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Abstract: We present dimensionally reduced Reynolds type equations for steady lubricating flows
of incompressible non-Newtonian fluids with shear-dependent viscosity by employing a rigorous
perturbation analysis on the governing equations of motion. Our analysis shows that, depending
on the strength of the power-law character of the fluid, the novel equation can either present itself
as a higher-order correction to the classical Reynolds equation or as a completely new nonlinear
Reynolds type equation. Both equations are applied to two classic problems: the flow between
a rolling rigid cylinder and a rigid plane and the flow in an eccentric journal bearing.
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1. Introduction

The Reynolds’ lubrication approximation (Reynolds [1]) of the Navier-Stokes equation is
a cornerstone of classical fluid mechanics. This approximation has tremendous value as it is relevant
to many technological applications. However, many of the lubricating oils that are currently in use
cannot be appropriately described by the Navier-Stokes constitutive theory. Many of the lubricating
oils exhibit a variety of departures from Newtonian behavior, they shear thin, display stress-relaxation,
instantaneous elasticity, non-linear creep, threshold for the strain rate before they start to flow,
thixotropy, etc. Many constitutive models of the differential, rate and integral type have been developed
to describe the non-Newtonian behavior exhibited by such fluids, and lubricating approximations
have been derived for a variety of fluid flows governed by these equations. In this paper, we are only
interested in a very special sub-class of non-Newtonian fluids, namely we are interested in developing
a lubrication approximation for shear thinning fluids.

We do not aim to provide an exhaustive review of the numerous studies that have been
carried out to simplify and approximate the governing equations that arise from assuming different
non-Newtonian characteristics, a more complete list of the same can be found in the papers that we
mention below. We merely cite some representative papers that consider the different departures
from classical Newtonian behavior and in which the lubrication approximation has been developed.
A discussion of several of the studies that have been carried out can be found in the book by Szeri [2],
see also [3–5]. Early studies concerning the lubrication approximation for the flow of power-law
constitutive relations were primarily concerned with purely one dimensional flows where inertial
effects do not manifest themselves (see for instance Shukla et al. [6]); others concern non-inertial flows
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(see for example Park and Kwon [7]), and yet others concern the lubrication approximation for a power
law fluid, under infinite wide gap approximation (see the study by Johnson and Mangkoesoebroto [8]).
Bourgin [9], see also Kacou et al. [10], developed lubrication approximation for fluids of the differential
type and Harnoy [11] studied the lubrication approximation for an elastic-viscous fluid in a short
journal bearing. Ballal and Rivlin [12] studied the flow of a viscoelastic fluid in a journal bearing using
a perturbation analysis which was shown to be incorrect by San Andres and Szeri [13]. Cal et al. [14]
developed a lubrication approximation for viscoelastic fluids and showed that viscoelasticity can
have pronounced effect for certain values of the film thickness and in the case of the journal bearing,
the eccentricity. Also, in flows involving high pressures as encountered in elastohydrodynamics,
the pressure dependence of viscosity has to be taken into account (see Barus [15], Bair [16]). Lubrication
approximation has been developed in the case of fluids with pressure dependent viscosity by Rajagopal
and Szeri [17] and Gustafsson et al. [18]. Finally, Fusi et al. [19] have studied the lubrication
approximation for a Bingham fluid taking into account inertial effects; fluids like the Bingham fluid
that have a threshold in the stress for flow to take place are best described by constitutive relations
wherein the kinematics is described as a function of the stress rather than expressing the stress in terms
of the kinematical variable in the traditional manner (see Rajagopal [20,21] for a discussion of such
fluids as well as more general fluids that are described by implicit constitutive relations). As there
is a threshold for the stress beyond which the fluid starts to flow, the governing equations are quite
different from the lubrication approximation obtained in the case of the other studies that employ fluid
models that do not have such a threshold for the flow to take place.

The current study that is being carried out takes into consideration nonlinearities both due to the
shear dependent viscosity and inertia and the flow is two dimensional. Although the inertial effects
are not omitted a priori they do not influence the flow characteristics at the orders of approximation
considered in this work (see Nazarov and Videman [22] for the inertial correction to the Reynolds
lubrication approximation). The power-law fluid model under consideration has two constants that
determine its viscosity, a constant power-law exponent n and another constant α0 that determines
the departure of the viscosity from the Newtonian viscosity when the power-law exponent is 2 (see
Equation (7)). A formal perturbation analysis is carried out, assuming two different possibilities
for the material parameter α0, namely that it is of the order O(ε3) and O(ε2), and new lubrication
approximations are derived. In the former case, we simply obtain a higher-oder correction to the
classical (linear) Reynolds equation but if α0 is of O(ε2) the Reynolds type equation becomes fully
nonlinear and must be solved together with an ODE for the main part of the flow velocity. Using these
approximations, two problems are solved, the first being the fluid flow between a rolling rigid cylinder
and a rigid plane, and the second being the problem of the fluid flowing in an eccentric journal bearing

2. Formulation of the Problem

Consider the following set of partial differential equations governing the isothermal flow of
an incompressible, homogeneous power-law fluid

ρ

(
∂v
∂t

+ [∇v] v
)
+∇p = ρ f + div S , (1)

div v = 0 , (2)

where ρ > 0 is the constant density of the fluid, v = (u, v) is the velocity field, S is the deviatoric
stress tensor (T = −pI + S is the Cauchy stress tensor), p is a scalar variable, often referred to as
the mechanical pressure, associated with the incompressibility constraint (2), and f is an external
force acting on the fluid. Whether p is the mean value of the stress depends on the constitutive
relationship for the extra stress tensor S. In general, p is not the mean value of the stress but for
the model considered in this paper it is (see Rajagopal [23] for a detailed discussion of the notion of
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pressure, its use, misuse and abuse). The deviatoric stress tensor for a fluid with shear-dependent
viscosity which we shall study is related to the symmetric part of the velocity gradient as follows:

S = 2µ0

(
1 + α0 |D|2

) n−2
2 D , (3)

where n ≥ 1 is the power-law exponent and α0 a scalar coefficient related to the power-law character
of the fluid, with dimensions of time squared (dim[α0] = T2). Moreover, D(v) = 1

2
(
∇v + (∇v)T)

denotes the symmetric part of the velocity gradient (∇v)ij =
∂vi
∂xj

, and µ0 > 0 is a constant.

2.1. Lubrication Approximation

Let us restrict our attention to steady two-dimensional thin flows without external forces (f = 0).
We will now introduce the following dimensionless (starred) quantities

(x∗, y∗) = L−1(x, y) , v∗ = U−1 v , p∗ = P−1 p , S∗ = S−1S , α∗0 = U2L−2α0 , (4)

where L and U represent typical length and velocity scales and where the characteristic pressure P and
the characteristic stress S are taken to be

P = S = µ0 UL−1 . (5)

We will define the usual Reynolds number Re through

Re = ρ ULµ−1
0 , (6)

and make the following assumptions that are appropriate for a class of lubrication problems:

• the flow takes place between two almost parallel surfaces situated at y = 0 and y = H(x);
• the lubricating film is thin, that is, H(x) = ε h(x), where ε� 1 denotes a small non-dimensional

parameter;
• the flow is slow enough or the viscosity high enough so that Re = O(ε);
• the power-law parameter will have to be such that α0 = O(ε2) or α0 = O(ε3).

Next, we will drop the stars and introduce the fast variable y → ε−1y (the stretched normal
coordinate). The equations then become

Re ([∇v] v) +∇p = 2 div
{(

1 + α0 |D|2
) n−2

2 D
}

, (7)

div v = 0 . (8)

The adherence boundary conditions on rigid, impermeable boundaries read as

v = U0 , U0 · ey = 0 , U0 · ex = U0 , at y = 0 , (9)

v = Uh , Uh · eν = 0 , U0 · eτ = Uh , at y = h(x) , (10)

where U0 and Uh denote given constant velocities of the boundaries and eν and eτ stand for the unit
normal and tangent vectors at y = h(x). These vectors are related to the unit vectors ex and ey through
the formulae

eν =
∇(εh(x)− y)
‖∇(εh(x)− y)‖ =

∂
∂x (εh(x)− y)ex +

∂
∂y (εh(x)− y)ey√

1 + ε2(h′(x))2
=

εh′(x)ex − ey√
1 + ε2(h′(x))2

, (11)

eτ =
ex + εh′(x)ey√
1 + ε2(h′(x))2

. (12)
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2.2. Formal Asymptotic Analysis

2.2.1. Case α0 = O(ε3)

We will assume the following ansatz

v(ε, x) = ε0v(1)(x) + ε1v(2)(x) + ε2v(3)(x) + . . . , (13)

p(ε, x) = ε−2 p(0)(s) + ε−1 p(1)(x) + ε0 p(2)(x) + ε1 p(3)(x) + . . . , (14)

where x = (x, y) and the functions v(j), p(j) and are of O(1). According to the assumptions Re = O(ε)
and α0 = O(ε3), and thus on setting

Re = εR , α0 = ε3 α , (15)

we obtainR and α are of order one.
Inserting the asymptotic expansions (13) and (14) into Equations (7) and (8), we obtain at O(ε−3)

in (1) that p(0) = p(0)(x), i.e., independent of y; at O(ε−2) in (1), at O(ε−1) in (2) and at O(ε0)

in (9) and (10)

dp(0)

dx
=

∂2u(1)

∂y2 , (16)

∂p(1)

∂y
= 0 , (17)

∂v(1)

∂y
= 0 , (18)

u(1) = U0 , v(1) = 0 , at y = 0 , (19)

u(1) = Uh , v(1) = 0 , at y = h(x) , (20)

where U0 and Uh denote the tangential velocities at y = 0 and at y = h(x).
From (18)–(20) it follows that

v(1)(x, y) ≡ 0 . (21)

We have moreover that p(1) = p(1)(x) from (17). Using Equation (16) and the boundary
conditions (19) and (20) for u(1) we conclude that

u(1)(x, y) = U0 +
Uh −U0

h(x)
y +

y(y− h(x))
2

dp(0)

dx
. (22)

The equations at the next order read as

dp(1)

dx
=

1
2

1
2
(n− 4)α

(
∂u(1)

∂y

)2
∂2u(1)

∂y2 + (n− 2)α

(
∂u(1)

∂y

)2
∂2u(1)

∂y2

+ α

(
∂u(1)

∂y

)2
∂2u(1)

∂y2 + 2
∂2u(2)

∂y2

 , (23)

∂p(2)

∂y
= −∂2u(1)

∂x∂y
, (24)

∂v(2)

∂y
= −∂u(1)

∂x
, (25)
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v(2) = u(2) = 0, at y = 0 , (26)

v(2) = Uhh′(x) , u(2) = 0 at y = h(x) . (27)

Equations (24)–(27) can be expressed as a one-dimensional Stokes system for (v(2), p(2)).
Assuming that this system is solvable, it follows from (23) and (25) that u(2) satisfies the second-order
ODE (in y)

∂2u(2)

∂y2 =
dp(1)

dx
− 3

4
(n− 2)α

(
∂u(1)

∂y

)2
∂2u(1)

∂y2 , (28)

u(2) = 0 , at y = 0 , (29)

u(2) = 0 , at y = h(x) . (30)

On the other hand, the Stokes system (24)–(27) is solvable if and only if the compatibility condition

∫ h(x)

0

∂u(1)

∂x
dy = − h′(x)Uh (31)

is satisfied. Using the Leibniz rule, this amounts to

d
dx

∫ h(x)

0
u(1) dy = 0 , (32)

The classical Reynolds equation for p(0) is then a consequence of (22), namely

d
dx

[
h3

12
dp(0)

dx

]
=

1
2

dh
dx

(U0 + Uh) . (33)

The equations at O(ε0) in (1), at O(ε1) in (2) and at O(ε2) in (9) and (10) read as

∂2u(3)

∂y2 = . . . , (34)

∂p(3)

∂y
+

∂2v(3)

∂y2 = . . . , (35)

∂v(3)

∂y
= − ∂u(2)

∂x
, (36)

u(3) = v(3) = 0 , at y = 0 , (37)

u(3) = −1
2

h′ 2Uh, v(3) = 0 , at y = h(x) , (38)

where by . . . we have denoted terms which are known from the previous equations and are thus
irrelevant for the following computations.

Equations (35)–(38) form a one-dimensional Stokes system for (v(3), p(3)) and the velocity
component u(3) satisfies the second-order ODE

∂2u(3)

∂y2 = . . . , (39)

u(3) = 0 , at y = 0 , (40)

u(3) = −1
2

h′ 2Uh , at y = h(x) . (41)
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arising from Equation (34) and from the boundary conditions (37) and (38). Recall that terms indicated
by . . . have already been determined by the lower order equations.

The one-dimensional Stokes system for (v(3), p(3)) is solvable if and only if the following
compatibility condition is satisfied ∫ h(x)

0

∂u(2)

∂x
dy = 0 . (42)

Using the Leibniz integral rule, this condition becomes

d
dx

∫ h(x)

0
u(2) dy = 0 . (43)

Integrating by parts, one sees that

∫ h(x)

0
u(2) dy =

1
2

∫ h(x)

0
y (y− h(x))

∂2u(2)

∂y2 dy . (44)

Substituting (28) into the previous expression leads to a Reynolds type equation for the first-order
pressure correction

d
dx

[
h3

12
dp(1)

dx

]
=

α(n− 2)
320

5h′
dp(0)

dx

4(Uh −U0)2 + h4

(
dp(0)

dx

)2


+ h
d2 p(0)

dx2

20(Uh −U0)2 + 3h4

(
dp(0)

dx

)2
 . (45)

2.2.2. Case α0 = O(ε2)

Using again the ansatz (13) and (14) and making the same assumptions as in the previous case,
except for the material parameter α0 which is written as α0 = α ε2, we obtain at O(ε−3) in (1) that
∂p(0)

∂y
= 0, i.e., p(0) is independent of y.

At O(ε−2) in (1), at O(ε−1) in (2) and at O(ε0) in (9) and (10), we obtain, respectively

dp(0)

dx
=

1 +
α

2

(
∂u(1)

∂y

)2
 n−4

2
∂2u(1)

∂y2 +
α

2
(n− 1)

(
∂u(1)

∂y

)2
∂2u(1)

∂y2

 , (46)

∂p(1)

∂y
= 0 , (47)

∂v(1)

∂y
= 0 , (48)

u(1) = U0 , v(1) = 0 , at y = 0 , (49)

u(1) = Uh , v(1) = 0 , at y = h(x) , (50)

where U0 and Uh denote the tangential velocities at y = 0 and at y = h(x). From (48)–(50) it follows
that v(1)(x, y) ≡ 0, and from (47), we also see that p(1) = p(1)(x).
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At the next order in ε, the equations are

dp(1)

dx
=

α

4
(n− 4)

∂u(1)

∂y
∂2u(1)

∂y2
∂u(2)

∂y

α

2

(
∂u(1)

∂y

)2

+ 1

 n−6
2
α(n− 1)

(
∂u(1)

∂y

)2

+ 2


+

α

2

(
∂u(1)

∂y

)2

+ 1

 n−4
2 [

∂2u(2)

∂y2 +
α

2
(n− 1)

∂u(1)

∂y

(
2

∂u(2)

∂y
∂2u(1)

∂y2 +
∂u(1)

∂y
∂2u(2)

∂y2

)]
, (51)

∂p(2)

∂y
=

α

2

(
∂u(1)

∂y

)2

+ 1

 n−4
2 (

α(n− 2)
∂u(1)

∂x
∂u(1)

∂y
∂2u(1)

∂y2

+
∂2u(1)

∂x∂y

1− α

2
(n− 3)

(
∂u(1)

∂y

)2
 , (52)

∂v(2)

∂y
= −∂u(1)

∂x
, (53)

v(2) = u(2) = 0, at y = 0 , (54)

v(2) = Uhh′(x) , u(2) = 0 at y = h(x) . (55)

The Stokes system (52)–(55) is solvable if and only if the compatibility condition

∫ h(x)

0

∂u(1)

∂x
dy = − h′(x)Uh (56)

is satisfied. Using the Leibniz rule, this amounts to

d
dx

∫ h(x)

0
u(1) dy = 0 . (57)

On the other hand, rewriting (46) as1 +
α

2

(
∂u(1)

∂y

)2
2− n

2
dp(0)

dx
=

∂2u(1)

∂y2 +
α

2
(n− 1)

(
∂u(1)

∂y

)2
∂2u(1)

∂y2 , (58)

multiplying both sides by y(y− h(x)) and integrating with respect to y from 0 to h(x), yields

dp(0)

dx

∫ h(x)

0
y(y− h(x))

1 +
α

2

(
∂u(1)

∂y

)2
2− n

2

dy =

=
∫ h(x)

0
y(y− h(x))

∂2u(1)

∂y2 dy +
α(n− 1)

2

∫ h(x)

0
y(y− h(x))

(
∂u(1)

∂y

)2
∂2u(1)

∂y2 dy (59)

= −h(x)(U0 + Uh) + 2
∫ h(x)

0
u(1) dy− α(n− 1)

6

∫ h(x)

0
(2y− h(x))

(
∂u(1)

∂y

)3

dy .
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Differentiating both sides of the previous equation with respect to x, and taking into account the
compatibility condition (57) we finally obtain the following equation for p(0):

d
dx

dp(0)

dx

∫ h(x)

0
y(y− h(x))

1 +
α

2

(
∂u(1)

∂y

)2
2− n

2

dy

 =

= −h′(x)(U0 + Uh)− α(n− 1)
6

d
dx

∫ h(x)

0
(2y− h(x))

(
∂u(1)

∂y

)3

dy

 . (60)

Equations (46) and (60) form a dimensionally reduced nonlinear system of differential equations
for the (main parts) of the velocity and the pressure fields. Note that when n = 2 (or α = 0) Equation (46)
reduces to (16) and Equation (60) simplifies to the classical Reynolds Equation (33).

Remark 1. We have been concerned here with the power-law model (3). Other power-law type stress-velocity
gradient relationships of course exist, see, e.g., expressions (2.10) and (2.14) in [24]. However, neither one of
these latter models allows one to derive novel Reynolds type equations. Consider, for example, the deviatoric
stress tensor

S = 2
(

µ0 + µ1

(
|D|2

) n−2
2
)

D (61)

(see (2.14) in [24]), and write it as
S = 2µ0

(
1 + β1 |D|n−2

)
D , (62)

with β1 = µ1/µ0. Given that the modulus of D, denoted by |D|, is of order ε−1 since the derivatives in the
vertical direction are of order ε−1 and the velocities are of order ε0, β1 needs to be of order εn−2 for a Reynolds
type equation to be possible. This choice is model-dependent and leads essentially to the classic Reynolds equation.

3. Examples

We will now use our corrections to the Reynolds equation to examine the influence of the
power-law exponent on the lubrication characteristics. We will consider two classic examples: the flow
between a rolling rigid cylinder and a rigid plane and the flow in an eccentric journal bearing, cf. [2].
We take that the pressures are not too high so that we can assume constant classical viscosity and ignore
the possible deformation of the rolling cylinder and the dependence of the viscosity on the pressure.

3.1. Rolling Cylinder

Let h0 be the minimum distance between the cylinder of radius R and the plane, cf. Figure 1,
and let ε = h0/R. The non-dimensional film thickness h = h(θ) can be expressed in terms of the
angular coordinate θ as

h(θ) = ε + 1− cos θ . (63)

We will consider the cases α0 = O(ε3) and α0 = O(ε2) separately and assume throughout that
U0 = 0 and Uh = 1.
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O

R
θ

h0

U0

Uh

h(θ)

y

x

Figure 1. Cross-sectional geometry of an infinite cylinder rolling counter-clockwise on a plane. The fluid
is between the cylinder and the flat surface. Reprinted from [14], with permission from Elsevier.

3.1.1. α0 = O(ε3)

The Reynolds Equation (33) reduces to

d
dx

[
h3

12
dp(0)

dx

]
=

h′

2
. (64)

Letting θ1 denote the unknown position of the liquid-cavity interface where dp(0)
dx = 0 and making

the transformation θ = sin−1 x, we obtain

dp(0)

dθ
= 6 cos θ

h(θ)− h(θ1)

h3(θ)
. (65)

Assuming that the continuous film starts at θ = −π
2 and using the second Swift-Stieber boundary

condition p(0)(θ1) = 0, cf. [2], we may determine θ1 from the condition

∫ θ1

− π
2

dp(0)

dθ
dθ = 0 . (66)

The Reynolds equation for the pressure correction reads as

d
dx

[
h3

12
dp(1)

dx

]
=

αm
160

5h′
dp(0)

dx

4 + h4

(
dp(0)

dx

)2
+ h

d2 p(0)

dx2

20 + 3h4

(
dp(0)

dx

)2
 , (67)

where we have redefined the power-law exponent as

m = (n− 2)/2

so that for m ∈ [−0.5, 0) the fluid has the ability to shear thin and for m > 0 to shear thicken,
see Málek et al. [25] for a general discussion of properties of fluids with shear-dependent viscosity.
Making the change of variables θ = sin−1 x and expressing p = p(0) + ε p(1), we thus obtain
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dp
dθ

=
cos θ

h3(θ)

6h(θ) + ε
3 αm

40

∫ θ

θ2

5h′(θ)
cos θ

dp(0)

dθ

4 +
h4(θ)

cos2 θ

(
dp(0)

dθ

)2
dθ

+ε
3 α m

40

∫ θ

θ2

h(θ)
cos θ

d2 p(0)

dθ2

20 +
3 h4(θ)

cos2 θ

(
dp(0)

dθ

)2
 dθ

 . (68)

where we have assumed that dp
dθ = 0 at θ2, the corrected position of the liquid-cavity interface. As above,

θ2 can be determined from the condition ∫ θ2

− π
2

dp
dθ

dθ = 0 , (69)

assuming that p(θ2) = 0.
In Figure 2, we plot p for ε = 0.1, considering the power-law exponent values m = −0.5, −0.375, 1,

and compare the pressure profiles with p(0).

p H0L H m = 0 L

p H m = -0.5 L

p H m = -0.375 L

p H m = 1 L

-1.5 -1.0 -0.5
Θ

10

20

30

40

p

Figure 2. Pressure distributions computed from the classical Reynolds equation, p(0)(θ) (m = 0),
and from the power-law system of Reynolds type equations, p(θ) (m = −0.5,−0.375, 1), with ε = 0.1
and α0 = O(ε3).

For ε = 0.1, the value of the cavitation angle in the classical case (m = 0) is θ1 = 0.197408 and the
normal force is ω′p=

∫ θ1
− π

2
cos θ p(0)(θ)dθ = 13.985 in non-dimensional units. In Table 1, we present

the values of the cavitation angle θ2 and the corresponding normal forces for the power-law
lubrication approximations.

Table 1. Cavitation angles θ2 and the normal forces ω′p, computed for m = −0.5,−0.375, 1,
when ε = 0.1.

m θ2 (rad) ω′
p

−0.5 0.245119 10.7558
−0.375 0.229178 11.5351

1 0.167257 20.8097
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In Figure 3 and Table 2, we document the same results when ε = 0.01. The classical (m = 0)
cavitation angle is now θ1 = 0.0666263 (radians) and the normal force ω′p = 221.456.

p H0L H m = 0 L

p H m = -0.5 L

p H m = -0.375 L

p H m = 1 L

-1.5 -1.0 -0.5
Θ

500

1000

1500

p

Figure 3. Pressure distributions computed from the classical Reynolds equation, p(0)(θ) (m = 0),
and from the power-law system of Reynolds type equations, p(θ) (m = −0.5,−0.375, 1), with ε = 0.01
and α0 = O(ε3).

Table 2. Cavitation angles θ2 and the normal forces ω′p, computed for m = −0.5,−0.375, 1,
when ε = 0.01.

m θ2 (rad) ω′
p

−0.5 0.0827747 181.54
−0.375 0.077616 191.168

1 0.0553576 306.272

3.1.2. α0 = O(ε2)

In this case, we need to solve (numerically) the following nonlinear system for p(0) and u(1):

dp(0)

dθ
= cos θ

1 +
α

2

(
∂u(1)

∂y

)2
m−1 ∂2u(1)

∂y2 +
α

2
(n− 1)

(
∂u(1)

∂y

)2
∂2u(1)

∂y2

 ,

dp(0)

dθ

∫ h(θ)

0
y(y− h(θ))

1 +
α

2

(
∂u(1)

∂y

)2
1−m

dy (70)

= − cos θ

h(θ) +
α(n− 1)

6

∫ h(θ)

0
(2y− h(θ))

(
∂u(1)

∂y

)3

dy

θ

θ2

.

The boundary conditions for the pressure are the Swift-Stieber conditions, i.e.,

p(0)(θ2) = 0,
dp(0)

dθ
(θ2) = 0, (71)

and for the velocity those given in (49) and (50).
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The computed pressure distributions have been plotted in Figure 4, for ε = 0.1, and in Figure 5,
for ε = 0.01. In each case, we have considered the values of power-law exponent −0.5,−0.375 and 1
and compared the distributions with that of the classical Newtonian case (m = 0). The values of the
corresponding cavitation angles and the normal forces are given in Tables 3 and 4.

p H0L H m = 0 L

p H0L H m = -0.5 L

p H0L H m = -0.375 L

p H0L H m = 1 L

-1.5 -1.0 -0.5

Θ

5

10

15

20

25

30

p
H0L

Figure 4. Pressure distributions computed from the classical Reynolds equation, p(0)(θ) (m = 0),
and from the power-law system of Reynolds type equations, p(0)(θ) (m = −0.5,−0.375, 1), with ε = 0.1
and α0 = O(ε2).

p H0L H m = 0 L

p H0L H m = -0.5 L

p H0L H m = -0.375 L

p H0L H m = 1 L

-1.5 -1.0 -0.5

Θ

200

400

600

800

1000

p
H0L

Figure 5. Pressure distributions computed from the classical Reynolds equation, p(0)(θ) (m = 0), and from
the power-law system of Reynolds type equations, p(0)(θ) (m = −0.5,−0.375, 1), with ε = 0.01 and
α0 = O(ε2).
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Table 3. Cavitation angles θ2 and the normal forces ω′p, computed for m = −0.5,−0.375, 0, 1 when
ε = 0.1.

m θ2 (rad) ω′
p

−0.5 0.221825 11.105
−0.375 0.225363 11.5739

0 0.197408 13.985
1 0.227645 15.2337

Table 4. Cavitation angles θ2 and the normal forces ω′p, computed for m = −0.5,−0.375, 0, 1 when
ε = 0.01.

m θ2 (rad) ω′
p

−0.5 0.0747584 189.875
−0.375 0.0760101 194.649

0 0.0666264 221.456
1 0.0774216 233.142

In general, the results are similar to the linear case. However, the maxima for the power-law
pressures are now shifted to the left with respect to the classical Newtonian case.

3.2. Journal Bearing

Consider an (infinitely) long journal bearing consisting of a cylinder (journal) rotating
eccentrically, at an angular velocity Ω, inside another cylinder (bearing) filled with an incompressible
power-law fluid.

We denote the journal radius by R0, the bearing radius by R (R0 < R) and the distance
between centers by a, see Figure 6. We define δ ≡ a/R0 and ε ≡ (R − R0)/R0 and assume that
the non-dimensional parameters δ and ε are small. The fluid film thickness H can be expressed as
a function of the angle ϕ measured counter-clockwise from the bearing radius perpendicular to the
journal. Measured along the bearing radius, the film thickness is, up to an error of the order of O(δ3)

(see [2]), given by

H(ϕ) = R− R0 + a cos(ϕ) +
a2

2 R0
sin2(ϕ) . (72)

The non-dimensional film thickness h(ϕ) is defined through H = R0εh and, up to an error of the
order of O(ε2), can be written as

h(ϕ) = 1 + χ cos(ϕ) + ε
χ2

2
sin2(ϕ) , (73)

where χ = a/(R− R0) is the eccentricity ratio.
The equations we have derived do not take into account the curvature effects. In order to do so,

we should express the equations in natural orthogonal coordinates (cf. Nazarov and Videman [22]).
Since curvature brings a first-order correction term to the classical Reynolds equations, in geometries
such as the journal bearing (see [22]), we will drop the last term in (73) and do not consider the case
where the non-Newtonian effects appear at the first-order. The equations for the journal bearing
become thus similar to those in Section 3.1, except for the absence of the cosine of the angle and for the
angular coordinate being the non-dimensional x = ϕ. In other words, we make cos θ → 1 and θ → ϕ

in the equations of Section 3.1. The boundary conditions for the pressure p(0) are p(0)(0) = p(0)(2π)

and p(0)(π) = 0. Moreover, we choose U0 = 0 and Uh = 1 (the velocity scale is U = 2πΩR0).
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OB

OJ

R

R0

a

ϕ

Figure 6. Cross-section of an infinite journal bearing. The journal is centered at OJ and rotates
counter-clockwise within the fixed bearing centered at OB. The fluid occupies the space between
the two cylinders. Reprinted from [14], with permission from Elsevier.

3.2.1. α0 = O(ε3)

We do not consider this case since, as explained above, the curvature effects are of the same order
as the first order correction p(1)(ϕ).

3.2.2. α0 = O(ε2)

The following pressure profiles were computed choosing (a) χ = 0.1, (b) χ = 0.5, (c) χ = 0.95,
see Figures 7–9, respectively.

p H0L H m = 0 L

p H0L H m = -0.375 L

p H0L H m = -0.25 L

p H0L H m = 1.` L

1 2 3 4 5 6
j

-0.5

0.5

1.0

p
H0LHjL

Figure 7. Pressure distributions computed from the classical Reynolds equation, p(0)(θ) (m = 0),
and from the power-law system of Reynolds type equations, p(0)(θ) (m = −0.375, −0.25, 1),
with χ = 0.1.
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p H0L H m = 0 L

p H0L H m = -0.375 L

p H0L H m = -0.25 L

p H0L H m = 1.` L

1 2 3 4 5 6
j

-6

-4

-2

2

4

6

p
H0LHjL

Figure 8. Pressure distributions computed from the classical Reynolds equation, p(0)(θ) (m = 0),
and from the power-law system of Reynolds type equations, p(0)(θ) (m = −0.375, −0.25, 1),
with χ = 0.5.

p
H0L H m = 0 L

p
H0L H m = -0.375 L

p
H0L H m = -0.25 L

p
H0L H m = 1 L

1 2 3 4 5 6
j

-150

-100

-50

50

100

150

p
H0LHjL

Figure 9. Pressure distributions computed from the classical Reynolds equation, p(0)(θ) (m = 0),
and from the power-law system of Reynolds type equations, p(0)(θ) (m = −0.375, −0.25, 1),
with χ = 0.95.

We find that the increase of χ, namely from χ = 0.1 to χ = 0.95, results in a change in the pressure
profile, regardless of the value of n. The maxima are higher for larger values of m, as in the previous
example. No change is visible to the zeros of the pressure profile and no change of phase is obtained
with regard to changes in n, χ, or ε.

4. Conclusions

We have given a rigorous derivation of Reynolds type lubrication approximations for a family
of non-Newtonian power-law models. Based on a formal perturbation analysis, we have shown
that, in the cases considered, lubricating film flows for fluids with shear-dependent viscosities can be
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approximated by simplified dimensionally reduced models. We have corroborated our theoretical
results by presenting numerical computations which show that the pressure profiles behave as expected
for shear-thinning fluids.
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