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Abstract: Amplitude modulation of a propagating wave train has been observed in various media
including hydrodynamics and optical fibers. The notable difference of the propagating wave
trains in these media is the magnitude of the nonlinearity and the associated spectral bandwidth.
The nonlinearity and dispersion parameters of optical fibers are two orders of magnitude smaller
than the hydrodynamic counterparts, and therefore, considered to better assure the slowly varying
envelope approximation (SVEA) of the nonlinear Schrédinger equations (NLSE). While most optics
experiment demonstrate an NLSE-like symmetric solutions, experimental studies by Dudley et al.
(Optics Express, 2009, 17, 21497-21508) show an asymmetric spectral evolution in the dynamics of
unstable electromagnetic waves with high intensities. Motivated by this result, the hydrodynamic
Euler equation is numerically solved to study the long-term evolution of a water-wave modulated
wave train in the optical regime, i.e., at small steepness and spectral bandwidth. As the initial
steepness is increased, retaining the initial spectral bandwidth thereby increasing the Benjamin-Feir
Index, the modulation localizes, and the asymmetric and broad spectrum appears. While the deviation
of the evolution from the NLSE solution is a result of broadband dynamics of free wave interaction,
the resulting asymmetry of the spectrum is a consequence of the violation of the SVEA.

Keywords: hydrodynamic rogue waves; optical rogue waves; scale separation; high-order spectral
method; nonlinear Schrédinger equation

1. Introduction

Freak waves or rogue waves in the ocean have been a subject of research for physicists,
oceanographers, and engineers for several decades. Marine accidents may have been related to
encounters of ships with freak waves [1-3] and several freak wave incidents were reported from
offshore platforms [4,5]. Whether to take the freak waves into consideration in the design criterion of
ships and offshore platforms relates to the occurrence probability of freak/rogue waves. Recent studies
of freak/rogue waves in realistic sea-states show that the probability is well explained by a second
order theory [6-8] because the modulational instability (MI) is suppressed due to the broadness of
the directional spectrum [9-12]. However, even in directional seas, coherent nonlinear wave groups
exist and persist for a prolonged lifetime [13,14]. The dynamics governing the evolution of such wave
groups is a narrow-banded process represented by the nonlinear Schrodinger equation (NLSE) [15,16].
The details of the dynamics and kinematics of the modulated wave train have been studied extensively
since the first experimental discovery of the disintegration of the Stokes wave by Benjamin and Feir [17].
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It has been demonstrated in wave tank experiments that a hydrodynamic counterpart to the analytical
solution of the NLSE [18] does exist [19-21], yet deviates due to broadband process [22-24].

On the contrary, experimental evidence of the NLSE-like wave evolution was reported following the
first discovery of optical rogue waves by Solli et al. [25]. The variations of the Akhmediev breathers (AB) [18]
were reproduced in high-intensity lasers in optical fiber [26-29]. These studies revealed that a moderate
perturbation to the continuous wave train evolves in space such that an intense wave pulse is generated
due to ML Concurrently, symmetric broadening of the spectrum results and hence a super-continuum is
generated [30]. The experimental measurements of Akhmediev breathers in photonic crystal fiber using
nanosecond pulses by Dudley et al. [31] showed that as the intensity increased, asymmetric spectrum
evolved and a state of a “fully-developed” super-continuum was attained at 98 W. The spectrum is no
longer triangular, and the spectrum somewhat resembles the Peregrine breather solution [32,33] and is
even broader than that, despite the fact that the initial perturbation is periodic in time.

The study of Dudley et al. [31] motivated us to investigate hydrodynamic MI in the optical
regime, i.e., small steepness and spectral bandwidth. The asymmetric evolution of the hydrodynamic
MI is often attributed to the additional terms of the extended NLSE first derived by Dysthe [34],
which is equivalent to the generalized NLSE used in optics [35]. Since the nonlinearity of water
waves is two orders of magnitude larger than the optical waves, the dynamical similarity implies that
spectral bandwidth is extremely small in the optical regime. In other words, slowly varying envelope
approximation is appropriate [36]. Then, why was the NLSE dynamics insufficient to reproduce
the optical breathers? To answer this question, we used the hydrodynamic equation without any
restriction on the spectral bandwidth to study the MI in the optical regime. We hope to shed light on
the underlying physical process of the waves propagating in optical fiber beyond the slowly varying
envelope approximation (SVEA) but not utilizing the unidirectional pulse propagation equation [37].
The main finding of this study is that the modulated wave train evolves in such a way that the formed
wave group is highly localized in space and therefore the slowly varying envelope approximation fails.
As a result, a highly asymmetric super-continuum is realized.

The hydrodynamics and optics NLSE will be introduced, and the relevant parameters will be
defined in Section 2. The experimental conditions of the existing studies will be summarized using
the same parameters. In Section 3, the high-order spectral method (HOSM) and the initial condition
of the modulated wave train will be introduced. The computational domain is set equivalent to the
initial modulation length. The numerical experiment results will be presented in Section 4 for the cases
containing 64 waves and 256 waves in a group with different steepness. The discussion will be made
comparing the HOSM results with the analytical solutions of the modulated wave train in Section 5.
The conclusion follows.

2. Hydrodynamic and Optical Rogue Waves

The evolution of the modulated wave train in both media were compared and relevant parameters
were quantified for the existing experiments in literature.

2.1. Nonlinear Schrodinger Equation (NLSE)

The time NLSE in a frame of reference moving at the group velocity can be expressed in a general

form as:

aA ﬁZ &ZA 24
lﬁ_?ﬁ+ylA|A_o' (1)

The dispersion parameter 3, and the nonlinear parameter y for the optical fiber and deep-water
waves are introduced in a comprehensible review by Chabchoub et al. [38] and is presented in
Appendix A, Table Al. In deep water, the NLSE derives when the spectral bandwidth 6 = 2}—‘;’ is
sufficiently small and is of the same order as the steepness ey = |Alkp. These are the key parameters
in determining the initial exponential growth rate of the sideband perturbation to the Stokes wave [17],
as well as determining the long-term evolution of the modulated wave train [39,40]. The ratio of these
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two parameters representing the relative significance of nonlinearity and dispersion is coined the
Benjamin-Feir Index, BFly, = % [41]. Following the work of Chabchoub et al. [38], the steepness
2_2y

pawo?’
relates to the Kerr effect and dispersion parameter 5, is a function of the wavelength A; see Table A2

SRy
N Fwo” [38].

for definitions. The corresponding BFI for the optical wave is therefore BFI = 5

of the laser in an optical fiber can be expressed as € = ,/|A|

where the nonlinear parameter y

By retaining terms up to the O(e4) while assuming O(6) ~ O(e) and third order in nonlinearity,
Dysthe’s equation, also known as the modified NLSE, was derived [42], whose optical counterpart is the
generalized NLSE [35]. The additional dispersion term and the nonlinear terms are considered imperative
to the development of the asymmetric spectrum [43]. A further extension was made for broader bandwidth
equating O(el/ 2) ~ O(6) and retaining terms up to 0(63'5) [44]. Therefore, the exponent p of O(&”) ~ O(9)
determines the dynamical regime of the modulated wave train.

2.2. Hydrodynamic and Optic Rogue Wave Experiments in Literature

By using the “steepness” € and the “spectral bandwidth” §, the existing hydrodynamic and optical
experiments on MI can be classified; Figure 1 presents a map of the experimental parameters in the
€ — 0 space. The hydrodynamic MI experiments were conducted in the range of ¢ = O(0.01) ~ O(0.1)
for initial conditions that trigger Akhmediev breather structures [45]. Since the initial conditions were
given by the NLSE solutions, the 6 in the map was chosen to be the same as € for convenience, although
they are indeterminate. The steepness of the optical experiments are one to two orders of magnitude
smaller than the hydrodynamic experiments; the figure is enlarged for small € < 0.01 (Figure 1b).
For those experiments with a short pulse, the spectral bandwidth is kept constant [31], while the power
or the steepness is increased—see Appendix A Table A2 for the details of the experimental conditions.
For visual guidance, in Figure 1, the relationship ¢!/? = § is indicated by the black dashed line, ¢ = &
by the solid black line, and ¢? = 6 by the red dashed line. The experiments by Dudley et al. [31] fall
under the parameter space ¢ > 6 > ¢2. In other words, the initial spectral bandwidth 6, as indicated
by blue dots in Figure 1b, is much smaller than the expected maximum growth condition of the MI
for a given steepness ¢ indicated by the red solid line. The resulting spectrum of the modulated
wave trains indicates that as the power is increased, the spectrum broadens, and the high-frequency
tail is enhanced (Figure 2). If the Ml is of the Akhmediev breather type, then the maximum growth
condition is expected to be when the modulation frequency 0 is about the same as the steepness ¢.
Therefore, the growth rate of Dudley’s seeded experimental conditions is not the maximum.

{
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Figure 1. (a) The € — 6 space, mapping the hydrodynamics (red dots) [19-21] and optics (blue
dots [26-28,31] experimental conditions of modulational instability (MI). The horizontal axis is the
steepness € representing the nonlinearity and the vertical axis is the spectral bandwidth 6 representing
dispersion. (b) Enlarged view highlighting the optics experiments. The solid black line corresponds
to & = € or Benjamin-Feir Index (BFI) = 1. Black dashed line corresponds to ¢!/2 = & and BFI < 1.
The red dotted line corresponding to €2 = & and BFI > 1 is plotted for visual guidance. The red solid
line indicates the maximum growth condition of the MI [40].
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Figure 2. Experimental results of Dudley et al. of 1 ns pulse at 1064 nm injected into a photonic crystal
fiber [31]. As the peak power is increased, i.e., larger ¢, the spectrum broadens and becomes asymmetric.
Adapted with permission from Reference [31], the Optical Society (OSA).

3. Broadband Hydrodynamic Numerical Simulation

This section outlines the hydrodynamic model used for the numerical study and the initial
condition used for the modulated wave train. Note that the wave field is spatially periodic and
evolves in time. Thereby conveniently switching time and space of the physical condition of the
electromagnetic wave propagation in optical fiber.

3.1. Higher-Order Spectral Model

The higher-order spectral method (HOSM) [46] is gaining popularity in studies of freak/rogue
waves in a realistic broadband directional ocean spectrum [6-8,13,47]. The governing equation
describes the motion of a horizontally unbounded body of irrotational and inviscid fluid with a flat
bottom. The velocity potential satisfies Laplace’s equation V2¢ = 0, and the free surface boundary
conditions [15]:

2 Vi@ Van = (1+ (V) )W

)
2 1 (V@) +gn = 3(1+ (Van) ) W2

where @ (x, y,t) = ¢(x,y,1,t) is the velocity potential evaluated at the free surface n(x, y, t), and W(x, y, t)
is the vertical velocity at the free surface. The velocity potential is expanded in a series ¢(x,y,z,t) =
YM " (x,y,2,t), where O(¢™") = O((ak)m), and ¢™(x, y,n, t) is Taylor expanded around z = 0:

k
m-11 _
qu(x’y’n/t) =~ k=1 Fqu k(x/ ]//O/t) (3)

The W is expanded in a series in ascending order of wave steepness:

M m m m-1 nk ol m—k
W(x/ y/ t) = Zm:l W( )/ W( ) = Zk:() E&Zk+l¢ (‘x’ % 0/ t) (4)

Equation (2) is solved by a pseudo-spectral method, where the horizontal gradient is evaluated
efficiently in wavenumber space using the fast Fourier transform (FFT). The fourth-order Runge-Kutta
method is used for temporal integration. For a given initial surface elevation, the initial velocity
potential is given as g (k) = %ﬁ(k), where &g (k) and 7(k) are the Fourier coefficients of the surface
velocity potential and surface elevation. The weighting of the nonlinear terms was increased from 0 to
1 in 10 wave periods in all the runs [48].

The attraction of HOSM is the ease of controlling the degree of nonlinearity. Typically, M = 3 is
used to include four-wave resonance, and that is equivalent to the Zakharov’s equation to the third
order [49,50]. In principle, the scheme does not impose any restriction on the spectral bandwidth,
except for the choice of computational domain and the de-aliasing filter [46]. In this study, HOSM
implemented in MATLAB was used for a one-dimensional problem, i.e., ®(x,t) = ¢(x,1,t), n(x, t),
and W(x, t).
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3.2. Modulated Wave Train

The modulated wave train was initialized by perturbing a carrier wave by a set of two sideband
waves in a classical setting of satisfying the maximum growth condition [17,40]

1n(x,0) = acsin(kex) + by sin(k+x - %) +b- sin(k_x - g), )

where the sideband wavenumbers are,

ki = ke + 0k
{ ko =ke—ok ©)

and by /a, = b_/a. = 0.01, that is the sideband wave energy is O<10_4) of the carrier wave. Note that
this initial condition triggers the Akhmediev Breather (AB) dynamics in the context of MI and that the
wave packets evolve in time [51]. Moreover, recent study clarified the role of sideband perturbation in
the context of high-order NLSE [52]. The HOSM model domain was set to contain N = k./0k waves,
therefore, the model domain matches the initial modulation length scale. The initial steepness was
determined by the choice of the BFI for the fixed frequency bandwidth ok/k:

acke = (BFI/2) x (5k/kc). @)

Therefore, the control parameters of the numerical experiments are, N and BFI. The test cases are
summarized in Table 1. For Cases 1 to 4, the spectral bandwidth is one order of magnitude smaller than
the typical water wave, 6k/k. = 0.0156 or N = 64, and the selected cases of BFI =1, 3, 5 and 10 cases
will be presented. For Cases 5 to 7, 6k/k, = 0.0039 or N = 256, is two orders of magnitude smaller,
and the BFI = 5, 10, and 15 will be presented. The number of model discretization m is chosen such
that each wave has 16 grid points. With the anti-aliasing filter [46], the effective spectral bandwidth is
m/(M+1)x06k = (m/N)/(M+1) xk. and therefore the model frequency domain is limited to the
fourth harmonics of the carrier wave, i.e., 4 X k..

Table 1. Cases of high-order spectral method (HOSM) modulated wave train simulations; N: number
of waves in a domain; BFI: Benjamin-Feir index; 0k /k.: spectral bandwidth; ack.: steepness; m: number

of grid points.
N BFI Ok/k, ack. m
Case 1 64 1 0.0156 0.0078 1024
Case 2 64 3 0.0156 0.0234 1024
Case 3 64 5 0.0156 0.0391 1024
Case 4 64 10 0.0156 0.0781 1024
Case 5 256 5 0.0039 0.0098 4096
Case 6 256 10 0.0039 0.0195 4096
Case 7 256 15 0.0039 0.0293 4096
4. Results

The HOSM simulations were conducted for spectral bandwidths okk. = 0.0156 and 0.0039, that
were one to two orders of magnitude smaller than the typical water waves. For each spectral bandwidth,
the BFI or the steepness ack. were increased in steps. The evolution of the waves was recurrent when
the BFI was small, but as the BFI increased, became rather complicated. The evolution of the envelope
of the wave train for Case 7 is shown in Figure Al. In the following, we analyze in detail the first
modulation peak. The interesting evolutions following that will be left for future study.
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4.1. Cases 1-4; dkk. = 0.0156 (N = 64)

At BFI = 1, the initial modulation grew in time, and at the peak of the modulation, a group
containing about 32 wave lengths formed (Figure 3a top). This meant that the size of the group
halved from the initial modulation. The associated frequency spectrum showed a characteristic
triangular broadening that has been reported from the NLSE simulations and physical experiments
in both hydrodynamics and optics MI studies (e.g., [45]). Note that the noise floor was around
103 of the peak and is not apparent in the figure. As the BFI was increased, the group size, i.e.,
the number of waves per group, reduced (Figure 3a); at BF] = 3, a group contained about 8 waves,
at BFI = 5, about 4 waves, and at BFI = 10, it appeared as if only a single wave had blown up.
Consequently, the spectrum broadened, and gradually became asymmetric with respect to the first
harmonics (Figure 3b). For BFI = 10, the energy had spread substantially to the higher frequencies
such that the second and third harmonics were no longer visible.

BFI=1, ak=0.0078 §=0.0156 M01=2.2598 BFI=1, ak=0.0078 4=0.0156
0.02 - q l()-s L
oop e AT S
0 50 100 150 200 250 300 350 400 0 1 2 3 4 5 6 7 8
BFI=3, ak=0.0234 §=0.0156 M02=3.1951 BFI=3, ak=0.0234 6=0.0156
" WWWMWWMWMMMMWWWWW i
0 10
-0.05 B 10
| I L 10—15 ! L I Il 1 1
0 50 1 00 1 50 200 250 300 400 0 1 2 3 4 5 6 7 8
BF] 5, ak=l 00391 = 00156 M03 35425 BFI=5, ak=0.0391 §=0.0156
0.1F 10—5 L
o (MWW 10710
-0.1F
10715 . . \ . . \
0 100 150 200 250 300 0 0 1 2 3 4 5 6 7 8
BFI=10, ak=0.0781 ¢=0.0156 MO07=4.0118 BFI=10, ak=0.0781 §=0.0156
02F T ](J'5 b
< o 10
=02+ — 10
L 1 1 I L I I I IO-IJ L L L i L L L
0 50 100 150 200 250 300 350 400 0 1 2 3 4 5 6 7 8
k x k/k
c C
(a) (b)

Figure 3. Cases of 6k/k. = 0.0156 (N = 64). From top to bottom, Case 1 to 4. (a) Surface elevations at
the peak of the modulation. The positions of the wave groups are adjusted to the center. The horizontal
axis is kcx, the vertical axis is nkc; (b) The corresponding wavenumber spectra. The horizontal axis is
k/kc. The vertical axis is normalized spectral density; (ﬁ(k)kc)227'(N .

For a small steepness, the growth rate of the sideband wave is given as [17]:
1/2
B = (6k/k:)*(2BFI* - 1) 2 (8)

Therefore, for a given ok/k., the growth rate monotonically increased with BFI > 1/ V2. The time
it took to reach the maximum modulation was 27602, 4497, 2364, and 1071 wave periods for
BFI =1, 3, 5, 10 respectively.

For Case 1, BFI = 1, the initial sideband wavenumber satisfied the maximum growth condition.
The modulated wave envelope dynamics resembled the analytical breather solution of Akhmediev [18].
As the BFI increased (Cases 2, 3 and 4), the sideband no longer satisfied the maximum growth condition
and the modulated state gradually deviated from the Akhmediev breather dynamics. At higher BFIs,
the modulated wave became isolated and started to resemble the non-periodic and doubly-localized
Peregrine breather as expected [32]. Accordingly, the amplification ratio increased from 2.26 to 4.01 as
the BFI is increased. Here the amplification ratio is defined as the maximum crest height relative to the
initial amplitude of the unmodulated wave train and does not remove the second order asymmetric
distortion of the wave shape.
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4.2. Cases 5-7; dkk. = 0.0039 (N = 256)

As the initial spectral bandwidth was reduced, the solution was expected to become NLSE-like and
symmetric. Indeed, for a case where BFI = 5, a symmetric triangular spectrum developed (Figure 4b top).
However, as the BFI was further increased, the spectrum gradually broadened and became asymmetric.
The wave group tended to be more localized. The enlarged time series (Figure 4a) showed that the number
of waves per group gradually reduced from around 16 to 4. This is consistent with the N = 64 cases, and in
fact, the BFI = 10 case of N = 256 resembles the BFI = 5 case of N = 64, as both wave groups contain
about four waves. Consequently, the spectra resemble each other. This observation suggests that even if
the initial perturbation contained 256 waves, the wave train modulated in a way that the number of waves
per group reduced to only four. In other words, “sidebands” with +1n x 6k (n =1, 2, 3---) difference from
the carrier wave had grown. Figure 4b shows that those waves had started to grow, and thereby the
sidebands not imposed initially had developed (see the bottom diagram of Figure 4b). The amplification
ratio increases were 3.20, 3.56 and 3.78 for the BFIs 5, 10 and 15 respectively.

BFI=5, ak=0.0098 §=0.0039 M04=3.1964 ‘ __ BFI=5, ak=0.0098 §=0.0039
0.02 10° F q
0 10710 E|
-0.02 i
L L L ! . . L i 1073 L L i L L L L
0 200 400 600 800 1000 1200 1400 160 o 1 2 3 4 s 6 7 8
BFI=5, ak=0.0098 $=0.0039 M04=3.1964 5 X107 __ BFI=5, ak=0.0098 §=0.0039 ‘
0.02 -
0
-0.02 |
620 640 660 680 700 720 740 760 0.94 0.96 0.98 1 1.02 1.04 1.06
BFI=10, ak=0.0195 §=0.0039 M08=3.5578 BFI=10, ak=0.0195 §=0.0039
10° F ]
lo-l(l E |
L L L L L L L f lo-li f\ L 1 1 I 1 L L
0 200 400 600 800 1000 1200 1400 160 0 1 2 3 4 5 6 7 8
BFI=10, ak=0.0195 §=0.0039 M08=3.5578 . x107* ‘ __BFI=10, ak=0.0195 6=0.0039
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0 0.5 1
-0.05 1 0 ‘ ‘
1220 1240 1260 1280 1300 1320 1340 0.94 0.96 0.98 1 1.02 1.04 1.06
BFI=15, ak=0.0293 §=0.0039 M10=3.7751 BFI=15, ak=0.0293 §=0.0039
o1 | X | | | : _ : : ! i X : :
10° F B
]()-I(l E |
-0.1 . . , | , . . ] 1071 . . . . . .
0 200 400 600 800 1000 1200 1400 160 0 1 2 3 4 5 6 7 8
BFI=15, ak=0.0293 §=0.0039 M10=3.7751 %107 BFI=15, ak=0.0293 §=0.0039
01 F B : i ! | g g - . . | : - -
o 1F B
£ 0 A
0.1t L . | | | | . | 0 L L .
740 760 780 800 820 840 860 880 0.94 0.96 0.98 1 1.02 1.04 1.06
k x k/k
c
(a) (b)

Figure 4. Cases of okk. = 0.0039 (N = 256). From top to bottom, Case 5 to 7. (a) Surface elevations at the
peak of the modulation. The positions of the wave groups are adjusted to the center. The second, fourth
and the sixth figures from the top are enlarged views to highlight the wave group. The horizontal axis is
kex, the vertical axis is nk.. (b) The corresponding wavenumber spectra. The second, fourth and the sixth
figures from the top are enlarged views in a linear-linear plot to highlight the energetic part of the spectrum.
The horizontal axis is k/k.. The vertical axis is normalized spectral density; (f)(k)kc)ZZT(N .

5. Discussion

Numerical study of the hydrodynamic modulated wave train with extremely small steepness revealed
that as the steepness increased while retaining the initial modulation scale, the evolution of waves deviated
from the Akhmediev breather dynamics and approached a Peregrine-like solution. The number of waves
in the localized wave group reduced, and consequently, the spectrum broadened and became asymmetric.
Here we investigate the spectral mode evolutions and spectral broadening due to fast envelope variations.
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5.1. Spectral Mode Evolutions

The initial condition of the modulated wave train spans the entire model domain. The number of waves
in the model domain, therefore, is equivalent to the inverse of the initial spectral bandwidth N = 1/(6k/k;).
For BFI = 1, the initial sideband waves correspond to the maximum growth condition. As the BFI increases,
the initial perturbation no longer satisfies the fastest growing condition, i.e., ackc > 6k/k., and therefore,
may trigger the growth of multiple modes with faster growth rates, nok/k. ~ O(ack;). Yuen and Lake [53]
have shown that under such conditions, all the unstable modes are eventually excited and evolve in a
chaotic manner. Such a type of dynamics has also been observed in nonlinear fibers [54].

Evolutions of the spectral modes of cases 0k/k. = 0.0156 are shown in Figure 5. The amplitudes
of the carrier wave, and the sidebands at k; + n6k, where n = 1, 2, 3, are shown. The vertical line
indicates when the crest height was the largest. Note that the growth rate increases with the initial
steepness, and therefore, the timing of the maximum amplification shortens. The horizontal axis
is adjusted accordingly in Figure 5. For the BFI = 1 case, the maximum crest amplification occurs
when the imposed sidebands at k. + Ok reaches the maxima (black dashed and dotted lines). Energy is
transferred to the naturally growing second set of sidebands at k. + 256k as well (red dashed and dotted
lines). For the higher BFIs, the energy is transferred to even higher modes at k. + 36k (blue dashed and
dotted lines), and their largest amplification coincides with the maximum crest height. At BFI = 3,
the evolutions of the modes are rather chaotic, and the system does not recur.

1078
5 X

i e

s
20 40 100

Figure 5. Evolution of the wave modes of 6kk, = 0.0156 cases: carrier (solid black line), k. + 6k (red
dashed and dotted lines), k. + 26k (blue dashed and dotted lines). From top to bottom, Case 1 to 4.

Similar evolutions are observed for the 6k/k. = 0.0039 cases; BFI = 5, 10 and 15 (Figure 6).
The corresponding fastest growing set of sidebands are k. + 50k, k. + 100k, and k. + 156k, respectively.
In other words, the modulation, k. + 0k, was excited at the lower end of the stability region, k. —
V2 (BFI-6k) < k < ke + V2 (BFI-6k). Unlike the cases studied by Yuen and Lake exciting the most
unstable mode while activating the interaction of wave modes confined to the stability region, in this
study, a set of sideband waves with the lowest growth rate was excited while no constraint on the
number of active wave modes were given. As a result, the energy of the carrier-wave gradually
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cascaded down to the neighboring waves including the fastest growing ones. However, the fastest
growing wave mode is not predominant when the crest height maximizes in the first modulation cycle
(see Figure 4b). After the first recurrence cycle, at BFI = 10, the evolution of the wave modes becomes
chaotic for both N = 64 and N = 256 cases (Figures 5 and 6).

1071

e

§ L =
0 200 400 600 800 1000

Figure 6. Evolution of the wave modes of 0kk. = 0.0039 cases: carrier (solid black line), k. + 0k (red
dashed and dotted lines), k. + 26k (blue dashed and dotted lines). From top to bottom, Case 5 to 7.

5.2. Spectral Broadening Due to Fast Envelope Variation

The imbalance of the initial perturbation, 6k/k. < ack, resulted in the excitation of all the unstable
wave modes spreading energy in the spectral domain, and localizing the modulation in the physical
domain. The spectral evolution somewhat resembles the solution to the discrete Zakaharov’s equation by
Yuen and Lake [53] on the transition of the MI to a confined chaos. What is notably different is that while
in [53] the fastest growing mode, 6k/k. = ack., was excited initially, in this study the slowest growing mode
was excited initially. The consequence was that the modulation was highly localized such that the number
of waves in the wave group contained far fewer waves compared to the initial perturbation; four waves in
a group while 256 waves were contained in the initial perturbation (Figure 4a bottom).

When the modulation period or the length of the wave envelope is sufficiently slow or large
compared to the period or the wavelength of the carrier wave, the dynamics can be expressed by the
nonlinear Schrédinger equation according to the slow envelope variation approximation [36]. In optics,
the frequency of the light is much higher than the modulation frequency, ok/k. ~ 0(10_4), but in the
typical water surface wave problem, the frequency of the propagating wave is just an order higher
than the modulation frequency, ok/k. ~ 0(10_1). As such, the scales of the wave group and the
carrier wave are too close, and the slow envelope variation is violated. This is likely the reason for the
asymmetry of the wave profiles and the spectra.

By substantially reducing the frequency bandwidth of the water waves, the evolution of the
modulated wave train should be expressed by the NLSE. Then, the wave profiles and spectra are
expected to be symmetric. To test this hypothesis, HOSM simulations of the unidirectional modulated
wave trains were conducted for 6k/k. = 0.0156 and 0.0039. The result, however, indicated that the
hypothesis was incorrect. As aforementioned, the spectrum broadened and became asymmetric,
not because of the large steepness or the large BFI, but because the number of waves in a group
substantially reduced. The reason for the localization of the energy in space is because of the spectral
evolution that involved a number of unstable wave modes. It is, therefore, a consequence of the
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interaction of multiple unstable modes resulting in the formation of the wave group that is substantially
smaller in scale from the original perturbation.

5.3. Limitation of the Use of Hydrodynamic Equation in the Optical Regime

The numerical solution to Euler’s equation without constraint of the spectral broadness provided
a useful insight in understanding the evolution of high-intensity electronic waves in an optical fiber
cable. The notable difference between water wave and optical fiber, however, is the magnitude of
dissipation. Typically, the dissipation in a physical water wave tank is large enough to affect the
long-term evolution [55]. At the same time, dissipation suppresses the growth of small background
noise. On the contrary, because of the infinitesimal dissipation in the optical fiber, waves can propagate
for kilometers, and therefore, the background noise can play a significant role [56]. A preliminary study
was conducted with the background noise level close to the initial sideband amplitude, b.. /a. = 0.01,
and, in this particular case, the fastest growing mode developed. As a consequence, the Peregrine-like
isolated amplification did not occur. This result will be presented in another report.

6. Conclusions

Evolution of the modulated water wave train was studied using a numerical model, without
dissipation, for cases with extremely small frequency bandwidth and steepness. The wave evolution
in the range of 0(103) to 0(105 ) wave periods was observed, which is unusually long for a water wave
problem. This idealized numerical experiment was conducted to understand how the asymmetric
spectra developed in the optical MI experiments by Dudley et al. [31]. The hydrodynamics simulation
in the optical regime successfully reproduced the asymmetry despite the smallness of frequency
bandwidth. In the case when the steepness was substantially larger than the frequency bandwidth,
as the initial sideband wave mode pair slowly gained energy, all the unstable wave modes are excited.
Eventually, the energy is continuously spread in low and high frequencies. As a result, the amplitude
modulation localized, and an asymmetric spectrum developed because of the fast envelope variation.
In that case, after the first modulation cycle, the wave system evolved into a confined chaos.
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Appendix A

The NLS coefficients and parameters for optical fiber and deep-water waves are summarized in
Table Al following the review paper by Chabchoub et al. [38]. Selected experimental conditions of
both hydrodynamics and optics are summarized in Table A2.

Table A1. Nonlinear Schrodinger (NLS) coefficients and parameters for optical fiber and deep-water waves.

Optical Fiber Deepwater Waves
Dispersion parameter B2 = —ZA—HZCD where D(A) = %(/\ - %) p2 = %
Nonlinear parameter Y= ZXZ; y = ko
Steepness €= . HA|2522&—),/02 € = |Alko
Spectral bandwidth o= 27(:; 6= 27(;’
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Table Al. Cont.

11 0f 14

Optical Fiber Deepwater Waves
BFI=§ MF BFI = 4k
BFI = 5 0
DI = £2 D ;ﬂ;’,;z TpI — YK
Table A2. Optical rogue wave experimental conditions.
Optical Rogue Waves Chabch'oub et al. 2015 [38] Dt'ldley e.t al. Dudle)_r et al.
Solli et al. 2007 [25] 2009 Simulation [31] 2009 Experiment [31]
Case Akhmediev breather Akhmediev breather
c(ms™) 2.99792458 x 108
So (ps km™! nm~2) 0.089
ny (m?wW1) 3x10712 3x10712 3x10712
A (nm) 1450 1550 1064
D(A) (ps km™! nm’l) 1.5424 x 10717 1.5681 x 10720 1.2479 x 10719
B2 (s?m™1) ~0.00007237 —20x 10724 ~75x 10724
wy =c2m/A (s-l) 1.299 x 10%° 1.2153x10%° 1.770 x 10%°
y (mtw) 0.00131744 1.1 60
P=|APR (W) 10x 1076 30.0 26, 43, 98
€ 0.001337 0.0014948 0.00364, 0.00469, 0.007073
5f (GHz) - 289 400 (20)
0 - 0.0014948 0.0014196
BFI - 1.0 2.566, 3.300, 4.982
TDI - 25.8648 42.5,482,59.2
L = Fiber length (m) - ~500 m ~ 300 m
e2L/A - 7200.7829 3742, 6189, 14106
Kibler et al. (2010) [26] Kibler et al. (2012) [27] Frisquet et al. (2014) [28]
Case Peregrine soliton Kuznetsov-Ma soliton High—or];irizgll;?mediev
c(ms™) 2.99792458 x 108
A (nm) 1556 1554 1550
Bo (sszl) —-8.85x 10728 -21.8x107% —21.1x107%
wo=c/A(s7) 192670 192920 193410
y (m7w) 0.01 13 12
P = AP (W) 0.30 0.7 0513
€ 0.0021510 0.00023851 0.00019877
5f (GHz) 241 305 20, 40
6 0.0012509 0.00015819 0.00010340, 0.00020681
BFI 1.7195 1.5077 1.9223, 0.9611
TDI 37.0764 97.628 136.3499, 68.1717
L = Fiber length (m) 900 5300 3800
e’L/A 2676.2 194.0162 96.8620
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Appendix B

The evolution of the wave envelope for the Case 7 is shown in Figure Al. The first amplification

peaks at around 1071 wave periods. Immediately after that, the wave train systematically disintegrates

into a number of groups that seem to grow more or less linearly in time, hence, forming a triangular
region in the space—time domain. The evolution somewhat resembles the analytical solution to the
NLSE [57] but is more irregular due to higher-order hydrodynamic effects. In this paper, only the first
peak of the modulation is studied.

2500 T T T T T

200

150

1001

T

~500 . I I I I . . .
0 200 400 600 800 1000 1200 1400 1600

k x
c

Figure Al. Evolution of wave envelope of Case 7. Horizontal axis is kcx and the vertical axis is wave
periods t/T),. The horizontal axis is shifted to follow the wave group propagating at a linear group speed.
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