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Abstract: We present the theoretical models and review the most recent results of a class of
experiments in the field of surface gravity waves. These experiments serve as demonstration of
an analogy to a broad variety of phenomena in optics and quantum mechanics. In particular,
experiments involving Airy water-wave packets were carried out. The Airy wave packets have
attracted tremendous attention in optics and quantum mechanics owing to their unique properties,
spanning from an ability to propagate along parabolic trajectories without spreading, and to
accumulating a phase that scales with the cubic power of time. Non-dispersive Cosine-Gauss
wave packets and self-similar Hermite-Gauss wave packets, also well known in the field of optics
and quantum mechanics, were recently studied using surface gravity waves as well. These wave
packets demonstrated self-healing properties in water wave pulses as well, preserving their width
despite being dispersive. Finally, this new approach also allows to observe diffractive focusing from
a temporal slit with finite width.

Keywords: surface gravity water waves; nonlinear schrodinger equation; cubic phase; airy wavepacket

1. Introduction

Propagation of waves of different nature is at the heart of nearly all physical processes we are
familiar with. Waves in fluids are ubiquitous in mechanics [1]; they result from numerous core physical
phenomena in liquids and gases [2]. Electromagnetic waves are a part of the fundamental physics of
every optical phenomenon and every light-matter interaction process [3]. Quantum mechanical wave
functions are essential for understanding of every subatomic physical process [4,5]. These diverse
phenomena and processes, that are illustrated in Figure 1, are governed by different physical laws
or forces. However, quite often the propagation of those waves is described by the same set of
mathematical equations resulting in shared physical behavior in different systems [6–8]. Experiments
on gravity wave packets on a surface of a classical fluid, which are analogous in many aspects to
wave packets in quantum mechanics or optics, opened a new field of exciting opportunities to study
the quantum mechanical phenomena in easily accessible classical systems [9–21]. We overview here
various types of wave packets in physical experiments in different media. In addition, we highlight
the essential advantages of studying classical gravity water-wave packets over a quantum mechanical
or optical system. Finally, we review a series of experiments which have been performed recently in
this field.
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Figure 1. (a) Ocean surface gravity water waves propagating according to the linear paraxial wave
equation. (b) A green laser beam (532 nm) propagating in free space, according to the paraxial
Helmholtz equation. (c) An illustration of Gaussian (top) and Airy (bottom) wavefunctions which are
solutions of the Schrödinger equation of a free particle.

2. Mathematical Introduction

2.1. Governing Equations

In this section, we introduce equations that govern evolution of surface gravity water waves,
which are necessary to describe analogous experiments in optics and in quantum mechanics.

The extent of nonlinearity in the analysis of water gravity waves is determined by wave steepness
ε = ka, where k and a denote characteristic wave number and amplitude, respectively. In linear
approximation, the evolution in space x of the envelope ã(x, t) of a unidirectional narrow-banded
wave train is described by the Schrödinger equation, see, e.g., [22,23].

∂ã
∂x

+ i
∂2 ã
∂t2 = 0. (1)

The spatial coordinates x is pointed in the propagation direction and t is the time.
Applying scale-separation analysis, Zakharov derived a general equation, which describes the

temporal evolution of nonlinear deep-water gravity waves in wave-vector Fourier space that is accurate
up to the 3rd order in the wave steepness ε [24]. In the same paper, it was demonstrated that for
vanishingly narrow spectrum, water-waves are governed by the Nonlinear Schrödinger equation
(NLSE) that describes the evolution of the scaled complex wave packet envelope A = ã

a0
in the

physical space:
∂A
∂ξ

+ i
∂2 A
∂τ2 + i | A |2 A = 0. (2)

The scaled dimensionless variables are related to the propagation coordinate x and the time t by
ξ ≡ ε2k0x and τ ≡ εω0

(
x/cg − t

)
and cg is the group velocity. The carrier wave number k0 and the

angular carrier frequency ω0 satisfy the deep-water dispersion relation ω2
0 = k0g, with g being the

gravitational acceleration, and define the group velocity cg ≡ ω0/2k0.
Dysthe [25] suggested a 4th order modification of NLSE by somewhat relaxing the requirement on

the spectral width. The spatial version of the Dysthe equation in normalized form is given by [26,27]

∂A
∂ξ

+ i
∂2 A
∂τ2 + i | A |2 A + 8ε | A |2 ∂A

∂τ
+ 2εA2 ∂A∗

∂τ
+ 4iεA

∂Φ
∂τ Z=0

= 0, 4
∂2Φ
∂2τ2 +

∂2Φ
∂2Z2 = 0. (3)
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Here Φ represents the envelope of the velocity potential. Φ = φ

ω0a2
0
, and Z = εk0z. The spatial

coordinate z is a vertical coordinated pointed up vercially, z = 0 at the free surface.
All physical diverse phenomena considered here represent propagating wavepackets. Despite

that different nature, the propagation of these wavepackets can be described mathematically by the
same Schrödinger equation. Note that conditions defining the domain of validity of this equation
depend on the physics of the phenomena. In the next chapter, this equation is derived for wavepackets
for quantum mechanics, optics and surface water gravity waves.

2.2. The Schrödinger Equation Describing the Evolution of Linear Wavepackets of Various Physical Nature

Wavepackets, or wave trains, are solutions of various wave-equations in physics that are
characterized by frequency and wavenumber [4]. Wavepackets often describe short bursts of localized
wave actions and usually travel as one entity in space and time. Wavepackets are defined by their
phases and amplitudes so that they interfere constructively only over a small region of space (or time),
and lose coherence elsewhere in space (or time) [28]. In quantum mechanics, wavefunctions are used
to describe the probability distribution of quantum mechanical particles and their evolution in space
and time. In optics, wavepackets usually describe the temporal variations of short light pulses and/or
the spatial variation of optical beams traveling in a dielectric medium [29]. In this chapter, we derive
the Schrödinger equation for the evolution in space/time for traveling wavepackets in quantum
mechanics, optics and surface gravity water-waves.

2.2.1. The Schrödinger Equation in Quantum Mechanics

In quantum mechanics, we consider, for simplicity, a 1D plane wave traveling in space and
time [8]. The complex-valued wavefunction is given by

Ψ(x, t) = Aexp (i(kx−ωt)) (4)

where ω is the angular frequency and k is the wave number related to the wavelength by k = 2π
λ . Ψ is

a wavefunction. This wavefunction defines a propability amplitude of a quantum state of a certain
isolated quantum system. Each measurable physical quantity of the system can be determined from
Ψ [4].

Partial derivation with respect to time of Ψ gives

∂Ψ(x, t)
∂t

= −iωAexp (i(kx−ωt)) = −iωΨ(x, t) (5)

Substituting the Plank-Einstein relation E = h̄ω for the matter-waves in Equation (5) leads to

ih̄
∂Ψ(x, t)

∂t
= EΨ(x, t) (6)

For a free particle, the energy is given by E = p2

2m where p is obtained from de-Broglie relations

and given by p = h̄k. As a result, the energy is given by E = − h̄2k2

2m .
Taking the 2nd partial derivative of Ψ with respect to space yields

d2Ψ(x, t)
dx2 = −k2 Aexp (i(kx−ωt)) = −k2Ψ(x, t) =

2mE
h̄2 Ψ(x, t) (7)

Comparison with Equation (6) results in the familiar expression for the 1D Schrödinger equation.

ih̄
∂Ψ(x, t)

∂t
= − h̄2

2m
∂2Ψ(x, t)

∂x2 (8)
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2.2.2. The Schrödinger Equation in Optics

In optics, the Schrödinger equation is an approximation, via the slowly varying envelope method,
of the Helmholtz equation. To derive the Helmholtz equation for electromagnetic waves in MKS units,
we first consider the wave equation, which is easily obtained from Maxwell’s equations [3].

(i) ∇ · ~E = 0 (ii) ∇× ~E = −∂~B
∂t

(iii) ∇ · ~B = 0 (iv) ∇× ~B = µ0ε0
∂~E
∂t

(9)

where ~E is the electric field, ~B is the magnetic field and ε0 and µ0 are the permittivity and permeability
constants in vacuum respectively.

Taking the curl of Equations (9) (ii, iv) yields

(i)∇× (∇× ~E) = − ∂

∂t
∇× ~B = −µ0ε0

∂2~E
∂t2 (ii) ∇× (∇× ~B) = −µ0ε0∇× ~E = −µ0ε0

∂2~B
∂t2 (10)

Using the vector identities ∇× (∇× ~V = ∇(∇ · ~V)−∇2V together with ∇2V = V · (∇V) and
Equation (9) (i, iii) results in the wave equation for electromagnetic waves.

1
c2

∂2~E
∂t2 −∇

2~E = 0
1
c2

∂2~B
∂t2 −∇

2~B = 0 (11)

where c is the speed of light in vacuum.
We shall now focus on the electric field. The Helmholtz equation can also be derived for the

magnetic field in a similar manner. We assume that the electric field is in fact separable

E(z, t) = A(x)T(t) (12)

Substituting Equation (12) into the wave equation for the electric field, resulting in

∇2 A(x, y, z)
A(x, y, z)

= −k2 =
1

c2T(t)
d2T(t)

dt2 (13)

The left side of Equation (13) depends on x while the right side depends on t. To derive the
Schrödinger equation for optics we are interested solely in the spatial domain, i.e., in the left side of
Equation (13) that represents the spatial Helmholtz equation in optics

∇2 A(x, y, z) + k2 A(x) = 0 (14)

where k2 = ω2

c2 .
Invoking the slowly varying envelope approximation (SVEA), the envelope of an electromagnetic

wavepacket may been seen as slowly varying in the z direction [29]. We assume a solution to
Equation (14) of the following form

A(x, y, z) = U0U(x, y, z)exp(ikz) (15)

where U0 is the amplitude of the traveling wave at the origin. Thus, the second derivative of A(x, y, z)
is given by

∂2U(x, y, z)
∂z2 = U0

(
−ik2U(x, y, z)− 2ik

∂U(x, y, z)
∂z

+
∂2U(x, y, z)

∂z2

)
exp(−ikz) (16)
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Substituting Equation (16) into the Helmholtz equation gives

∂2U(x, y, z)
∂x2 +

∂2U(x, y, z)
∂y2 − 2ik

∂U(x, y, z)+
∂z

+
∂2U(x, y, z)

∂z2 = 0 (17)

Finally, under the SVEA condition, ∂2U(x,y,z)
∂z2 � 2k (x,y,z)

∂z ; considering a linearly polarized
electromagnetic wave in the x direction we get

∂2U(x, y, z)
∂x2 − 2ik

∂U(x, y, z)
∂z

= 0 (18)

which is the Schrödinger equation in the field of optics. This equation usually used to describe a
linearly polarized electromagnetic wave, propagating in the z direction.

2.2.3. Linear Schrödinger Equation For Narrow-Banded Surface Gravity Waves

In hydrodynamics, the Linear Schrödinger Equation is used to model the propagation of
narrow-banded surface gravity waves [22]. The surface elevation η(x, t) can be represented by
using the complex normalized envelope A = A(x, t), where x is a spatial coordinate and t is a
temporal coordinate. For narrow-banded wavepacket with the carrier frequency ω0 and a carrier wave
number k0

η(x, t) =
1√
2π

∫ ∞

−∞
η̂ (k) exp (i[kx−ω(k)t]) dk = A(x, t)exp (i[kx−ω(k)t]) (19)

Multiplying Equation (19) by exp[−i(k0x−ω0t)] results in

A(x,t) =
1√
2π

∫ ∞

−∞
η̂ (k) exp i[(k− k0)x− (ω(k)−ω0)t]dk (20)

Expanding the dispersion relating ω = ω(k) around k0 yields

ω (k) = ω0 +
dω

dk
(k0) (k− k0) +

1
2

d2ω

dk2 (k0) (k− k0)
2 + . . .) (21)

where dω
dk (k0) = cg is the the group velocity, and d2ω

dk2 (k0) =
dcg
dk

Up to the 2nd order in (k− k0) , the time derivative of A(x, t) is thus,

∂A (x, t)
∂t

=
1√
2π

∫ ∞

−∞
i (ω (k)−ω0) η̂ (k) exp (i[(k− k0)x− (ω(k)−ω0)t]) dk (22)

Substituting Equation (21) into Equation (22)

1√
2π

∫ ∞

−∞
i
[

cg (k) (k− k0) +
1
2

dcg

dk
(k− k0)

2
]

η̂ (k) exp (i[(k− k0)x− (ω(k)−ω0)t]) dk (23)

Since multiplication by ik in Fourier space is equivalent to differentiation in x in the physical
space, Equation (23) in the physical space is

∂A (x, t)
∂t

= −cg
∂A
∂x

+ i
1
2

dcg

dk
∂2 A
∂x2 (24)
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Define ξ = k0x, and τ = ω0(x/cg − t), thus in the frame of references moving with cg the linear
Schrödinger equation assumes the following form

∂A
∂ξ

+ i
∂2 A
∂τ2 = 0. (25)

Note that, the whole derivation is limited to a linear case. For steeper waves ε = k0a0 > 0.1 high
order extensions in ε are available, such as NLSE and modified NLSE (see Equations (2) and (3)) or
Ref. [27].

2.3. Wavepackets

In this section we will review the most commonly used wavepackets in quantum mechanics and
optics and discuss their unique properties. The wavepackets considered in this article are solutions of
the linear Schrödinger equation. To illustrate the shapes of the wavepackets discussed in sequel, we
plot the absolute values of the envelopes and the phases are presented in Figures 2–4 respectively.

Figure 2. Envelopes (blue curves) of different wavepackets presented in this chapter for x = 0.
(a) Gaussian packet A(t) = exp(−(t/t0)

2), with duration t0 = 2.0 s; (b) Airy wave packet A(t) =

Ai(t/t0)exp(αt/t0), with truncation α = 0.15 and width of main lobe t0 = 2.0 s. (c) Cosine-Gauss packet
A(t) = cos[ω0tsin(θ)]exp(−(t/t0)

2), with ω0 = 9 rad/s, θ = 5.5◦, t0 = 9 s. (d–f) Hermite-Gauss packet
with different order A(t) = Hmexp(−(t/t0)

2), where Hm is Hermite polymial and t0 = 2.5 s.

2.3.1. Gaussian Wavepackets

In quantum mechanics, the simplest way to describe a large number of simultaneously excited
quantum levels is to use a wave function with the Gaussian distribution. Such wave functions are
often refereed to as Gaussian wavepackets and they describe a quantum mechanical point particle [30].
In optics, electromagnetic pulses with a Gaussian distribution are widely used. For instance, ultra-fast
light pulses are usually generated with a Gaussian distribution in the temporal domain whereas
the spatial distribution of the light emitted from most lasers is also Gaussian [29]. In surface
gravity water-waves, Gaussian wavepackets can be generated by a mechanical wave maker using an
appropriate driving signal [22]. The temporal variation of the surface elevation with the Gaussian
envelope given by

ηG(t, 0) = a0exp

(
−
(

t
t0

)2
)

cos(ω0t) (26)
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is prescribed by the wavemaker at x = 0, with t0 defining the initial pulse width. The absolute value
of the envelope of such a wavepacket at different positions and times is given by

| AG(τ, ξ) |=

 1

1 + ξ2

ξ2
s

 1
4

exp

− τ2

τ2
0 (1 +

ξ2

ξ2
s
)

 (27)

and its phase by

ϕ
(G)
A (τ, ξ) = − ξ

ξs

(τ)2

τ2
0 (1 + ξ2/ξ2

s )
+

1
2

arctan
(

ξ

ξs

)
. (28)

where ξs = τ2
0 /4, the normalized temporal coordinate is τ0 = εω0t0 and 1

2 arctan
(

ξ
ξs

)
is the Gouy

phase. Note that the values of A are normalized by the maximum amplitude a0. Equations (27) and (28)
are given in the moving frame while Equation (26) is given in the laboratory frame.

Figure 3. Envelope Envelope phases (blue curves) of different wavepackets presented in this chapter
for x = 0. (a) Gaussian packet A(t) = exp(−(t/t0)

2), with duration t0 = 2.0 s; (b) Airy wave
packet A(t) = Ai(t/t0)exp(αt/t0), with truncation α = 0.15 and width of main lobe t0 = 2.0 s.
(c) Cosine-Gauss packet A(t) = cos[ω0tsin(θ)]exp(−(t/t0)

2), with ω0 = 9 rad/s, θ = 5.5◦, t0 = 9 s.
(d–f) Hermite-Gauss packet with different order A(t) = Hmexp(−(t/t0)

2), where Hm is Hermite
polymial and t0 = 2.5 s.
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Figure 4. Envelopes (blue curves) of the Hermite-Gauss packet with different order A(t) =

Hmexp(−(t/t0)
2), where Hm is Hermite polynomial. HG1 envelope function with carrier wave

and chirp, given by η = Hmexp(−(1 + iC)(t/t0)
2)exp(−iω0t), with, (a) C = 2.19 (b) C = 0,

and (c) C = −2.19 ; t0 = 2.5 s; ω0 = 9 rad/s.

2.3.2. Hermite-Gauss Wavepackets

Hermite-Gauss wavepackets are higher-order solutions of the paraxial Helmholtz equation
in Cartesian coordinates. These wavepackets are widely used to optics, as they possess several
characteristic features [31]. As such, Hermite-Gauss beams evolve self-similarly in space, maintaining
their initial profiles. In addition, for the same Gaussian width, the higher-order beam width (defined by
the square root of the second-order moment) is m times larger than the width of the respective
fundamental beam, where m is related to the order of Hermite function. Finally, since they form
a complete orthogonal set, any scalar wave in Cartesian coordinates can be decomposed into a
combination of Hermite-Gauss components. These properties make the Hermite-Gauss very useful for
studying processes of optical vortex generation, mode conversion, beam shaping and second harmonic
generation. The Hermite-Gauss envelope of the temporal surface elevation is given by

A(x = 0, t) = Hm

(√
2t

t0

)
exp

(
− (1 + iC)t2

t2
0

)
(29)

where Hm represents the Hermite polynomial of order m, t0 is the characteristic envelope duration,
and the chirp coefficient C is used to control the quadratic modulation of the phase of the incident
pulses, so that the envelope A becomes linearly frequency chirped. Integrating the Schrödinger
equation with this initial condition yields

A(ξ, τ) = A0Hm(ξ, τ)exp
(
− µ0τ2

T2(ξ)
+ iΨ(ξ, τ)

)
(30)

where
A0(ξ) = T(ξ)

(−2m+1)
2 , (31)

Ψ(ξ, τ) =
2m + 1

2
arctan

(
4µ0ξ

1 + 4µ1ξ

)
− 4(µ2

0ξ +
µ1

4
+ 4µ2

1ξ)
τ2

T2(ξ)
(32)

is the variation of envelope amplitude and phase, respectively. In this case T(ξ) =
√
(1+ 4µ1ξ)2 + 16µ2

0ξ2

and the constant µ0 = 1
(εω0t0)2 , µ1 = C

(εω0t0)2 depends linearly on the chirp coefficient. Hm(ξ, τ) represents
the propagated Hermite polynomial.

2.3.3. Cosine-Gauss Wavepackets

In optics, non-diffracting beams are widely used for various applications [32]. These unique
waves keep their original shape in space and time, as opposed to beams of light which diffract
while propagating over a certain distance or time. The cosine-Gauss optical beam is an example
of a non-diffracting wave packet [33,34]. Due to analogies between optics and hydrodynamics,
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a linear surface gravity water wave with cosine-Gauss envelope also can resist the inherent dispersion
during propagation. It should be noted that while in optics this wavepacket is non-diffracting,
in hydrodynamics it is effectively non-dispersive. The cosine-Gauss temporal variation of the water
surface elevation at the wavemaker is given by

A(x = 0, t) = A0cos[ω0tsin(θ)]exp

(
−
(

t
t0

)2
)

(33)

where θ can be seen as a half-intersecting angle of two plane waves truncated by a Gaussian envelope
of finite duration t0. Integrating this initial condition using the Schrödinger equation yields

A(ξ, τ) = A0exp(iΨ)

(
exp(iSτ)exp

[
− (τ + 2sin(θ)ξ/ε)2

T2

]
+ exp(−iSτ)exp

[
− (τ − 2sin(θ)ξ/ε)2

T2

])
(34)

where

A0(ξ) =
1
2

(
T

εω0t0

)−1/2
, (35)

Ψ(ξ, τ) =
1
2

arctan
(

4ξ

(εω0t0)2

)
+

sin(θ)
ε

Sξ − 4ξ

(εω0t0)2

( τ

T

)2
(36)

A0(ξ) and Ψ(ξ, τ) are envelope and phase, respectively, T =

(
(εω0t0)

2 +
[

4ξ
(εω0t0)2

]2
)

and

S = sin(θ)
ε(1−16ξ2/[(εω0t0)4+16ξ2])

.

One can notice that Equation (36) shows that the two wavepackets become gradually separated
in time in course of their propagation. However, for the right choice of parameters and θ � 1[rad],
the quantity S ≈ sin(θ)

ε becomes constant and sin(θ)ξ
ε � T. As a result, these truncated waves

approximately overlap during propagation over a limited distance, which gives rise to a non-spreading
behaviour of cosine-Gauss wavepackets.

2.3.4. Airy Wavepackets

The Airy wavepacket accelerates without any external force and preserves its shape in a dispersive
medium. Berry and Balzas showed that the Airy wavepacket is a solution of the Schrödinger equation
for a free particle [35]. Since then, the Airy wavepackets were extensively studied in various subfields
in optics and quantum mechanics. In 2007 Christodoulides and coworkers showed that an ideal
Airy optical beam follows a bent parabolic trajectory in free space and remains diffraction-free [36].
Furthermore, Airy beams were used for optical manipulation of micro-particles, generation of curved
plasma channels, light induced optical routing, and superresolution fluorescence imaging [37–40]. Airy
wavepackets were also studied in the nonlinear regime, including the nonlinear optical generation and
the evolution of Airy beams in various quadratic, cubic, and photorefractive media [41–43]. In contrast
to other wave packets considered here, an ideal Airy water-wave train carries an infinite amount of
energy, whereas in practice these pulses are truncated by an exponential or a Gaussian window. Here
we use an exponential truncation; thus, the Airy envelope of the temporal surface elevation is given by

A(x = 0, t) = Ai
(

t
t0

)
exp

(
α

t
t0

)
(37)

where t0 and α > 0 denote the characteristic duration and the positive truncation parameter, gives rise
to the Airy pulse with the amplitude

|A(Ai)(τ, ξ)| =
∣∣∣Ai

{
1
τ0

[
τ −

(
ξ2

τ3
0

)]
− 2iα

ξ

τ2
0

} ∣∣∣× exp

(
α

τ

τ0
− α

2ξ

τ4
0

)
(38)
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and the phase given by

ϕ
(Ai)
A =

(
2

3τ6
0

)
ξ3 −

(
τ

τ3
0

)
ξ −

(
α2

τ2
0

)
ξ, (39)

where τ0 ≡ εω0t0.

2.3.5. The Temporal Slit

When light passes through a slit with width d of the order of the wavelength of the light, a single
slit diffraction pattern can be observed on a screen at a distance L >> d from the slit. According to
intuition we gain from classical physics, a wave that has passed through a slit will expand. However,
this picture is incomplete; it was predicted [44] that a rectangular one-dimensional quantum wave
packet created from a plane wave by a one-dimensional slit first focuses and only then expands. This
phenomenon can be described by applying the Schrödinger equation. Consider a rectangular one
dimensional wave packet of constant phase during the early stage; in the paraxial wave approximation
it is identical to the diffraction of a scalar field from a single slit. In such a case, the wave packet can
exhibit self-focusing. To model this phenomenon in surface gravity water waves, temporal and spatial
coordinates have to be interchanged. Hence, to observe this focusing in experiments on water waves,
one must consider a temporal slit, as has been recently done [45].

The temporal rectangular water wave packet of width t0 generated at ξ = 0 at the wave maker
has the envelope

A(x = 0, t) ≡
{

1, |t| ≤ t0/2

0, o.w.
(40)

Its evolution along the water tank is described by

A(ξ, τ) =
1

2
√

πξ
exp

(
iπ
4

) +τ0/2∫
−τ0/2

exp
[
− i

4ξ
(τ − τ′)2

]
dτ′ (41)

where τ0 ≡ εω0t0 is a dimensionless constant which is proportional to the width of the initial
rectangular envelope Hence, the temporal variation of the surface elevation for a carrier wave with the
frequency ω0 and wave number k0 is η(x, t) ≡ a0Re{A(x, t)exp[i(ω0t− k0x)]}.

3. Experiments on Water-Wave Packets

3.1. Experimental Facility and Procedure

The experiments discussed in this paper were performed in a 18 m long, 0.6 m wide, and h = 0.6 m
deep laboratory wave tank, see Figure 5. Water waves are generated by a computer-controlled
wavemaker, that consists of four synchronously-moving paddle-type modules and placed at one end
of the tank. The carrier wave numbers in all experiments satisfy the deep-water condition k0h > π [10],
and the wave dissipation can be neglected.

Wave energy absorbing beach placed at the far end of the tank is also shown in Figure 5.
To mitigate effect of residual reflections from the beach, measurements are performed at distances
between 0.4 m to 13 m. The instantaneous water surface elevation at any fixed location along the tank
is measured by four wave gauges mounted on a bar parallel to the tank side walls. The bar with the
gauges is fixed to an instrument carriage that can move along the tank, its displacement is controlled
by the computer. The control of the wavemaker by computer enables synchronization of its operation
with the wave gauge data acquisition using LabView software.
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Figure 5. (a) Schematic illustration of the experimental setup for generating surface gravity water wave
packets (b) Photograph of the experimental facility.

3.2. Linear Dynamics

In this section we review some of the recent experimental results on surface gravity water waves
in the linear regime that can be adequately described by the Schrödinger equation.

These importance of those results is in the similarity of their physics to non-relativistic
quantum theory.

For example, the important properties of the Airy wave packet such as shape preservation in
dispersive medium and acceleration without application of external force were recently observed
by Shenhe Fu et al. [9] in surface gravity water waves, as seen in Figure 6a–c. The mean value of
the main lobe of Airy and inverted Airy wave packets were plotted and compared with Gaussian
wave packets, Figure 6d. In their experiments, Shenhe Fu et al. saw for the first time that Airy wave
packets self-decelerate, while inverted Airy wave packets self-accelerate. This behavior is opposite
to the expected for a free particle in quantum mechanics. The difference stems from the fact that
in the version of the Schrödinger equation describing surface gravity water waves, the spatial and
temporal coordinates are interchanged as compared to the Schrödinger equation in quantum mechanics
(see Equation (2)). Shenhe Fu et al. succeeded in demonstrating in their water waves experiments the
diverse features of the propagation dynamics of Airy water wave pulses, such as nonspreading, self
accelerating, and self-healing properties, as seen in Figure 6f–g.

An additional important feature of Airy wave packets is the accumulation of phase proportional
to ξ3. This cubic-phase offset was predicted more than 40 years ago [35,46] and was measured in water
waves for the first time [18], see Figure 6e. It should be stressed that in quantum mechanics and in
optics, the measurement of the phase of a wave packet is practically impossible, since only the signal
intensity of the high carrier frequency can be measured and therefore the information on the phase is
lost [47]. Hence, the possibility to measure wave packets governed by the Schrödinger equation in
surface gravity water waves not only provides verification of experimental results obtained in totally
different physical systems, but also serves as a valuable tool to observe fundamental properties of
wave packets which are inaccessible in other fields.

Recently, new shapes of linearly non-dispersive surface gravity water wave packets have been
observed. These include wavepackets with a cosine-Gauss envelope, as shown in Figures 7 and 8,
as well as its higher-order Hermite cosine-Gauss variations [48,49]. It was shown that these wave
envelopes preserve their width despite the inherent dispersion of water gravity waves. Furthermore,
it was observed that these wave packets exhibit self-healing; i.e., they are restored after passing an
obstacle, as shown in Figure 7.

The propagation dynamics of surface gravity water-wave pulses having Hermite-Gauss (HG)
envelopes was studied in [11]. These wave packets also propagate self-similarly along an a wave tank,
preserving their envelopes, see Figure 9 [50]. The measured surface elevation of the wave groups
enabled observing the envelope phase evolution of both non-chirped and linearly frequency chirped
pulses, hence making possible measurement of the Gouy phase shifts of high-order HG wave packets,
see Figure 10 [51].
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Figure 6. Experimental elevations (blue curves) and theoretical envelopes (red curves) of Airy wave
packets measured at (a) x = 1.43 m, (b) 7.46 m, and (c) 12.50 m, for a0 = 6 mm (ε = 0.05), α = 0.1,
and t0 = 2.0 s, (d) the parabolic trajectories of Airy and inverted Airy wave packets, using t0 = 0.7 s
and a0 = 5 mm, (e) The phase offset φAi

A as a cubic function of x. Evolution of Airy envelopes obtained
from the measurements by the Hilbert transform of the recorded surface elevation variation with time;
(g) Airy envelopes simulated using Equation (1) with t0 = 0.65 s and α = 0.1, in a frame of reference
moving at cg.

Figure 7. A theoretical plot and experimental verification of the self-healing property of surface gravity
wavepackets with a Cosine-Gauss shape. The related parameters are: a0 = 6 mm, θ = 7.5◦ , t0 = 9 s.
(a) Experiment and (b) simulation for the pulse envelope evolutions. (c) The measured elevation wave
groups at two different locations. The blue curves are given by a simulation while the red curves are
given by an experiment.

As already stressed, the phase of a wave function is usually inaccessible in optical experiments,
owing to the high carrier frequency (1014 Hz). The carrier frequencies of water waves are lower by
many orders of magnitude. It is therefore relatively easy to demodulate the envelope phase of these
HG pulses. In [9], the envelope phase of these pulses was determined directly by extracting the local
maximum and minimum values of the elevations. Figure 5a illustrates the theoretically calculated
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envelope phase variation with t and x for different orders m of HG waves. For better visibility, temporal
envelope phase variation at two locations, x = 1 m and x = 11 m, is plotted, see Figure 5b,c. To avoid
phase ambiguity, the results are presented in a form of cosine function, i.e., cos(ψ + ψm).

Figure 8. Propagation dynamics of cosine-Gauss pulses along the tank presented in Figure 7 with
a0 = 6 mm (ε = 0.05), θ = 5.5◦, and t0 = 9.0 s (a,b) and θ = 5.5◦ for (c,d). (a,c) Experimental results
on pulse envelopes obtained by the Hilbert transform in a frame of reference moving at velocity cg;
(b,d) temporal variation of the surface elevation at two locations; (e,f) Gaussian pulse evolution,
the initial width of the Gaussian pulse as in (a).

3.3. Nonlinear Dynamics

Quantum theory deals only with the linear Schrödinger equation. However, in optics,
electromagnetic waves interact with matter in such a way that they can be described by the Nonlinear
Schrödinger equation (NLSE). The nonlinearity of wave propagation leads to such effects as second
harmonic generation, cubic Kerr nonlinearity, self-focusing (or defocusing) and more [52,53]. In surface
gravity water waves, nonlinear effects become prominent when the wave steepness is high, typically
ε > 0.1, and have been extensively studied for decades. Nonlinear effects for Airy wave packets indeed
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are observable when the carrier wave steepness is increased, and manifest themselves e.g., by the
generation of water-wave solitons as seen in Figure 11.

When the maximum amplitude in the wave packet was increased to a0 = 17 mm, it was observed
that the Airy pulses stabilized. In this case, not only did they self-accelerate along the parabolic
trajectory, but the dispersion was compensated by nonlinearity. For an even higher amplitude
a0 = 23 mm, strong Kerr-type nonlinearity appears. In this case, the central lobe of the Airy pulse
compresses during propagation, further increasing its amplitude, which eventually leads to a collapse
and an emission of a stationary soliton, shown in Figure 11e,f. Apart of Airy pulses, cosine-Gauss
pulses, as well as its higher-order Hermite cosine-Gauss variations, were also extensively studied
in nonlinear optics [54] and recently in surface gravity water waves [9]. The earlier research on
cosine-Gauss waves was limited to the linear approximation [33,49,55]; the propagation dynamics
of those wave packets in a nonlinear dispersive medium was never explored. Investigation of
Hermite-cosine-Gauss (HCG) pulses by Shenhe Fu et al. [10] is based on the modified NLS Equation (1).
Whereas the HCG0 (order m = 0) wave maintains maximum intensity at the center of the pulse,
the HCG1 (m = 1) pulse has zero intensity at the center, but preserves the two strong nearby peaks
at the leading and trailing edges of the pulse; see Figure 12. For a weakly nonlinear amplitude of
a0 = 16 mm ε = 0.13, see Figure 9, it was found that the invariant propagation of such HCG pulses was
still observed despite nonlinearity. It should be stressed that high steepness, symmetry breaking and
the spectral widening observed in experiments with HCG wave envelope violate the assumptions
adopted in the derivation of NLSE as discussed in [56]. The modeling was therefore based on the
modified (Dysthe) nonlinear Schrödinger equation that is capable of describing the emerging envelope
asymmetry and spectral widening [27].

Figure 9. The evolution of envelopes of the non-chirped and linearly chirped Hermite-Gauss (HG) wave
pulses, with a0 = 6 mm, t0 = 2.5 s, and C = 0 (a,b), C = −2.19 (c,d) for different m (see the top). In the
experiments, the pulse envelopes were obtained using Hilbert transform of the measured elevations, in a
frame of reference moving at cg. The color bar units of the envelope are mm. (a,c) The measurements;
(b,d) the theoretical results based on Equation (30).
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Figure 10. The carrier-envelope phase of the non-chirped HG pulses demodulated from the measured
water surface elevation variation with time, with a0 = 6 mm, t0 = 2.5 s, and C = 0. The envelope phase
is presented as a cosine function of time. (a) Two-dimensional phase map calculated from Equation (32)
for different order of m. (b,c) The envelope phase profiles at x = 1 m (b) and x = 11 m (c). The blue
curves in (b,c) correspond to the theory, while the red scattered dots denote the experiments.

Figure 11. Evolution of Airy envelopes obtained from the experimental records by the Hilbert transform
(a,c,e) and simulated using Equation (1) (b,d,f) with t0 = 0.65 s and α = 0.1, in a frame of reference
moving at velocity cg Measurements were performed at (a,b) a0 = 5 mm, ε = 0.04, (c,d) a0 = 17 mm,
ε = 0.14, and (e,f) a0 = 23 mm, ε = 0.19.

Effects of nonlinearity have been further studied in experiments on Hermite-Gauss water wave
pulses with an essentially nonlinear wave steepness ε = 0.17 [11]. Figure 13 that presents the measured
envelope evolution of nonlinear non-chirped HG pulses. For higher wave steepness ε = 0.17, the HG
wave pulses contain waves at the carrier wave frequency ω0, as well as the second-order bound
waves at the frequency 2ω0. The surface elevation variation with time can thus be presented as
η(x, t) = <[A(x, t)exp(i(k0x − ω0t)) + B(x, t)exp(2i(k0x − ω0t))], where A and B = ε A2

2 are the
complex envelopes of the free and 2nd order bound waves, respectively [27]. The Figure 13 clearly
shows that these nonlinear waves still maintain their self-similar propagation despite the strong
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nonlinearity, approximately preserving their Hermite-Gauss shapes [57,58]. Very weak free slowly
propagating waves at the 2nd harmonic 2ω0, generated due to the presence of the bound waves at this
frequency by the wavemaker, can also be identified in Figure 13. Figures 12 and 13 also indicate that for
stronger nonlinearity, the HG0 pulse was seriously compressed as compared to the apparently due to
nonlinearity. The compression of higher-order pulses is less pronounced; this may be associated with
the smaller width of their lobes and thus wider spectra. The presented results indicate that higher-order
Hermite-Gauss pulses are more resilient to nonlinear perturbations. Owing to the nonlinear effects and
the resulting spectral evolution documented in Figure 14, the wave packets propagate at the velocity
slightly higher than cg; see Figure 13a.

Figure 12. Nonlinear propagation dynamics of HCG0 (a)–(d) and HCG1 (e)–(h) pulses along the tank
for two amplitudes (see the top); (a)–(d) t0 = 9 s, θ = 7.5 ◦ and (e)–(h) t0 = 9 s, θ = 5.5 ◦. The color bar
units are millimeters.

Figure 13. Experimental results for: (a) nonlinear propagation of HG pulses and (b) the generated
second harmonic bound waves with a0 = 21 mm (ε = 0.17), t0 = 2.5 s, and C = 0. Both (a) and (b)
represent the envelope in a moving system. The color bar units are millimeters.

To study the nonlinear effects further, the emergence of second harmonic generation is
demonstrated. Spectra of nonlinear HG pulses are presented in Figure 14b [11]. The corresponding
spectra of linear pulses are also shown for comparison; see Figure 14a. The spectra in both cases were
obtained at a fixed location of x = 7.39 m.

In the linear case (see Figure 14a), these spectra are symmetric, for all orders m = 1, 2, 3, also
having Hermite-Gauss shapes.

The center of the fundamental harmonic is located at f0 = ω0/(2π). In the nonlinear regime
(see Figure 14b), these spectra exhibit asymmetry and become wider, with an apparent 2nd harmonic
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bound waves, see also Refs. [59,60]. Despite nonlinearity, their general HG shapes remain recognizable
within the dominant frequency range. This can explain the approximate conservation of the HG shapes
in the course of propagation in nonlinear regime.

3.4. Diffractive Focusing

So far we have demonstrated propagating wave packets and their linear and nonlinear dynamics
in surface gravity water waves. However, it was recently shown that surface gravity water waves can
also be utilized to emulate geometric optical apparatus such as a single slit [29,45]. Here we present a
recent results on diffractive focusing of surface gravity water wave are shown in Figure 15.

Figure 14. The spectra of the nonchirped HG wave pulses calculated at x = 7.39 m, with t0 = 2.5 s and
C = 0. (a) The measured linear spectra with a0 = 6 mm (ε = 0.05); (b) the measured nonlinear spectra
with a0 = 21 mm (ε = 0.17). Blue curves correspond to simulations based on Equation (1); the red curves
denote the experiments.

Figure 15 demonstrates both experimentally and theoretically the diffractive focusing feature
of the generated rectangular surface water-wave packets. In the experiments, we set a0 = 6 mm
(ε = 0.05) so that the induced nonlinearity could be neglected. At the beginning, the propagation
dynamics of such wave packets with t0 = 4.18 s, 5.58 s and 6.98 s were investigated, see Figure 15a,d,g,
Figure 15b,c,h and Figure 15c,f,i respectively. In order to illustrate the focusing effect, the recorded
elevations were represented in a system traveling at the linear group velocity cg. The pulse envelope
can be obtained by Hilbert transforming the elevations. As expected, these wave packets indeed exhibit
diffractive focusing property, as evident from their intensity evolution along the tank, see Figure 15a–c
for three cases of wave packets. Clearly, all the results show significant shrinking at their early stage of
propagation. The experimental results match well with the theory. We further observed the on-axis
(t− x

cg
= 0) intensity variation along the tank, see Figure 15g–i. Their intensity first oscillates with the

distance; then increasing the propagation distance, the intensity reaches its maximum value, nearly
1.8 times larger than the initial value, which further confirms the diffractive focusing phenomenon
of the wave packets. It is worth noting that the calculated and observed intensity patterns from
Figure 15 are similar to those observed by Vitrant et al. [61]. for the case of light beams diffracting
from a slit. We emphesize that one can now place another slit at the focal point and further focus the
pulse, since the phase distribution in the focal region is similar to that at the origin. This property was
demonstrated in the spatial domain using surface plasmon polariton waves [45].
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Figure 15. Observation of diffractive focusing phenomenon of rectangular surface water-wave packet
with different width: (a,d,g) t0 = 4.18 s; (b,e,h) t0 = 5.58 s; and (c,f,i) t0 = 6.98 s. The incident
amplitude is a0 = 6 mm. (a–c) Experimental results representing the normalized intensity evolution
(|a/a0|2) of the wave packets along the tank; while (d–f) illustrate the corresponding theoretical results.
(g–i) depict the on-axis (t− x

cg
= 0) intensity variation of the wave packets.

4. Conclusions

In summary, numerous examples presented here demonstrate essential features that are common
to propagation of hydrodynamics surface water gravity wave trains and quantum mechanical
wavefunctions and electromagnetic pulses and optical beams. All these wave phenomena can
be described at the linear level by the Schrödinger equation and by its extension to the nonlinear
Schrödinger equation (NLSE) when nonlinear effects become prominent. For the hydrodynamic
waves, these equations describe fairly accurately the evolution in space and time of the complex
envelope of a narrow-banded wave train. It should be stressed that linear and nonlinear surface
water-waves have been studied extensively since the groundbreaking work by Stokes in mid-ninetieth
century. These studies included developments of more advanced theoretical models that overcame
the limitations of the NLSE. Quantitative and qualitative experimental verification of the theoretical
model equations has been carried out that established limits on the validity of their application for
diverse conditions. The similarity of the governing equations suggests that some of the well known
results accumulated in hydrodynamic studies may be readily applicable to other branches of physics
dealing with wave propagation.

Naturally, an emphasis on certain shapes of wave packets and of quantum mechanical wave
functions can be of lesser interest for purely hydrodynamic studies. However, surface gravity
wavepackets of various shapes are observable by a naked eye and can be easily generated in laboratory
facilities. These hydrodynamic waves are easily accessible, they propagate relatively slowly and
are characterised by time and length scale much longer that those of light beams. These features
enable accurate measurements in water-wave tanks of numerous wave packet parameters relevant to
optical beam propagation with details that cannot be reproduced in experimental studies in optics and
quantum mechanics.
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We have reviewed here numerous examples of surface gravity water wave trains and their
analogies to quantum mechanical wave-functions or optical beams. Specifically, we discuss the
first observation for the propagation dynamics in both the linear and the nonlinear regimes of Airy
wave packets (that actually emerged initially in studies of water waves), as well as of cosine-Gauss
and Hermite-Gauss water-wave pulses. In the linear regime, we consider the nonspreading,
self-accelerating, and self healing properties of these pulses. Furthermore, we have reviewed the case
of a diffraction from a slit and discussed how water waves experience the effect of diffractive focusing
by a temporal or a spatial slit.

The slow scales of surface gravity waves make possible verification in the experiments of phase
evolution patterns in optical beams that have been predicted many years ago. Furthermore, we
have discussed cases of nonlinear propagation. It should be stressed that the NLSE retains the initial
symmetry of the pulse. Nonlinearity often gives rise to wave envelope asymmetry and to spectral
broadening; to account for these phenomena the Dysthe equation (MNLSE) has been applied as the
theoretical model.

We believe these analogies benefit quantum mechanics and optics, as they allow to reproduce
diverse phenomena in the hydrodynamical setting that make possible detailed measurements of the
spatial and temporal wavepackets evolution. The advantage of measuring surface gravity water-waves
in hydrodynamics is the ability to record the full waveform of the wave, owing to its low carrier
frequency. In contrary to that, optical and matter waves are typically characterized by very high carrier
waves, usually much higher than that of the system used to measure them, hence in these disciplines
it is more common to measure the the squared amplitude of the wavepacket (i.e., its intensity), thus
the phase information of the wave is lost. In contrary to that, the advantage of optical waves with
respect to surface gravity water wavepackets is that it is fairly easily to repeat many times an optical
experiment in a short time, which is important for obtaining the statistics of a process.

In addition, observation of wavepacket dynamics in a mechanical system may provide a new
insight to the behavior of the corresponding wave forms in different physical conditions. We are
convinced that the field of hydrodynamics can also highly benefit from this type of research, as it gains
from the mathematical and physical concepts imported from quantum mechanics and optics. As such,
self-acceleration of wavepackets, self-healing and non-spreading properties.
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