented in this section.

7.1. Supersonic Flat Plate

Although the flat plate shows a very simple geometry without a streamwise pressure gradient,
it is very appropriate to evaluate the performance of any turbulence model due to the extensive
experimental data, theoretical/empirical correlations and high-resolution numerical data available
from the literature. In this study, a supersonic flat plate at a freestream Mach number, M∞, equal to
2 was computed. The Reynolds number, based on the streamwise x-coordinate was 1× 107 per unit
length. The computational domain dimensions shown in Figure 1a were 10.4 m × 0.78 m × 0.78 m
along the x-streamwise, y-vertical and z-spanwise directions, respectively. The boundary layer
thickness by the end of the flat plate was δre f ≈ 0.06 m, therefore, the computational box in terms of
the reference boundary layer thickness was 173δre f × 13δre f × 13δre f . Hence, the computational box
was wide enough to eliminate any influence from the lateral faces on the flow statistics. Furthermore,
numerical results shown here were taken from the vicinity of the central longitudinal plane, far from
lateral surfaces. Additionally, the height of the computational domain was sufficient (∼ 13δre f ) to
allow a natural streamwise developing of the turbulent boundary layer without interference of the top
boundary condition. The hybrid mesh consisted of 1.1 million tetrahedral and 0.5 million prismatic
elements. The boundary layer consisted of 24 layers with the closest point to the wall located at
a distance of approximately y+ ≈ 0.7 in wall units. A close-up of the boundary layer elements can be
observed in Figure 1b. A region with a bottom symmetry condition was imposed upstream of the flat
plate leading edge. Downstream of the flat plate (where the no-slip condition was assumed for the
velocity field), a freestream condition was prescribed. Similarly, at inflow, outflow and top surfaces,
freestream values were imposed. An isothermal wall condition Was assumed for the temperature field
with a wall to freestream temperature ratio (Tw/T∞) equal to 1.75. This was a 3D case with a symmetry
condition assumed in lateral faces. Iso-contours of the turbulent kinetic energy, k∗ = k/U2

∞, are
shown in Figure 1c) from the Menter SST model. The starting and ending points of the flat plate were
represented by two cross-sectional YZ cutting planes. The full X−length of the flat plate was about
87δre f . Figure 1c presents the natural evolution of k∗ in the direction of the flow, which was mainly
responsible for triggering turbulence.

Figure 2 shows the streamwise variation of the skin friction coefficient, C f , as a function of
Rex. Generally speaking, the corresponding values obtained by Spalart–Allmaras, Wilcox k-ω and
Menter SST turbulence models depicted an excellent agreement with theoretical correlations from
White [22] and Schlichting [23], particularly by the end of the flat plate. However, the Menter SST
model exhibited a shorter transition and the C f profile quickly tended to realistic fully-turbulent
values downstream from the leading edge. Additionally, Direct Numerical Simulation (DNS) data
from Araya and Jansen [24] are also included for a supersonic isothermal flat plate (Tw/T∞ = 2.25) at
a freestream Mach number, M∞, of 2.5 and low Reynolds numbers. Again, the Menter SST turbulence
model exhibited a good agreement of C f with high spatial/temporal numerical results. Generally
speaking, the mean streamwise velocity along the boundary layer followed the DNS profile of Araya
and Jansen [24] and the 1/7 power-law distribution in the outer region (i.e., y/δ > 0.1), as shown in
Figure 3a for Rex = 3.4× 107. Nevertheless, all velocity profiles computed from turbulence models
depicted some deviations in the inner region (where the 1/7 power law did not work properly)
from the DNS profile. The thermal boundary layer plays a crucial role in the transport phenomena
of compressible wall-bounded flows; consequently, its accurate understanding and modeling are
very important. In other words, the coupled behavior of the velocity and thermal field should be
properly represented. In Figure 3b, the computed temperature distributions, T/T∞, as a function
of the mean streamwise velocity, U/U∞, are plotted at a streamwise station where Rex = 3.4× 107.
For comparison, the theoretical Crocco–Busemann relation (see page 502 in White [22]) is also included.
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The Crocco–Busemann relation assumes a linear variation of the total enthalpy across the boundary
layer in zero pressure gradient with a unitary turbulent Prandtl number. Furthermore, present RANS
thermal profiles showed good agreement with the quadratic Crocco–Busemann relationship. It is
worth mentioning that the Crocco–Busemann relation is a function of the local wall-temperature;
therefore, a slightly different theoretical profile was obtained for each turbulence model.

(a) (b)

(c)

Figure 1. Mesh schematic (a); close-up of the near wall region (b); and iso-contours of turbulent kinetic
energy from Menter SST (c) in the supersonic flat plate.

Figure 2. Skin friction coefficient as a function of Rex.
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(a) (b)

Figure 3. Mean streamwise velocity (a); and temperature distribution (b) in the supersonic flat plate.

7.2. Transonic RAE 2822 Airfoil

This evaluation test consisted on the simulation of steady turbulent transonic flow around the
RAE2822 airfoil, which is the standard test Case 9 [25] for turbulence modeling. The freestream
Mach number was M∞ = 0.73, the Reynolds number was 6.5 × 106 and the angle of attack was
α = 2.79◦. This problem was solved using a 3D hybrid and unstructured mesh. The mesh consisted
of 4.2 million tetrahedral elements, 1.9 million prismatic elements and 2 thousand pyramid elements.
The total number of elements was approximately 6.1 million. The boundary layer consisted of 40 layers
with the closest point to the wall located at a distance of y/c = 0.5× 10−6 or approximately y+ ≈ 0.1–0.4
in wall units.

Table 1 shows the computed values of lift, drag and moment coefficients for the Spalart–Allmaras,
Wilcox k-ω and Menter SST turbulence models, together with experimental data from the AGARD
AR–138 report [25] and other numerical simulations in 2D and structured meshes [26,27]. In Table 1,
N/A stands for Not Available. For this simulation case, all turbulence models produced values
of CL within 11 lift counts (1 lift count = 0.001) with respect to experiments by Cook et al. [25].
Similarly, the predicted total drag coefficients, CD total , showed good agreement with experiments with
a maximum discrepancy of 1.5 drag counts (1 drag count = 0.0001), at most, for the Menter SST model;
nevertheless, it generated the most accurate moment coefficient at 25% of the chord, Cm 25%.

Table 1. Lift, drag and moment coefficients in RAE2822.

SA k-ω SST Exp. [25] Num. [26] Num. [27]

CL 0.801 0.811 0.792 0.803 0.794− 0.824 0.824
CD total 0.0175 0.0178 0.0182 0.0168 0.0164− 0.0165 0.0165

CD f riction 0.0054 0.0054 0.0064 N/A 0.0054− 0.0055 0.0055
Cm 25% −0.1121 −0.1144 −0.1099 −0.099 −0.0874 N/A

In general, the three models are in good agreement with the experimental results and other
simulation values, as shown in Table 1. Furthermore, the pressure (Cp) and skin friction (C f ) coefficients
are depicted in Figure 4, together with the corresponding experimental data from the AGARD AR–138
report [25]. The predicted values of Cp in the upper surface looked very similar in all turbulence models.
The weak shock at x/c ≈ 0.05 was not fully captured by turbulence models with discrepancies in the
order of 9% in peaks of Cp. Downstream, a quasi-zero pressure gradient zone with almost constant
values of Cp and about half-chord in length was observed. The second and stronger shock located at
x/c ≈ 0.55 was accurately captured by all models. Perhaps, the Menter SST slightly separated from the
experimental values by the end of the shock (i.e., x/c ≈ 0.57). The strong shock was characterized by
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a sharp increase of wall pressure. The presence of a very strong APG induced a small flow separation
zone, which is discussed below. Beyond this zone of “pockets” with supersonic flow, the wall pressure
kept increasing towards the trailing edge, but at a moderate rate. In addition, the numerical predictions
of Cp on the lower surface were almost identical to the experimental values given by all turbulence
models. The skin friction coefficient is defined as C f =

τw
1/2ρeU2

e
, where τw is the wall shear stress, and ρe

and Ue are the density and velocity at the edge of the boundary layer, respectively. From the results
in Figure 4b, it was inferred that the closest values to experiments were produced by the Menter
SST model in the upper side, particularly at the strong shock location (i.e., x/c ≈ 0.55). Furthermore,
the Spalart–Allmaras and Wilcox k-ω models were observed to perform similarly; however, the Wilcox
k-ω was the only turbulence model that predicted a shock-induced separation due to the presence of
a very strong APG, with a small recirculating zone around 0.55 < x/c < 0.60, as shown in Figure 4b.
All models slightly underpredicted the experimental value of the skin friction on the lower surface.
Figure 5 shows iso-contours of the Mach number for the Wilcox k-ω model. This transonic regime
was characterized by the formation of regions or “pockets" with supersonic flow. Since the flow must
return to its freestream conditions by the time of reaching the trailing edge, this caused the formation
of a strong shock by x/c ≈ 0.55 where subsonic flow was observed beyond that point.

During the mesh generation, a good resolution was ensured by clustering the first-off wall point
well inside the linear viscous layer (i.e., y+ < 4) to accurately predict the skin friction coefficient.
Accordingly, the distance distribution of the first off-wall point in wall units, ∆z+w , along the RAE2822
airfoil and based on the Menter SST model is shown in Figure 6 together with the airfoil coordinates
in the right vertical axis. It can be seen that ∆z+w was around 0.4 in the vicinity of the leading edge
for the lower surface; however, ∆z+w was lower than 0.1 in the upper surface, where the flow faced
more complex pressure changes. Consequently, the high spatial resolution of the employed mesh was
demonstrated. In Figure 7, profiles of the mean streamwise velocity downstream of the strong shock in
the upper surface (i.e., at x/c = 0.65 and 0.75) are depicted. Notice that the mean streamwise velocity
was normalized by the local velocity at the edge of the boundary layer, Ue. In general, for velocity
profiles shown in Figure 7a,b, the Menter SST model produced the most accurate velocity profiles
of the three turbulence models tested in this study, when compared to experimental values from
Cook et al. [25]. It is interesting to point out that both velocity profiles at x/c = 0.65 and 0.75 were
located in a zone of very strong APG or increasing pressure, as shown in Figure 4a. Furthermore,
the Shear Stress Transport (SST) formulation by Menter [19] focused on improving the performance of
this turbulence model in adverse pressure gradient flows. Thus, the results depicted in Figure 7a,b
support the previous statement. In addition, the corresponding displacement thickness, δ∗, momentum
thickness, θ∗, and, shape factor H (= δ∗/θ∗) were computed at these stations. These integral boundary
layer parameters (i.e., δ∗ and θ∗) are defined as follows for compressible flows,

δ∗ =
∫ δ

0

(
1− ρU

ρeUe

)
dz, (31)

θ∗ =
∫ δ

0

ρU
ρeUe

(
1− U

Ue

)
dz, (32)

where subscripts e stands for values at the edge of the boundary layer. In Table 2, the computed
values of δ∗, θ∗ and H are exhibited for the three turbulence models together with experimental
data from Cook et al. [25]. Furthermore, it was established that the three models analyzed in this
investigation gave a similar level of accuracy on the calculation of the boundary layer parameters;
nevertheless, the Menter SST was slightly superior to the other models with an average discrepancy
of 5% with respect to experiments. In addition, the knowledge of the shape factor, H, in turbulent
flows is important in assessing how strongly the APG is imposed. In fact, the higher is the value of
H, the stronger is the APG. Similarly, it is well known that any flow subjected to strong deceleration
is prone to separation, where most of the turbulence models find enormous difficulties. In this
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opportunity, we picked up two stations in the RAE2822 airfoil (i.e., x/c = 0.65 and 0.75) with strong
APG or high shape factors. The idea was to evaluate the performance of the turbulence models in
extreme conditions. Generally speaking, the Menter SST model showed the best performance in
describing the physics of the flow subjected to strong APG.

Table 2. Boundary layer parameters at x/c = 0.65 and 0.75 in the RAE2822 airfoil.

Location Parameter SA k-ω SST Exp. [25]

x/c = 0.65
δ∗ 0.004782 0.005029 0.005304 0.004956
θ∗ 0.001816 0.001794 0.002010 0.002043
H 2.633 2.803 2.638 2.426

x/c = 0.75
δ∗ 0.006571 0.006630 0.007276 0.006884
θ∗ 0.003032 0.003013 0.003204 0.002999
H 2.167 2.201 2.271 2.296

(a) (b)

Figure 4. Pressure (a); and skin friction (b) coefficient in the RAE2822 airfoil.

Figure 5. Iso-contours of Mach number (Wilcox k-ω model).
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Figure 6. Distance distribution of the first off-wall point in wall units along the RAE airfoil for the
Menter SST model.

(a) x/c = 0.65 (b) x/c = 0.75

Figure 7. Mean streamwise velocity distribution in the RAE2822 airfoil.

7.3. ONERA M6 Wing

The third test case considered the simulation of the flow over the ONERA M6 wing [28],
where the freestream Mach number was M∞ = 0.84, the angle of attack was α = 3.06◦ and the Reynolds
number based on the mean geometric chord was 1.2 × 107. The hybrid mesh employed consisted of
6.3 million tetrahedral elements, 2.5 million prisms and 11.6 thousand pyramids. The surface mesh
consisted of 1.1 million triangular elements. The mesh had 35 viscous layers and the first off-wall point
was located at y+ ≈ 0.4 in wall units.

The values of lift and drag coefficient for the Spalart–Allmaras, Wilcox k-ω and Menter SST
turbulence models are shown in Table 3 together with numerical results from Le Moigne and Qin [29]
and Nielsen and Anderson [30]. A maximum of nine lift counts deviation in the lift coefficient CL
between the three turbulence models was observed. In addition, a maximum of 14 drag counts
difference in the drag coefficient CD was computed, of which nine drag counts were due to the
friction contribution to the drag coefficient. Furthermore, the present numerical results of lift and drag
coefficients are in good agreement with numerical values by Le Moigne and Qin [29] and Nielsen
and Anderson [30], who employed the Baldwin–Lomax and Spalart–Allmaras turbulence model,
respectively. The pressure coefficient profiles Cp at different sections across the wing span are depicted
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in Figure 8. All three models captured reasonably well the corresponding location of both shocks at
each wing span section, given by abrupt modifications on Cp. The most significant discrepancies were
observed at y/(b/2) = 0.8, where none of the three models were able to appropriately represent the
shock within 0.25 < x/c < 0.35. However, a similar behavior of the Spalart–Allmaras and Wilcox
k-ω turbulence models at y/(b/2) = 0.8 was reported by Huang et al. [31], Jakirlić et al. [32] and
Nielsen and Anderson [30]. The skin friction coefficient C f is plotted in Figure 9 at spanwise stations
y/(b/2) = 0.9 and 0.95. These figures show the good agreement among all turbulence models about
the location of the flow separation point x/c ∼ 0.25 and 0.2 for y/(b/2) = 0.9 and 0.95, respectively.
The downstream recovery of C f was different in all turbulence models, with the Wilcox k-ω and Menter
SST turbulence models predicting similar reattachment lengths and Spalart–Allmaras producing the
largest reattachment length. The Menter SST model induced higher values for the skin friction
downstream of the reattachment point, which was consistent with the largest values of CD f riction
shown in Table 3.

(a) y/(b/2) = 0.2 (b) y/(b/2) = 0.44

(c) y/(b/2) = 0.65 (d) y/(b/2) = 0.8

Figure 8. Cont.
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(e) y/(b/2) = 0.9 (f) y/(b/2) = 0.95

Figure 8. Pressure coefficient distributions in the ONERA M6 wing at α = 3.06◦.

(a) y/(b/2) = 0.9 (b) y/(b/2) = 0.95

Figure 9. Skin friction distribution in the ONERA M6 wing at α = 3.06◦.

Table 3. Lift and drag coefficients in ONERA M6 wing at α = 3.06◦.

Aerodynamic Coeff. SA k-ω SST Num. [29] Num. [30]

CL 0.260 0.262 0.253 0.270 0.253
CD total 0.0175 0.0179 0.0189 0.0174 0.0168

CD f riction 0.0048 0.0051 0.0057 0.0050 N/A

Figure 10 shows iso-surfaces of negative streamwise velocities normalized by the freestream
velocity U∞. The recirculating flow bubble in dark blue (identified by a white circle) predicted by
the Spalart–Allmaras model was slightly larger than that of predicted by the Menter SST model.
Iso-contours of the streamwise velocity, normalized by the freestream velocity U∞, are depicted in
Figure 11 in Menter SST at y/(b/2) = 0.9, where a strong shock wave can be clearly observed around
x/c ∼ 0.25 of the upper surface. Furthermore, the interaction of this shock with the turbulent boundary
layer provoked a recirculating zone represented by the dark blue area.
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(a) Spalart–Allmaras

Recirculation zone

(b) Menter SST

Figure 10. Iso-surfaces of streamwise velocity over the upper surface in the ONERA M6 wing at
α = 3.06◦ (flow from left to right).

(a)

(b)

Figure 11. Iso-contours of streamwise velocity in Menter SST at y/(b/2) = 0.9 (a) and zoom over the
leading edge (b) in the ONERA M6 wing at α = 3.06◦ (flow from right to left).
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7.4. Generic F15 Aircraft Configuration

The last example corresponds to a generic F15 aircraft configuration, which represents a very
complex and challenging geometry for CFD simulations with concave and convex surface curvatures.
The freestream Mach number was M∞ = 0.9, the Reynolds number, based on the airplane length
(Lx ∼ 18 m), was 3.58 × 108 and the angle of attack was five degrees. The hybrid mesh consisted of
12.5 million nodes and 49 million elements (36 million tetrahedra, 12.7 million prisms and 48.5 thousand
pyramids). Due to the spanwise symmetry nature of the problem, only half of the model was used
for the simulation. In Figure 12a, the employed surface mesh is plotted by mirroring the half-aircraft
grid across the symmetry plane. In addition, details of the viscous layers can be seen by means of the
cut plane at x/Lx ≈ 0.67 in Figure 12b. Additionally, the boundary layer was made of 44 layers and
the first off-wall point was prescribed at 1 × 10−5 m, which ensured that the location of this point
was in the linear viscous layer for an accurate skin friction computation. A great deal of thought
was given to the design of all computational meshes and dimensions in the present study to ensure
grid-independent numerical results. The selected mesh spacing distribution, shown in this section,
was the result of grid convergence study that was carried out to obtain grid independent results.
The numerical simulations were run on 128 processors. Table 4 shows the lift coefficient, CL, and the
drag coefficient, CD, for each turbulence model. The numerical results of CL obtained by the three
turbulence models were consistent with a maximum difference of seven lift counts. Furthermore,
the largest discrepancy observed in the CD coefficient was 24 drag counts between the Menter SST and
Wilcox k-ω turbulence models.

Table 4. Lift and drag coefficients in F15 aircraft at α = 5.0◦.

Aerodynamic Coeff. Spalart–Allmaras Wilcox k-ω Menter SST

CL 0.181 0.174 0.175
CD total 0.0397 0.0374 0.0398

In Figure 13a, iso-contours of the pressure coefficient Cp over the entire F15 aircraft configuration
are depicted. Strong shock waves were observed on the canopy over the cock pit, leading edge of
wings and between the vertical tails. The cut plane in Figure 13b at x/Lx ≈ 0.67 depicted high values
of Cp toward the wing tip. In addition, a top view of iso-contours of Cp are shown in Figure 14.
The value of the pressure coefficient at four points (labeled as I–IV in Figure 14) were compared with
flight and wind tunnel data from Webb et al. [33], as shown in Figure 15. In general, the present
numerical results are in good agreement with the experimental wind tunnel data. Furthermore, it can
be noticed that the pressure coefficients given by the Menter SST model showed a better match with
experimental data than those calculated by Spalart–Allmaras and Wilcox k-ω models. In addition,
the most significant discrepancies of the numerical results of Cp with experiments were found in the
region 0.3 < x/Lx < 0.5, just above the turbine intake. The discrepancy can be attributed to the
difference between the estimated engine mass flow prescribed and the used engine mass flow during
the flight test. This was emphasized by the significant scattering between the experimental data (in
flight and wind tunnel), particularly, at Points I and II. In this zone, the different turbulence models
predicted different separation regions, which are discussed below. Hence, this resulted in different
local flow patterns that induced different pressure coefficients.
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(a) Front view of the whole grid configuration. (b) Cross-sectional cut at x/Lx ≈ 0.67.

Figure 12. Surface mesh in the F15 aircraft configuration.

(a) Whole F15 aircraft configuration. (b) Cross-sectional cut at x/Lx ≈ 0.67.

Figure 13. Iso-contours of the pressure coefficient in the F15 aircraft configuration (Cp range of color
contour as in Figure 14).

1 x/Lx

1

y/Ly

0.50

0.5

I II III
IV

Figure 14. Iso-contours of pressure coefficient in the upper surface of the F15 aircraft.
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F15 airplane
M∞ = 0.9
ReL = 358x106

α = 5°

Figure 15. Variation of the pressure coefficient in the top surface along x/Lx of F15 aircraft for present
numerical data (open symbols) experimental data (closed symbols).

The skin friction coefficient C f at a spanwise location of y = 1m or y/Ly = 0.15, where Ly = 6.52 m
is the semi-span length of the aircraft, is plotted in Figure 16. The study of the drag coefficient due
to friction showed that this section had the largest discrepancy between the three turbulence models,
as observed in Figure 16a. Figure 16b indicates that the Wilcox k-ω model predicted two separation
bubbles at x/Lx ≈ 0.325 and 0.36, respectively, while the other two models predicted a single separated
region (i.e., at x/Lx ≈ 0.35) with the Menter SST predicting a much larger separation region than
that computed by the Spalart–Allmaras model. Furthermore, the iso-contours of streamwise velocity
(normalized by the freestream velocity U∞) by the Menter SST model, as shown in Figure 17, indicated
the presence of a lengthy recirculation zone with negative values of the velocity above the turbine
intake, given by the shock wave-boundary layer interaction.

(a) (b)

Figure 16. Skin friction coefficient in the upper surface of F15 at y/Ly = 0.15 (a); and zoom of the
separated flow zone (b).



Fluids 2019, 4, 81 21 of 24

Figure 17. Iso-contours of the streamwise velocity at y/Ly = 0.15 (flow from right to left).

Figures 18 and 19 show the pressure coefficients on the upper and lower surfaces of the wing
at two different spanwise locations, y/Ly = 0.36 and 0.59, respectively. In addition, the vertical
coordinates, z, of the local profile are represented by the vertical axis on the right. It is shown in
Figure 18a that, at y/Ly = 0.36, the Cp profiles predicted by the three turbulence models showed
similar upper peak values in the vicinity of the leading edge, i.e., Cp ≈ −1. Hence, it can be concluded
that the pressure difference between the surface static pressure to the freestream static pressure was
equal to the freestream dynamic pressure in absolute value at this location. On the other hand,
the Wilcox k-ω model predicted a stronger second shock wave located at x/Lx ≈ 0.7. In the lower side,
a moderate APG zone was observed in 0.55 < x/Lx < 0.6, as shown in Figure 18b, followed by a nearly
ZPG region. Furthermore, Figure 19a shows similar peak values of Cp in the upper surface and close to
the leading edge at station y/Ly = 0.59 by all three turbulence models. However, the Spalart–Allmaras
model predicted a much stronger second shock located further downstream of the leading edge (at
x/Lx ≈ 0.7) than those predicted by the Menter SST and Wilcox k-ω model. All turbulence models
exhibited similar Cp distributions in the lower surface, as shown in Figure 19b.

(a) (b)

Figure 18. Pressure coefficients of F15 in the upper (a) and lower (b) surfaces at y/Ly = 0.35.
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(a) (b)

Figure 19. Pressure coefficients of F15 in the upper (a) and lower (b) surfaces at y/Ly = 0.59.

8. Conclusions

An assessment of three popular turbulent models was performed in 3D aerodynamic cases.
The FLITE3D flow solver, in conjugation with the Spalart–Allmaras, the Wilcox k-ω and the Menter
SST turbulence models, was applied to the supersonic flat plate, RAE2822 airfoil, ONERA M6 wing,
and F15 aircraft.

The Menter SST model exhibited a short developing section in the supesonic flat plate downstream
of the edge. The transonic RAE2822 airfoil possessed a strong shock–boundary layer interaction
with an induced separation. The ONERA M6 wing exhibited a very complex flow phenomena
such as double shocks, strong APG and streamline curvature effects. In addition, the computed
global lift and drag coefficients (CL and CD) over the F15 aircraft by all turbulence models were very
consistent; however, local pressure coefficients by the Menter SST model were in better agreement
with experimental values in [33].

Generally speaking, numerical results have been very consistent for the three turbulence models.
For attached flows or middle separated flows, there was not a clear superiority of the two-equation
turbulence models over the one-equation Spalart–Allmaras model. However, the contrary was
observed in separated flows with recirculation zones. Particularly, the Menter SST model showed
the best compromise between accurately describing the physics of the flow and numerical stability.
The Shear Stress Transport (SST) formulation might be the reason for this. Future investigation will
focus on unsteady flow simulations. This could be more appropriate in realistically capturing the
complex turbulent structures governed by shock-boundary layer interactions and highly-separated
flows; in particular, at the transonic regime.
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