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Abstract: The formation mechanism of extreme waves in the coastal areas is still an open
contemporary problem in fluid mechanics and ocean engineering. Previous studies have shown that
the transition of water depth from a deeper to a shallower zone increases the occurrence probability
of large waves. Indeed, more efforts are required to improve the understanding of extreme wave
statistics variations in such conditions. To achieve this goal, large scale experiments of unidirectional
irregular waves propagating over a variable bottom profile considering different transition water
depths were performed. The validation of two highly nonlinear numerical models was performed
for one representative case. The collected data were examined and interpreted by using spectral
or bispectral analysis as well as statistical analysis. The higher probability of occurrence of large
waves was confirmed by the statistical distributions built from the measured free surface elevation
time series as well as by the local maximum values of skewness and kurtosis around the end of the
slope. Strong second-order nonlinear effects were highlighted as waves propagate into the shallower
region. A significant amount of wave energy was transmitted to low-frequency modes. Based on
the experimental data, we conclude that the formation of extreme waves is mainly related to the
second-order effect, which is also responsible for the generation of long waves. It is shown that
higher-order nonlinearities are negligible in these sets of experiments. Several existing models for
wave height distributions were compared and analysed. It appears that the generalised Boccotti’s
distribution can predict the exceedance of large wave heights with good confidence.

Keywords: coastal areas; extreme waves; statistical analysis; bispectral analysis; nonlinear wave models

1. Introduction

Extreme wave, also known as freak wave or rogue wave, refers in oceanography to large water
wave with crest-to-trough wave height H exceeding twice the significant wave height Hs in the wave
field, or with wave crest height ηc higher than 1.25Hs [1]. In a Gaussian sea state, wave heights H
follow a Rayleigh distribution when the wave field is assumed to be narrow-banded. In such cases,
large waves fulfilling the criteria H/Hs > 2 are not so unusual, occurring approximately once every
3000 waves. For instance, if the average wave period Tave = 15 s, it implies that the observer could
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probably encounter one of such waves in 12 h. What makes this particular field of research interesting
is the fact that the extreme waves may occur not only in the energetic storm sea state but also in a
calm sea state, making these waves outstanding and exceptional compared to the surrounding waves.
These extreme waves are supposed to be very rare basing on Rayleigh distribution model, whereas
they seem to have a larger occurrence in the real world, as suggested in the following scientific studies
and reports [2–5].

The possible mechanisms of the formation of extreme waves are summarised and discussed
in recent reviews [6,7]. One of the well-known mechanisms of the generation of freak waves is the
so-called Benjamin–Feir (or modulational) instability [8,9], which is frequently studied within the
framework of the nonlinear Schrödinger equation (NLS). The NLS equation can describe the evolution
of the narrow-banded weakly nonlinear waves [10–13]. More recent reviews show that real sea
states are more complex and one needs to consider three-dimensionality [14], dissipation [15–17]
and breaking [18] to achieve more accurate modeling of such wave fields. For constant water depth,
the modulation instability of unidirectional waves should disappear with the relative water depth
kh < 1.363 (k denotes the wave number and h is the water depth) [8,19]. However, for the
multidirectional sea states, this is no longer the case. The three-dimensionality not only affects
the modulation instability but also the statistical parameters [20,21]; the sea states are either focusing or
defocusing depending on the spreading angle. Although we are aware of the essential importance of
short-crest waves, the topic of this paper is restricted to one horizontal propagation direction case since
the uneven bottom effects on freak waves are not fully understood yet in such configuration. Recently,
it has been emphasised that the formation of extreme waves is more related to the second/third-order
non-resonant or bound harmonic waves than modulation instability, especially in the finite water
depth case where the instabilities are further attenuated [22].

The evidence of the link between a water depth transition and a higher probability of the
occurrence of extreme waves has been shown both experimentally [23,24], and numerically [25–27].
There are also studies dealing with extreme wave statistics in coastal areas with different shapes
of variable bathymetry. Katsardi et al. (2013) [28] conducted experimental tests with unidirectional
waves propagating over mild bed slopes (1:100 and 1:250) including breaking zones, and made
extensive comparisons of wave height distributions. Nonlinear transformation of irregular waves
propagating over sloping bottoms (1:15, 1:30 and 1:45) is discussed using wavelet-based bicoherence
in [29]. Ma et al. (2014) [30] studied spatial variations of skewness, kurtosis and groupiness factor for
irregular waves over a bar (1:20) in shallow water. The obliquity effects on the statistical parameters
are discussed in [21] using 3D simulations with a High-Order Spectral (HOS) model.

In this context, the objectives of the present study were three-fold: (1) studying experimentally the
statistical distribution of (extreme) wave heights considering variable bottom coastal conditions
in a uni-directional water wave flume; (2) comparing the collected temporal wave profiles and
corresponding statistical distributions with the results from two advanced numerical models;
and (3) comparing the measured and simulated wave height distributions with a number of existing
statistical models. Regarding Objective 1, the spatial evolution of unidirectional irregular sea states
due to the presence of a constant bottom gradient was studied in the large scale facility of Tainan
Hydraulics Laboratory (THL) in Taiwan. This large facility allowed us to investigate the full life cycle
of extreme waves, from the generation to the degeneration. Several cases with different experimental
conditions were tested, while one representative case was investigated for the validation of numerical
nonlinear models. In addition to the overall evolution of the sea state, particular attention was
paid to the sloping bottom zone as well as the two depth transition regions. Regarding Objective 2,
two accurate numerical models were adopted to simulate the experiments, both based on the fully
nonlinear potential flow theory: a higher-order Boussinesq-type model based on the model in [31]
and the highly nonlinear and dispersive model, whispers3D, using a spectral approximation of the
potential in the vertical direction [32,33]. As shown below, the corresponding results indicate that
the increase of the probability of occurrence of freak waves was clearly observed in experiments and
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well captured in the simulations, over a region where the water depth is relatively mildly varying.
Both measured and simulated wave profiles were studied by using statistical, spectral and bispectral
analysis. Finally, Objective 3 was devoted to the statistical distributions of measured and simulated
wave heights comparing with six existing statistical distribution models.

The present article is structured as follows. In Section 2, the experimental set-up and the tested sea
state conditions are introduced. The mathematical models and their numerical implementations are
presented in Section 3. Several signal processing techniques are adopted to interpret the obtained data:
from the measurements as well as the simulations, including spectral analysis (Section 4), bispectral
analysis (Section 5), nonlinear wave parameters analysis (Section 6), and statistical analysis of the wave
height distribution (Section 7). Conclusively, the main results are summarised in Section 8.

2. Experimental Set-Up and Test Conditions

The experiments were conducted in the 2-D wave flume of THL at Tainan, Taiwan. The flume
is 200 m long and 2 m wide. The waves were initially generated in the deeper region with depths of
h = 1.2 m and 1.3 m. The bathymetry was decomposed into three parts: a 30 m long flat part, a 20 m
long part with a constant slope of 1/20 and again a 120 m long flat bottom part. Waves were generated
at x = 0 m by a piston-type wave-maker, which was also able to absorb part of the wave energy
reflected by the uneven bottom or far-field rip-rap mound. The last 30 m part of the flume worked as
an effective wave absorber including a deep water area and a mound of stones placed at the end of the
flume. Over the flume length, 30 capacitance gauges were used to measure the wave elevation with a
sampling frequency of 100 Hz. The locations of the wave gauges are shown in Figure 1.

1 m1:20

	

	

Figure 1. Sketch of the experimental setup, installed at THL.

The first probe, located at x = 3 m, was used as a reference for the input signal generated by
the wavemaker, and then 7 additional wave probes were used to measure the wave evolution in the
deeper area. Probes 9–12 were used to record the wave evolution over the slope. Several probes were
distributed in the shallower region to observe the post-dynamics of extreme waves appearing around
the end of the bottom slope.

Unidirectional irregular waves were generated using a linear superposition model using random
initial phases and amplitudes as determined from a JONSWAP spectrum, given in Equation (1).
The experimental condition was controlled by four parameters: water depth h, significant wave height
Hs, peak frequency fp and the peak enhancement factor γ.
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where g denotes the gravitational acceleration; α denotes the adjustment factor to achieve the target
Hs; and σJ denotes the spectral asymmetric parameter with respect to (w.r.t.) the spectral peak at
fp, with σJ = 0.07 when f < fp and σJ = 0.09 when f > fp. The spectrum was discretised using
16,384 = 214 frequency components over the range [0, 6 fp] to generate irregular sea states.

During the experimental campaign, more than 30 cases were tested, which were chosen based on
the nonlinearity (wave steepness kp Hs, with kp being the wave number corresponding to the peak wave
period Tp) and the dispersion (w.r.t. the relative water depth kph) in the deeper and shallower regions.
The relative importance of these two effects was measured by the Ursell number Ur ≡ HsL2

p/h3.
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For each test, the test duration lasted for 1200Tp. Among all tests, the experimental results of three
representative cases shown in Table 1 have already been studied [34].

Table 1. Experimental cases studied in [34].

Case γ h(m) Hs(m) Tp(s)
Deeper Side Shallower Side

kph kp Hs Ur k′
ph′ k′

p H′
s Ur′

1 3.3 1.2 0.05 1.5 2.20 0.092 0.3 0.64 0.166 25.4
2 3.3 1.3 0.10 2.3 1.19 0.092 2.1 0.50 0.197 63.3
3 3.3 1.3 0.10 2.5 1.06 0.082 2.7 0.45 0.185 78.0

(1) Parameters in the shallower side are denoted by ′; (2) in the shallower region, h′ = h − 1 m,
and H′s = Hs

√
Cg/C′g; (3) the group velocity Cg = ∂ω/∂k, with ω =

√
gk tanh kh.

Only Case 2 was selected and simulated in this study for the following reasons: (1) the sea state
of Case 1 is almost Gaussian and the number of measured large waves is insufficient to do reliable
statistical analysis; (2) in Cases 2 and 3, the relative water depth kph < 1.363 is verified for the whole
bottom profile, which means the effect of modulation instability can be ignored; and (3) Cases 2 and 3
show similar behaviour in both the statistical and spectral analyses. Case 2 is also preferred because
fewer wave breaking events happened during the experiment, and they are not accounted for in
the two numerical models. Regarding the wave parameters, one difference between the work of
Trulsen et al. [23] and the present work is that the nonlinearity of the waves in our case is significantly
increased by the shoaling over the slope (note that k′p H′s ≈ 0.197 in our case is larger than 2kpac ≈ 0.14
in the shallower side of Case 1 in [23]) with the dispersion effects, i.e., kph and k′ph′ being similar.
Regarding the wave tank, our configuration was shorter in the deeper part but longer in the shallower
part, also the slope is longer with the normalised length kpLs ≈ 18 (Ls denotes the length of slope)
than in [23] where kpLs ≈ 8. Finally, a larger number of wave gauges were set in the flume to follow
the wave evolution in space.

3. Numerical Modeling

3.1. General Modeling Approach

The wave problem is formulated in a 2D vertical Cartesian coordinate system (x, z), with x-axis
located at the mean free surface level, and z-axis positive upwards. In the framework of potential flow
theory, the fluid is assumed to be homogeneous and inviscid and the flow is assumed irrotational so
that the wave breaking cannot be directly considered. With the velocity potential φ(x, z, t) introduced,
the nonlinear potential flow problem is:

φxx + φzz = 0, −h(x) ≤ z ≤ η(x, t), (2)

ηt + φxηx − φz = 0, at z = η(x, t), (3)

φt +
1
2

(
φ2

x + φ2
z

)
+ gη = 0, at z = η(x, t), (4)

hxφx + φz = 0, at z = −h(x), (5)

where the subscripts denote partial derivatives (i.e., φx ≡ ∂φ
∂x ).

The free surface boundary conditions (FSBCs) Equations (3) and (4) are expressed as functions of
free surface variables η(x, t) and φ̃(x, t) ≡ φ(x, z = η, t), forming the so-called Zakharov equations:

ηt = −φ̃xηx + w̃
(

1 + η2
x

)
+ 2νηxx, (6)

φ̃t = −gη − 1
2

φ2
x +

1
2

w̃2
(

1 + η2
x

)
− 2νφzz, (7)
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where the vertical velocity at the free surface is w̃(x, t) ≡ φz(x, z = η(x, t), t), which is needed to
integrate the Zakharov equations in time. Determining w̃ from the free surface variables η and φ̃ is
known as a Dirichlet-to-Neumann (DtN) problem. It should be noticed that the wave flume is large so
that the frictional dissipation is significant during the experiments. This is modeled here by adopting
two additional viscous terms in Equations (6) and (7), following the work of Dias et al. [35]. The value
of ν needs to be calibrated: in our simulations, the value of ν = 0.0006 m2/s was chosen as it allows
reproducing the mean decay rate of wave energy as waves propagate along the wave flume.

3.2. Boussinesq-Type Model

The Boussinesq-type model for the fully nonlinear and dispersive water waves with potential
formulations [31] was used to simulate the experiments. In the model, the velocity potential φ is
expanded around a certain depth ẑ(x) in the water column using a power series of the vertical
coordinate z:

φ(x, z, t) ≈
4NB+1

∑
n=0

1
n!

(z− ẑ)n φ̂(n), (8)

where NB is related to the order of the model, and, in our simulations, NB = 2 ws chosen.
φ̂(n) ≡ ∂nφ/∂zn|z=ẑ for n = 0, 1, 2, 3, ..., ∞, with ẑ is usually fixed at the middle of the water column to
optimise the dispersion properties. We define ŵ ≡ φ̂(1) as the vertical velocity at the chosen elevation.

The in-depth study of this model can be found in the literature [31,36,37]. The main steps are
briefly recalled here (see [31] for more information). Introducing Equation (8) into the Laplace equation
(Equation (2)) and assuming ẑ is a function of slow variable δx (with δ� 1), the velocity potential φ

can be formulated as an expression of φ̂(0) and ŵ. In the NB = 2 model, the expression of φ is truncated
at order O(δ2) and the higher-order derivatives are up to 4NB + 1. The accuracy of the truncation
can be significantly improved by adopting the enhancement technique. New expansion variables are
obtained by applying the L-operator:

φ̂(0) = Lp (ẑ∇) φ̂∗, ŵ = Lw (ẑ∇) ŵ∗ (9)

where Lp (ẑ∇) = L0 +∇ẑ · L1∇ and Lw (ẑ∇) = L0 +∇ẑ · L2∇, with ∇ ≡ ∂/∂x being the horizontal
derivative operator. The coefficients of a linear operator L0 (ẑ∇) are computed to let the high-order
derivatives from 2NB + 2 to 4NB + 1 vanish. The shoaling enhancement operators L1 (ẑ∇) and
L2 (ẑ∇) are used to optimise the linearised shoaling behaviour of the model. The expressions of these
L-operators can be found in [31].

Now, the velocity potential φ is expressed as a function of φ̂∗ and ŵ∗ via Equation (9).
The expressions of the potential at the free surface and at the bottom can be derived using the chain
rule. With the Dirichlet boundary condition at the free surface φ|z=η = φ̃ and the bottom boundary
condition in Equation (5) expressed in terms of φ̂∗ and ŵ∗, a linear system is established. The potential
φ can be obtained from the solutions of the linear system, φ̂∗ and ŵ∗. Finally, the vertical velocity at
the free surface w̃ is computed to advance the model in time.

The numerical solution procedure is based on the finite difference method for the spatial derivative
and the explicit fourth-order Runge–Kutta scheme for the time integration. In the horizontal direction,
a stencil of seven points is used to apply up to fifth-order derivative operators. In the linearised NB = 2
model, the dispersion relationship is given explicitly by:

C2
NB

gh
=

1 + ∑2NB
n=0 D2n (kh)2n

1 + ∑2NB+1
n=0 E2n (kh)2n (10)

where CNB denotes the phase velocity. The coefficients D2n and E2n depend on the expansion
level ẑ(x)/h(x), and are given by [36] (Equation (25)). To evaluate the dispersion property of this
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model, Equation (10) has to be compared to the exact Airy phase velocity in flat bottom condition
C2

Airy/(gh) = tanh(kh)/(kh).

3.3. Whispers3D Model

The modeling approach of whispers3D is presented in previous works [32,33] and summarised
hereafter. First, a change of the vertical coordinate from z ∈ [−h(x), η(x, t)] to s ∈ [−1, 1] is applied,
mapping the varying domain to a rectangular one:

s(x, z, t) =
2z + h(x)− η(x, t)

h(x) + η(x, t)
(11)

The nonlinear potential system in Equations (2)–(5) can be reformulated using in the new
(x, s, t)-space, with φ(x, z, t) = ϕ(x, s(x, z, t), t). Following Tian and Sato (2008) [38], a spectral
approach is used in the vertical to approximate the velocity potential. Using the set of orthogonal
Chebyshev polynomials of the first kind, denoted Tn(s), n = 0, 1, ..., NT , with s ∈ [−1, 1], as an
expansion basis, the potential is approximated as:

ϕ(x, s(x, z, t), t) ≈ ϕNT (x, s(x, z, t), t) =
NT

∑
n=0

an(x, t)Tn(s), (12)

where the an(x, t) coefficients of the Tn terms are now the main unknowns of the problem.
Then, the approximation in Equation (12) of ϕ is inserted into the governing equations composed

of the Laplace equation, a Dirichlet free surface boundary condition (FSBC) with ϕNT |s=1 ≈ φ̃ and the
bottom boundary condition expressed in the (x, s) coordinate system. The so-called Chebyshev-tau
method, a variant of the Galerkin method, is used to project the Laplace equation onto the Tn

polynomials for n = 0, 1, ..., NT − 2 eliminating the s coordinate and giving a set of NT − 1 equations
on the an coefficients at each location x. These NT − 1 equations are supplemented with the Dirichlet
FSBC and the bottom boundary condition, so that a system of NT + 1 linear equations with NT + 1
unknowns (an, n = 0, ..., NT) at each abscissa is formed. The solutions of this linear system are the an

coefficients, from which the free surface vertical velocity at time t is obtained as:

w̃(x, t) =
2

h(x) + η(x, t)

NT

∑
n=1

an(x, t)n2, (13)

In the whispers3D model, the first- and second-order horizontal derivatives are approximated
using fourth-order finite difference formulas with stencils of five nodes. An explicit third-order
Runge–Kutta scheme (SSP-RK3) is used for time marching. The dispersion relation of the linear model
in constant water depth was derived analytically by Benoit et al. [39]:

C2
NT

gh
=

1 + ∑NT−2
n=1 Pn (kh)2n

1 + ∑NT−1
n=1 Qn (kh)2n , (14)

where the coefficients Pn and Qn for different values of NT can be found in Table 1 of [39].

3.4. Simulations of the Experimental Case 2

The whispers3D model solves the fully nonlinear potential flow problem, with no assumptions
made regarding the steepness of the surface waves or the bathymetry. In the Boussinesq-type model,
with the linear operators applied, the model is “improved” in the dispersion relation accuracy.
The rapidly varying bathymetry can be well simulated. The dispersion relations of two models
are compared to CAiry in Figure 2 over a wide range of relative water depth kh. It is shown that
the relative error varies significantly for different water depths. In intermediate and shallow water,
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i.e., kh ∈ (0, π], the relative errors of CNB and CNT are small (for instance, below 10−5 for NT = 7
or NB = 2). However, the dispersion relation is less accurate for deep water waves in both models.
One advantage of the whispers3D model is that the user can adjust the value of NT easily. In shallow
water, a small NT can improve the efficiency of the model while keeping good accuracy. In deep water,
by using large NT , the model has the possibility to achieve better accuracy for a large value of kh.
The dispersion relations of both models are very accurate under the experimental condition (kph ≈ 1.2
for Case 2), thus NT = 7 was chosen in the simulations with whispers3D.

10-1 100 101 102
10-10

10-8

10-6

10-4

10-2

100

Figure 2. Comparison of the dispersive effects between the Boussinesq-type model (NB = 2) and
the whispers3D model (with different choices of NT) in log-log scale. The two dash lines divide the
domain into shallow water region (kh < π/10), intermediate water depth region, and deep water
region (kh > π).

In the simulations with Boussinesq-type model, the expansion elevation was chosen at ẑ = −0.5h,
the shoaling enhancement factors were chosen to be accurate for kh ∈ (0, 30]; the optimised coefficients
are given in Equation (52) of [31]. The chosen time step is ∆t ≈ 0.016 s and the horizontal grid size is
∆x ≈ 0.114 m, corresponding to the Courant–Friedrichs–Lewy number (CFL = C∆t/∆x, C = L/T) is
CFL ≈ 0.417. Waves were generated in a relaxation zone of 3Lp long at the left boundary and were
absorbed in another of 0.5Lp long at the right boundary. This set-up was chosen to achieve a better
agreement of the low-frequency domain with the measured data. The measured data at x = 3 m were
taken as the target spectrum and reconstructed through linear superposition of harmonic incident
wave components. In the whispers3D simulation, NT = 7 was used for the approximation of velocity
potential. The simulations were made with a time step of ∆t = 0.02 s and a grid size of ∆x = 0.05 m,
resulting in CFL = 1.19.

In Figure 3, the spatial evolution of the largest wave group observed in the experiment is shown;
the simulated results of Boussinesq-type model and whispers3D are also superposed for comparison.
Note that the threshold of freak wave is considered locally since the sea state undergoes significant
change due to the uneven bottom. For this reason, the free surface elevation in the figure is normalised
by the local significant wave height. The origin of the two freak waves in Figure 3h is shown in the
energetic wave packet generated around 33 min from the start, where the sea state has already been
affected by the reflected long wave. Figure 3a–c shows that the wave form remains quite similar, from
the formation of the wave packet until it propagates over the middle of the slope. The simulation results
are in good agreement with the measurements in this region. As waves enter the shallower region and
propagate within a certain distance, corresponding to the region between Probe 13 (Figure 3g) and
Probe 17 (Figure 3f), two waves in the packet are amplified and can be identified as freak waves since
their crest elevations exceed 1.25 times of the local Hs. These two freak waves keep their wave profiles
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longer in the experiment than in the simulations. On the other hand, both numerical schemes seem to
underestimate the group velocity as well as the amplitudes of large waves.

Figure 3. Comparison of the free surface elevation normalised by the local significant wave height at
different positions (panel (a)–(g)) between the simulated results of the Boussinesq-type model (blue
lines), whispers3D (red lines) and the measurements (black dot lines). Only the local relative water
depth over the uneven region is marked. The threshold of freak wave basing on crest elevation is
shown (dash lines).

4. Data Processing: Spectral Analysis

Assuming that the free surface elevation is the sum of a large (infinite) number of statistically
independent harmonic waves, each component having a random phase in [−π, π] and a constant
positive amplitude, we operated with a Gaussian sea state and the statistical characteristics can be
described through simple Fourier analysis. The spectral analysis was applied to both measured and
simulated results. The simulated signals were resampled (by means of interpolation) to have the
same sample points. A low-pass filter was applied to the measured signals to exclude the undesired
high-frequency band which might be contaminated by the electronic noise of the wave probes. The time
window where the analysis was carried out was translated for each wave gauge with the group velocity
Cg( fp), which ensured that all analysed signals recorded at different positions roughly started from
the same wave event. The spectra were estimated via Welch’s method. The overlapping factor was
50%, with which the signals were separated into a number of segments. First, the Hann window was
applied to each segment of signal (approximately 80 s), and then it was Fourier-transformed through
213-point fast Fourier transform (FFT), resulting in a high spectral resolution ∆ f = 0.0061 Hz.

In Figure 4, both the overall spatial evolution of the spectrum and the detailed spectra at four
specific positions are shown. It was observed that, as waves propagate over the deeper region, the wave
spectra are modulated mainly in the low-frequency range ( f < 0.2 Hz), and several low-frequency
modes are formed before the bottom slope. The low-frequency part is a result of the reflection of
unabsorbed long waves and the excitation of the natural modes of the wave flume. The wavemaker
and the damping zone only “absorb” a part of the reflected wave energy. Thus, these low-frequency
modes increase gradually during the test. Over the bottom slope, second-order effect gets increasingly
significant especially around the end of the slope (see the yellow peak at about 2 fp in Figure 4a for
x = 53.5 m and Figure 4b for the corresponding spectrum). After the slope segment, the increase of
the second harmonic disappears rapidly. More and more wave energy transfers to the low-frequency
part, and, as a result, the spectrum broadens. After some distance, due to the energy transfer the
low-frequency peak even exceeds the “original” spectral peak and becomes the “new” highest peak of
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the spectrum (see, for instance, Figure 4b, Probe 24). Apart from the nonlinear wave–wave interactions,
the evolution of the spectrum is also affected by the friction resulting from the boundaries, which play
an important role in the dissipation of wave energy. The frictional dissipation works as a low-pass
filter, i.e., the dissipation is stronger for the high frequency waves than for the low-frequency waves.

Figure 4. The spectrum of the experimental data shown in different scales: (a) the spatial evolution of
the spectrum in a log-scale colormap; and (b) the spectra of four specific positions.

The spectra simulated with the Boussinesq-type model are shown in Figure 5. The incident wave
spectrum shape was well simulated, as waves propagate in the deeper region, the frequencies in the left
side of the spectral peak remain in good agreement with the measurements, but differences appear in
the higher frequency domain (see Figure 5b). Potentially, some wave–wave interactions occur between
the wavemaker and the first probe generating high frequency components. These high-frequency
components are considered as free modes in the simulations due to linear wave making, so that they
are dissipated rapidly by friction. Around the end of the slope, the second harmonic clearly appears
and is more energetic compared to the measured results. The broadening of the spectrum after the
slope is well predicted. In total, the Boussinesq-type model provides a good prediction of spectral
evolution, despite the slight overestimation of the nonlinear interaction.

Figure 5. Same plot as Figure 4 for the results of the Boussinesq-type simulation.

The spectra simulated with whispers3D are shown in Figure 6. It is shown that the results of
whispers3D are in good agreement with the results of the Boussinesq-type model as well as the
measurements. Indeed, this model also overestimates the nonlinear wave–wave interactions around
the end of the slope so that second (and also higher) harmonic of the spectral peak receive more energy.
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Figure 6. Same plot as Figure 4 for the results of whispers3D simulation.

5. Data Processing: Bispectral Analysis

It is well-known that waves in nature can be strongly nonlinear when they enter in coastal areas.
Especially in the case studied here, the nonlinear effects are significant, and a Fourier analysis is
insufficient to interpret the data. A powerful tool to study the nonlinear process is the polyspectral
analysis, in particular, the Fourier based bispectral analysis technique which has been used to study the
triad wave–wave nonlinear interactions and quadratic phase coupling of nonlinear water waves [40,41].
The bispectrum B( f2, f1) is defined as the two dimensional Fourier transformation of the third-order
auto-correlation function of the signal. Equivalently, it can also be defined as [42]:

B( f1, f2) = E
[
X1X2X∗1+2

]
, (15)

where E[·] is the ensemble average of the triple product of complex Fourier coefficients of two
frequencies f1 and f2 and their sum f1 + f2. The asterisk indicates complex conjugate. For time
series with zero mean, the Fourier coefficients Xn come from the following decomposition:

x(t) =
+∞

∑
n=−∞

Xn exp (−2πn fit). (16)

This definition is economic regarding the computational effort thanks to the Fast Fourier transform
(FFT) algorithm. The bispectrum has symmetry properties, i.e., B( f1, f2) = B( f2, f1) = B∗(− f1,− f2) =

B(− f1 − f2, f2) = B( f1,− f1 − f2), which can further simplify the computation.
In the following, the Fourier coefficients Xn were computed in the same way as introduced

in Section 4, except that 212-point FFT was used to get a smoother bispectrum. In Figures 7–9,
the imaginary parts of the bispectra are plotted, for both the experimental (upper row) and numerical
results (second row for the Boussinesq-type model and lower row for the whispers3D model). The two
component frequencies f1 and f2 were normalised by the incident peak frequency.

The positive and negative values are represented by the colors in the graphs indicating,
respectively, the sum interactions and the difference interactions between the two frequency
components. For instance, assume B(0.1, 1) < 0, it means that three wave components 0.1 Hz,
1 Hz and 1.1 Hz participate in the nonlinear interaction and the wave energy is transferred from 1.1 Hz
to the 0.1 Hz and 1 Hz components. Similarly, if B(0.1, 1) > 0, the 1.1 Hz component gain energy from
the 0.1 Hz and 1 Hz components.
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Figure 7 shows that, in general, the wave–wave interaction between fp and 2 fp is weak in the
deeper region. In Figure 7a1, two relatively strong interactions happen around B( fp, 0.1 fp) (red) and
B( fp, fp) (blue), which indicates that the wave energy is transferred from both the low-frequency
modes around 0.1 fp and the second harmonic 2 fp to the frequencies around the peak. As waves
propagate in the deeper region, in Figure 7b1, it is shown that for the low-frequency domain both
sum and difference interactions are present. This pattern indicates that the energy of peak frequency
is transferred to both lower and higher frequencies and that the spectrum broadens. This pattern
can hardly be seen in the corresponding spectrum due to weak interactions, but as shown below,
the spectral broadening is more obvious in the shallower region. In the simulations, this energy transfer
is overestimated, resulting in slightly larger long waves. When waves arrive at the end of the deeper
region, Figure 7c1 shows that the spot around B( fp, 0.1 fp) is blue, meaning that the energy transfers
mainly from the peak frequency to the low-frequency components and that long waves are generated.
In the deeper region, the simulated and measured bispectra are in overall good agreement.

Figure 7. Contour of the imaginary parts of bispectra of Probes 1, 5, and 8 in the deeper region
(kph = 1.19) (corresponding to panels (a)–(c)). The upper row (panels (1)) of graphs presents measured
bispectra, while bispectra obtained from numerical results are presented on the second (panels (2)) and
third rows (panels (3)) for the Boussinesq-type and whispers3D models, respectively. All the panels
share one colorbar, which is in scale (10−8 m3).

In Figure 8, the bispectra of waves propagating over the sloping bottom area are shown where strong
nonlinear effects are expected. In Figure 8d1, it is observed that the nonlinear effect is present but still
moderate. In Figure 8e1, the wave–wave interaction is strong, resulting in an increase of the second
harmonic 2 fp and the low-frequency waves around 0.1 fp. In Figure 8f1, not only similar characteristics
regarding the second harmonic and the long wave generation are seen, but also the wave–wave interactions
between fp and 2 fp coupled to 3 fp is visible. The long waves are generated from both peak frequency and its
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second harmonic 2 fp (see the blue spots at B( fp, 0.1 fp) and B(2 fp, 0.1 fp)). In the simulations, the agreement
is still good but the intensity (or “magnitude”) of nonlinear transfers is slightly overestimated. For instance,
the sum interactions of low-frequency modes around B( fp, 0.1 fp) at all three probes are stronger in the
two numerical models than in the experiments. As is shown in Figure 8e2 and e3, the sum interactions at
B( fp, 2 fp) are also a bit stronger in the simulations.

Figure 8. Same plot as Figure 7 for Probes 10, 12, and 13 over the slope (corresponding to panels
(d)–(f)), the corresponding relative water depths are kph = 0.86, 0.54 and 0.50 respectively.

In Figure 9, three probes are chosen to illustrate the modulation of waves propagating over the
shallower region. More wave components participate in the wave–wave interaction, and the contours
become more complex. A negative band ranging from B(0.5 fp, 0.5 fp) to B(0, fp) is observed which
indicates the strong energy transfer from the spectral peak to the bands with frequencies lower than
the peak. This blue band is clear in Figure 9g1, and disappears in Figure 9i1 because, as the spectral
peak keeps losing energy, this energy transfer becomes weaker and weaker. This explains partially the
spatial evolution of the spectrum, namely the decrease of the “original” spectral peak, the increase
of the low-frequency components (which eventually become new spectral peak) over the shallower
region, and the increase of the long wave energy. Another possible reason for this spectral change is
the different frictional dissipation rates for different frequencies. The friction dissipates more energy
of high-frequency waves while low-frequency wave energy is less dissipated. Finally, a quasi-steady
state is reached and the spectral shape keeps almost unchanged, as can be observed for the spectral
shape after 100 m in Figure 4a.
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Figure 9. Same plot as Figure 7 for Probes 19, 24, and 29 (corresponding to panels (g)–(i)) in the
shallower region k′ph′ = 0.50.

6. Data Processing: Nonlinear Wave Parameters

The free surface elevation is regarded as a stationary stochastic process. In a Gaussian sea state,
the characteristic of the statistics of the surface motion can be fully described by its mean η̄ = E (η) and
variance σ2 = E

(
(η − η̄)2). As waves propagate into coastal areas, the sea states become non-Gaussian

and the nonlinearities affect the wave shape, resulting in sharper and higher wave crests. Higher-order
moments can be used to characterise nonlinear effects. Usually, skewness (third-order normalised
moment) and kurtosis (fourth-order normalised moment) are considered. They can be computed from
time series η:

Skewη = λ3 =
E
(
(η − η̄)3)

σ3 , (17)

Kurtη = λ4 =
E
(
(η − η̄)4)

σ4 . (18)

The skewness is related to the bound mode harmonics and the asymmetry of the probability
density function (PDF) of η, and the kurtosis is related to the sharpness of the PDF [43]. For Gaussian
sea states, λ3 = 0 and λ4 = 3 are expected. For non-Gaussian sea states, λ3 > 0 represents asymmetric
wave shape (sharper crests and f troughs) and the reverse for λ3 < 0. λ4 > 3 indicates an increased
probability of occurrence of the largest wave heights [23], but it is not guaranteed that, when λ4 < 3,
the large waves (especially freak waves) will not manifest.
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Statistical parameters can also be computed based on the bispectrum. Skewness can be defined
as the normalised integral of the real part of the bispectrum [40]; the wave profile asymmetry w.r.t.
the vertical axis is related to the normalised integral of the imaginary part of the bispectrum [44]:

Skewbis =
∑ ∑< {B ( f1, f2)}

σ3 , (19)

Asymbis =
∑ ∑= {B ( f1, f2)}

σ4 . (20)

In Figure 10, the statistical parameters of the simulations as well as the measured results are
shown, and the two different computation methods of the skewness are also compared. It can be seen
that the two methods give very similar results; the small differences are probably due to the use of
Hann function window (even though a correction factor has already been considered) when computing
the Fourier coefficients. It can be seen that both the Boussinesq-type and whispers3D models have
good agreement over the two flat bottom regions, but clearly overestimate the maximum skewness
(triad wave–wave interaction) around the end of the slope. While the generated waves are almost
symmetric w.r.t. the horizontal axis, they become skewed as they propagate over the slope. Around
the end of the slope, the wave shape is highly asymmetric w.r.t. the horizontal axis, and the symmetry
is not fully recovered in the shallower flat bottom. Regarding the asymmetry parameter, the simulated
results agree well with the measured results. As can be seen, this parameter is almost zero except over
a short region after the slope which implies that the waves generated are almost symmetric w.r.t. the
vertical axis. It is also noted that the presence of the current bottom slope has limited effect on the
asymmetry parameter.

In Figure 11, the evolution of the kurtosis is shown. It fluctuates around 3 except for the area
around the end of the slope, where a local maximum value is observed. This corresponds to the location
of Probe 13. The numerical models predict well the overall evolution of kurtosis along the bottom
profile. However, they both overestimate the kurtosis around the end of the slope, and this trend
is more marked with whispers3D. This is probably because the breaking events in the experiments,
which are not considered in the simulations, limited the maximum wave heights. At the end of the
slope, the prediction of whispers3D is more non-Gaussian compared to that of the Boussinesq-type
model. According to previous studies (e.g., [23]), the local maximum of kurtosis indicates higher
probability of the occurrence of extreme waves. This motivates further investigations of wave height
statistics in similar, however, more complicated configurations.

0 20 40 60 80 100 120 140 160
-0.2

0

0.2

0.4

0.6

0.8

1

1.2
Mesured Skew

bis

Mesured Skew 
Boussinesq Skewbis

Boussinesq Skew
Whispers3D Skew

bis

Whispers3D Skew 
Mesured Asym

bis
Boussinesq Asym

bis

Whispers3D Asym
bis

Figure 10. Overall evolution of the nonlinear statistical parameters, skewness and asymmetry,
computed from the time series (dash lines) and the bispectrum (solid lines).
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Figure 11. Comparison of the overall evolution of kurtosis between the measured and the simulation
results of the two numerical models.

7. Data Processing: Wave Height Distribution

The wave height distribution for the nonlinear shallow water waves has been of interest for
oceanographers, as it represents a key input for the design of coastal structures. The understanding of
the shallow water wave height distribution is, for the moment, limited not only due to the complexity of
coastal hydrodynamics but also due to the complex nearshore environment. The existing distributions
are either empirical/semi-empirical or analytical under strong assumptions. For this reason,
more experimental data are needed to study the applicability and validity of these models. In the
following, some of the most popular distributions are listed and compared with the measurements
and the results of the simulations.

7.1. Brief Review of Existing Distribution Models

7.1.1. Rayleigh Distribution

The study of wave height distribution in the early 1950s starts with the work of
Longuet-Higgins (1952) [45] for narrow-banded linear deep water waves. The wave heights (H)
follow the Rayleigh distribution, whose complementary cumulative distribution function (CCDF) is
given by:

PR(H) = exp

[
−
(

H√
2Hs

)2
]

. (21)

The wave conditions of the current Case 2 obviously violate the aforementioned assumptions.
The Rayleigh distribution is adopted here only for the purpose of comparison. Assume for the signals
with zero mean, the relation Hs ≈ 4σ is fulfilled throughout the domain, then the normalised wave
height H/σ = 8 is the threshold for the freak waves.

7.1.2. Glukhovskiy Distribution and Its Modifications (GV91 and GK96)

As waves propagate into coastal areas, the shoaling effect, as well as the depth-induced wave
breaking, are expected, which affect the shape of the distribution. Due to the insufficient understanding
of wave breaking and high-order non-Gaussian effects, only empirical or semi-empirical models
are available. A more general form of the Rayleigh distribution, namely the Weibull distribution,
is used to account for the depth-induced wave breaking in shallow water, as initially proposed by
Glukhovskiy [46]:

PG(H) = exp

[
−A

(
H
H∗

)K
]

, (22)
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where A, H∗, and K are the Weibull parameters. which are defined differently in the literature.
Van Vledder (1991) [47] (labelled as GV91) modified this model by considering the parameters as:

A = Γ (1/K + 1)K , K =
2

1− H∗/h
, H∗ =

Hs√
2

Γ (1/k + 1)√
Γ (2/k + 1)

, k =
2

1−
√

8Hs/ (4.5636h)
, (23)

with Γ denoting the gamma function, Γ(x) =
∫ ∞

0 e−ttx−1dt. Klopman (1996) [48] also proposed a
modification (labelled as GK96) based on a fit to laboratory data:

A =

[
Γ
(

2
K
+ 1
)]K/2

, K =
2

1− H∗β/h
, H∗ =

Hs√
2

, β = 0.7. (24)

As input, the local water depth h and the significant wave height Hs are required. Both modified
Glukhovskiy’s distributions are used and compared hereafter.

7.1.3. Composite Weibull Distribution (CWD)

Another well-known model for wave height distribution in shallow water is the semi-empirical
composite Weibull distribution (labelled as CWD here) [49]. In this model, the smaller wave heights are
Rayleigh distributed, whereas the larger wave heights follow a Weibull distribution. The distribution
requires not only h and Hs but also the bottom slope m. This model also takes wave breaking
into consideration:

PCWD(H) =


exp

[
− (H/H1)

2
]
, H ≤ Htr

exp
[
− (H/H2)

3.6
]
, H ≥ Htr,

(25)

where Htr = (0.35 + 5.8m) h denotes the transition wave height between the two distributions, and H1

and H2 are scale parameters for wave heights and are given in [49] (see more details in Equation (6) or
Table 2 in this reference).

7.1.4. Weibull-Generalised Pareto Distribution (WGP)

More recently, another two-part model, the Weibull-generalised Pareto wave height distribution
(labelled as WGP), has been introduced [50]. The parameters, including Hs, local wave number kL
(here the wave number kp corresponding to the peak frequency fp is used), and local water depth h
are required in this semi-empirical model:

PWGP(H) =


exp

[
−µ (H/Htr)

κ], 0 ≤ H ≤ Htr

exp (−µ)
[
1 + ξ

α (H/Htr − 1)−
1
ξ

]
, Htr ≤ H ≤ Hmax,

(26)

where

Htr = ρHs, Hmax = 2βπ
tanh(kLh)

kL
, κ =

2

1− λ (Hs/h)1.7 , µ =
1

κα
, ξ =

αHtr

Htr − Hmax
. (27)

In this model, except for the required information regarding the waves and bathymetry,
four additional parameters are needed to be calibrated: ρ for the transition wave height, α for the scale
of Pareto distribution, β for the Miche wave breaking height limit, and λ for the shape of Weibull
distribution. According to the results of Wu et al. [50], ρ = 1, α = 0.22, β ≈ 0.15, and λ = 1 are used.
Unlike CWD, this two-part model is continuous and bounded (0 ≤ H ≤ Hmax), and this model has a
continuous PDF.
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7.1.5. Gram–Charlier Type Model (GBD)

The relationship between the fourth-order moment of free surface elevation and the third-order
nonlinearity is studied in [51]. The effects resulting from third-order nonlinearity on the statistics
of wave height distribution have been taken into consideration by using Edgeworth’s form of a
Gram–Charlier series [51–55]; this family of wave height distributions is sometimes referred to as
modified Edgeworth Rayleigh distribution (MER). They do not seem to be of specific attraction in
describing the statistics of coastal wave heights because the corresponding PDF of MER is not always
positive (which is not realistic). In addition, these distributions are derived under the assumption of
narrow-banded weakly nonlinear waves in the deep water condition, which is violated in nearshore
areas. However, they are attractive in predicting abnormal waves because MER models showed
good agreement for the tail of the wave height distribution when compared to some laboratory
measurements [54]. Thus, this model is included in the present paper anyways.

A recent model of this family proposed in [55] is a generalised Boccotti distribution (labelled as
GBD) in the form of MER, taking third-order nonlinearity and finite spectral width into consideration.
Recall the Boccotti’s distribution [56]:

PB(H) = c0 exp

(
−c1

(
H
Hs

)2
)

, (28)

where

c0 =
1 + b√

2b (1 + a)
, c1 =

4
1 + a

, a =

∣∣∫ ∞
0 S(ω) cos (ωτ)dω

∣∣
√

m0
, b =

∣∣∫ ∞
0 ω2S(ω) cos (ωτ)dω

∣∣
√

m2
, (29)

with S(ω) denoting the spectral density function, τ corresponding to the time lag of the global
minimum of autocorrelation function R(τ) = E [η(t)η(t + τ)], and mi denoting the ith-order moment
of S(ω), mi =

∫ ∞
0 ωiS(ω)dω.

Then, the formulation of GBD is:

PGBD(H) = c0 exp

[
−c1

(
H
Hs

)2
] [

1 +
Λ
16

c2
1

(
H
Hs

)4
− Λ

8
c1

(
H
Hs

)2
]

, (30)

where

Λ = Λ04 + Λ22 + Λ40, Λmn =
E [ηmη̂n]

σ4 + (−1)m/2 (m− 1) (n− 1) , (31)

with η̂ denoting the Hilbert transform of the free surface elevation η, and [m, n] = 0, 2, or 4, but not 3
due to the absence of resonant three-wave interactions. It should be noticed that the CCDF starts with
PGBD(0) 6= 1, which is not realistic, meaning that this model is not suitable to model the bulk of the
distribution, but only its tail for large wave heights.

7.2. Comparative Evaluation of Wave Height Distributions

The wave height distribution at Probe 8 located at the beginning of the slope is first considered
and displayed in Figure 12. It can be seen that the Rayleigh distribution predicts well the measured
wave height distribution. The agreement between the simulated and the measured data at this position
is good, as shown in Figure 12a. In Figure 12b, the other wave height distribution models are similar
to the Rayleigh distribution, differences appear only in the prediction of larger waves with H > 6σ.
The measured results show fewer large waves than predicted by the Rayleigh distribution. This can
be related to the work of Forristall (1978) [57] showing that the Rayleigh distribution overpredicts the
heights of the largest waves in a deep water sea state. From the previous analysis of the nonlinear
parameters skewness and kurtosis, the sea state here is quasi-Gaussian and the nonlinear wave–wave
interactions are limited for the deeper region. Thus, it is anticipated that the wave heights follow a
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Rayleigh distribution. The data show better agreement with the modified Glukhovskiy’s methods,
GV91 and GK96.

Figure 12. The wave height distributions of measurements, simulations and different models at
x8 = 30 m: (a) the CCDF as a function of normalised wave height; and (b) the deviation from the
Rayleigh is shown by the normalised CCDF. The horizontal solid line in (a) as well as the vertical solid
line in (b), both at H/σ = 8, represent the usual threshold for freak waves.

As waves propagate near the end of the slope, Figure 13 shows a clear increase of the probability
of the large waves. The agreement between the measured and simulated results remains good, and the
model predictions by CWD and GBD are in better agreement with other models. The two numerical
models show similar results. In the Boussinesq-type model, note that one wave fulfils the criteria of
freak waves (recalling that H > 2Hs is equivalent to H > 8σ). However, the corresponding wave
height is lower (below the above threshold) in the measured time series. At this position, skewness and
kurtosis computed from the measured signal and from the simulated signals are in excellent agreement.
The skewness increases approximately to 0.2, whereas the kurtosis is still around 3, indicating that
second-order nonlinearity plays a more important role here.

In Figure 14, the wave height distribution after the slope (Probe 13), where the skewness and
kurtosis reach their local maximum values, is illustrated. The amount of large waves is larger than the
expectation of Rayleigh distribution, and more freak waves appear after the slope. At this location,
it is also observed that some sporadic spilling breakers occurred, limiting the number and height of
the large waves. It is clearly shown in Figure 14b that all the wave height distribution models except
GBD underestimate the probability of wave height for H > Hs. The GBD model shows nice agreement
for the same wave height range, even though the case studied here lies out of its validity domain.
Regarding the simulations, the Boussinesq-type model results agree well with the measurements.
The wave heights are overestimated with whispers3D, as are the skewness and kurtosis.
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Figure 13. Same plot as Figure 12 at x12 = 49.1 m.

Figure 14. Same plot as Figure 12 at x13 = 53.5 m.

Then, in Figure 15b, it is shown that the tail of the wave height distribution lowers and the
degeneration of the extreme waves starts. This change of wave height distribution is also part of
the process of settling down towards a new equilibrium state. However, it was observed in the
experiments that some of the generated freak waves will keep their wave form (without breaking) and
propagate over a certain distance, even though these waves are quite steep, and propagate in relatively
shallow water depth. The prediction of GBD is still good regarding large waves. Other models are
lower than the Rayleigh distribution probably because the wave breaking effect is overestimated with
these models.
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Figure 15. Same plot as Figure 12 at x14 = 55.6 m.

8. Discussion and Conclusions

To achieve a better understanding of the generation mechanism of extreme waves in coastal areas,
large scale experiments at THL and highly accurate numerical simulations with two advanced models
were performed. A variable bottom profile was designed to study the effects of a constant bottom
slope connecting two flat regions on the occurrence of extreme waves. The experimental conditions
were chosen based on two non-dimensional parameters: the wave steepness and the relative water
depth. Note that our experimental set-up is different from previous experiments [23,24] regarding the
length of slope, the arrangement of the two flat regions, and, most importantly, the nonlinear effects
were relatively strong in the experimental cases shown here. Besides, the large scale facility allowed
investigating the whole life cycle of the extreme waves. Spectral, bispectral and statistical analyses
of the collected data were conducted, through which a more comprehensive understanding of the
shoaling process has been drawn.

In line with previous studies [23,25–27], second- and third-order effects appear in the frequency
spectrum, and local maximum values of the statistical parameters skewness and kurtosis were observed
in the shallower region. It was experimentally observed that the second-order effects rapidly weaken
after the end of the slope, as shown Figure 4a. The values of skewness and kurtosis also decrease with
the weakening of second-order effect: the skewness decreases to a new level instead of zero due to the
asymmetrical wave shape in the shallow water, while the kurtosis decreases back to 3.

The imaginary part of the bispectra was used to demonstrate the phase coupling of wave
components and the energy transfer due to nonlinear wave–wave interactions. The nonlinear wave
coupling is relatively strong around the end of the slope where mainly second and third harmonics are
generated. The generation of third harmonic is small in magnitude, but it can be seen in the variance
spectrum. Thus, we speculate that the increase of the occurrence probability of extreme waves is
more related to the second-order effects. It was also observed in our experiments that a series of
low-frequency waves appear. It is anticipated from the bispectra that long waves are mainly generated
by the difference interactions as waves propagate in the flume. The frictional dissipation works as a
low-pass filter on the wave spectrum, which has limited effects on these low-frequency modes.

In the deeper region, the sea state is almost Gaussian, and the nonlinear wave–wave interactions
are moderate. The wave heights are well described by Rayleigh distribution, except that the latter
slightly overpredicts the occurrence probability of the highest waves. The occurrence probability
of large waves is significantly increased when waves propagate over the slope. This is due to the
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fact that the sea state is transforming from one equilibrium state (in the deeper region) to another
(in the shallower region). During this process, some of the largest waves can be identified as freak
waves and will propagate for a distance while keeping their wave form. We also emphasise that the
process of settling down to the new state takes time and a certain distance (a distance-lag in response
to the depth transition), thus the shallower region after the slope is also prone to freak waves due to
this lag. This was clearly noticeable in our flume set-up, which contains a long flat shallower region.
Since the nonlinearities obviously come into play, nonlinear wave parameters are useful in describing
the sea state, especially the kurtosis is related to the occurrence probability of large waves. It was
confirmed that strong modifications of the distributions of the largest wave are rather well correlated
with larger values of the skewness and kurtosis (see Figures 10 and 11). The Rayleigh distribution is
no longer suitable to describe such sea states, thus a number of wave height distribution models were
introduced and compared. In the coastal areas with intermediate or shallow water depth, the wave
height distribution models are either semi-empirical or analytical with strong assumptions. In this
study, not only the modified Glukhovskiy distributions (GV91 and GK96) and two-part distributions
such as CWD and WGP were considered, but also another deep water wave height distribution, GBD,
was introduced. This distribution is known to have good predictions for extreme waves [54]. As the
non-equilibrium statistics appear and fade out over the slope, the probability for large waves increases
then decreases in the same manner. It was seen that no distribution model can predict the measured
wave height distribution equally well for all probes, but, in the prediction of the occurrence probability
of large waves, the generalised Boccotti distribution works reasonably well, although it was originally
designed for weakly nonlinear deep water waves. The listed shallow water wave height distribution
models underestimate the wave height distribution mainly because they assume waves break during
the shoaling process.

The numerical results of the Boussinesq-type model and the whispers3D model agree well with
the experimental data. The results are in better agreement in the deeper region than in the shallower
region, especially before the reflected long waves reach the probes. In particular, the agreement
deteriorates due to the contamination of reflected long waves. A small number of wave breaking
events also affect the agreement after the slope. These effects are insignificant at the beginning, but the
disagreements accumulate as waves propagate in the flume, and eventually affect the simulated results
in a significant way. The agreement is acceptable for the deeper region and the slope area, which
is of most interest. Two models show very similar results as they both adopt fully nonlinear FSBC
and are capable of accounting for variable bathymetry. We noticed that both models overestimate
the nonlinear interactions around the end of the slope. The possible reasons for this are numerous;
we anticipate that this is due to the non-equilibrium statistics provoked by the transition of water
depth. The small number of wave breaking events may also play a role in constraining the maximum
achievable skewness and kurtosis. As a further study, new unidirectional irregular wave experiments
in the same facility, but with a new bottom profile containing two constant slopes will be conducted
and studied in the future. Finally, it is recalled that wave obliquity and wave directionality were not
considered in this study; the effects associated with multidirectional (three-dimensional) sea states are
left for future work.
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Abbreviations

The following abbreviations are used in this manuscript:

HOS High-Order Spectral
THL Tainan Hydraulics Laboratory
w.r.t. with respect to
JONSWAP Joint North Sea Wave Observation Project
DtN Dirichlet-to-Neumann problem
FSBC Free surface boundary condition
CFL Courant–Friedrichs–Lewy number
FFT Fast Fourier transform
PDF Probability density function
CCDF Complementary cumulative distribution function
GV91 Glukhovskiy’s method modified by van Vledder (1991)
GK96 Glukhovskiy’s method modified by Klopman (1996)
CWD Composite Weibull distribution
WPD Weibull-generalised Pareto distribution
MER Modified Edgeworth Rayleigh distribution

References

1. Dysthe, K.; Krogstad, H.E.; Müller, P. Oceanic rogue waves. Annu. Rev. Fluid Mech. 2008, 40, 287–310.
[CrossRef]

2. Didenkulova, I.I.; Slunyaev, A.V.; Pelinovsky, E.N.; Kharif, C. Freak waves in 2005. Nat. Hazards Earth
Syst. Sci. 2006, 6, 1007–1015. [CrossRef]

3. Didenkulova, I.; Anderson, C. Freak waves of different types in the coastal zone of the Baltic Sea. Nat. Hazards
Earth Syst. Sci. 2010, 10, 2021–2029. [CrossRef]

4. Nikolkina, I.; Didenkulova, I. Rogue waves in 2006–2010. Nat. Hazards Earth Syst. Sci. 2011, 11, 2913–2924.
[CrossRef]

5. Glejin, J.; Kumar, V.; Nair, T.B.; Singh, J.; Nherakkol, A. Freak waves off Ratnagiri, west coast of India.
Indian J. Mar. Sci. 2014, 43, 1339–1342.

6. Onorato, M.; Residori, S.; Bortolozzo, U.; Montina, A.; Arecchi, F. Rogue waves and their generating
mechanisms in different physical contexts. Phys. Rep. 2013, 528, 47–89. [CrossRef]

7. Adcock, T.A.A.; Taylor, P.H. The physics of anomalous (’rogue’) ocean waves. Rep. Prog. Phys. 2014,
77, 105901. [CrossRef] [PubMed]

8. Benjamin, T.B.; Feir, J.E. The disintegration of wave trains on deep water Part 1. Theory. J. Fluid Mech. 1967,
27, 417. [CrossRef]

9. Zakharov, V.E. Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech.
Tech. Phys. 1968, 9, 190–194. [CrossRef]

10. Chabchoub, A.; Hoffmann, N.P.; Akhmediev, N. Rogue Wave Observation in a Water Wave Tank. Phys. Rev. Lett.
2011, 106, 204502. [CrossRef] [PubMed]

11. Chabchoub, A.; Hoffmann, N.; Onorato, M.; Akhmediev, N. Super rogue waves: Observation of a
higher-order breather in water waves. Phys. Rev. X 2012, 2, 011015. [CrossRef]

12. Chabchoub, A.; Hoffmann, N.; Branger, H.; Kharif, C.; Akhmediev, N. Experiments on wind-perturbed rogue
wave hydrodynamics using the Peregrine breather model. Phys. Fluids 2013, 25, 101704. [CrossRef]

13. Chabchoub, A.; Waseda, T.; Kibler, B.; Akhmediev, N. Experiments on higher-order and degenerate Akhmediev
breather-type rogue water waves. J. Ocean Eng. Mar. Energy 2017, 3, 385–394. [CrossRef]

14. Crawford, D.R.; Lake, B.M.; Saffman, P.G.; Yuen, H.C. Stability of weakly nonlinear deep-water waves in
two and three dimensions. J. Fluid Mech. 1981, 105, 177–191. [CrossRef]

15. Segur, H.; Henderson, D.; Carter, J.; Hammack, J.; Li, C.M.; Pheiff, D.; Socha, K. Stabilizing the Benjamin–Feir
instability. J. Fluid Mech. 2005, 539, 229. [CrossRef]

16. Ma, Y.; Dong, G.; Perlin, M.; Ma, X.; Wang, G. Experimental investigation on the evolution of the modulation
instability with dissipation. J. Fluid Mech. 2012, 711, 101–121. [CrossRef]

http://dx.doi.org/10.1146/annurev.fluid.40.111406.102203
http://dx.doi.org/10.5194/nhess-6-1007-2006
http://dx.doi.org/10.5194/nhess-10-2021-2010
http://dx.doi.org/10.5194/nhess-11-2913-2011
http://dx.doi.org/10.1016/j.physrep.2013.03.001
http://dx.doi.org/10.1088/0034-4885/77/10/105901
http://www.ncbi.nlm.nih.gov/pubmed/25313170
http://dx.doi.org/10.1017/S002211206700045X
http://dx.doi.org/10.1007/BF00913182
http://dx.doi.org/10.1103/PhysRevLett.106.204502
http://www.ncbi.nlm.nih.gov/pubmed/21668234
http://dx.doi.org/10.1103/PhysRevX.2.011015
http://dx.doi.org/10.1063/1.4824706
http://dx.doi.org/10.1007/s40722-017-0097-3
http://dx.doi.org/10.1017/S0022112081003169
http://dx.doi.org/10.1017/S002211200500563X
http://dx.doi.org/10.1017/jfm.2012.372


Fluids 2019, 4, 99 23 of 24

17. Henderson, D.M.; Segur, H. The role of dissipation in the evolution of ocean swell. J. Geophys. Res. Oceans
2013, 118, 5074–5091. [CrossRef]

18. Melville, W.K. The instability and breaking of deep-water waves. J. Fluid Mech. 1982, 115, 165. [CrossRef]
19. Janssen, P.A.E.M.; Onorato, M. The intermediate water depth limit of the Zakharov equation and

consequences for wave prediction. J. Phys. Oceanogr. 2007, 37, 2389–2400. [CrossRef]
20. Toffoli, A.; Fernandez, L.; Monbaliu, J.; Benoit, M.; Gagnaire-Renou, E.; Lefèvre, J.M.; Cavaleri, L.; Proment, D.;

Pakozdi, C.; Stansberg, C.T.; et al. Experimental evidence of the modulation of a plane wave to oblique
perturbations and generation of rogue waves in finite water depth. Phys. Fluids 2013, 25, 091701. [CrossRef]

21. Ducrozet, G.; Gouin, M. Influence of varying bathymetry in rogue wave occurrence within unidirectional
and directional sea-states. J. Ocean Eng. Mar. Energy 2017, 3, 309–324. [CrossRef]

22. Fedele, F.; Brennan, J.; de León, S.P.; Dudley, J.; Dias, F. Real world ocean rogue waves explained without the
modulational instability. Sci. Rep. 2016, 6, 27715. [CrossRef]

23. Trulsen, K.; Zeng, H.; Gramstad, O. Laboratory evidence of freak waves provoked by non-uniform
bathymetry. Phys. Fluids 2012, 24, 097101. [CrossRef]

24. Kashima, H.; Hirayama, K.; Mori, N. Estimation of freak wave occurrence from deep to shallow water
regions. Coast. Eng. Proc. 2014, 1, 34–36. [CrossRef]

25. Zeng, H.; Trulsen, K. Evolution of skewness and kurtosis of weakly nonlinear unidirectional waves over a
sloping bottom. Nat. Hazards Earth Syst. Sci. 2012, 12, 631–638. [CrossRef]

26. Gramstad, O.; Zeng, H.; Trulsen, K.; Pedersen, G.K. Freak waves in weakly nonlinear unidirectional wave
trains over a sloping bottom in shallow water. Phys. Fluids 2013, 25, 122103. [CrossRef]

27. Viotti, C.; Dias, F. Extreme waves induced by strong depth transitions: Fully nonlinear results. Phys. Fluids
2014, 26, 051705. [CrossRef]

28. Katsardi, V.; de Lutio, L.; Swan, C. An experimental study of large waves in intermediate and shallow water
depths. Part I: Wave height and crest height statistics. Coast. Eng. 2013, 73, 43–57. [CrossRef]

29. Chen, H.; Tang, X.; Gao, J.; Fan, G. Parameterization of geometric characteristics for extreme waves in
shallow water. Ocean Eng. 2018, 156, 61–71. [CrossRef]

30. Ma, Y.; Dong, G.; Ma, X. Experimental study of statistics of random waves propagating over a bar.
Coast. Eng. Proc. 2014, 1, 30. [CrossRef]

31. Bingham, H.B.; Madsen, P.A.; Fuhrman, D.R. Velocity potential formulations of highly accurate
Boussinesq-type models. Coast. Eng. 2009, 56, 467–478. [CrossRef]

32. Yates, M.L.; Benoit, M. Accuracy and efficiency of two numerical methods of solving the potential flow
problem for highly nonlinear and dispersive water waves. Int. J. Numer. Methods Fluids 2015, 77, 616–640.
[CrossRef]

33. Raoult, C.; Benoit, M.; Yates, M.L. Validation of a fully nonlinear and dispersive wave model with laboratory
non-breaking experiments. Coast. Eng. 2016, 114, 194–207. [CrossRef]

34. Zhang, J.; Benoit, M.; Kimmoun, O.; Hsu, H.C. Large-scale physical modeling of extreme waves in coastal
area. In Proceedings of the Coastlab18, Santander, Spain, 22–26 May 2018.

35. Dias, F.; Dyachenko, A.; Zakharov, V. Theory of weakly damped free-surface flows: A new formulation
based on potential flow solutions. Phys. Lett. A 2008, 372, 1297–1302. [CrossRef]

36. Madsen, P.A.; Fuhrman, D.R.; Wang, B. A Boussinesq-type method for fully nonlinear waves interacting
with a rapidly varying bathymetry. Coast. Eng. 2006, 53, 487–504. [CrossRef]

37. Jamois, E.; Fuhrman, D.R.; Bingham, H.B.; Molin, B. A numerical study of nonlinear wave run-up on a
vertical plate. Coast. Eng. 2006, 53, 929–945. [CrossRef]

38. Tian, Y.; Sato, S. A numerical model on the interaction between nearshore nonlinear waves and strong
currents. Coast. Eng. J. 2008, 50, 369–395. [CrossRef]

39. Benoit, M.; Raoult, C.; Yates, M.L. Analysis of the linear version of a highly dispersive potential water wave
model using a spectral approach in the vertical. Wave Motion 2017, 74, 159–181. [CrossRef]

40. Hasselmann, K.; Munk, W.; MacDonald, G. Bispectrum of Ocean Waves; Rosenblatt, M., Ed.; Time Series
Analysis; John Wiley: New York, NY, USA, 1963.

41. Bertin, X.; de Bakker, A.; van Dongeren, A.; Coco, G.; André, G.; Ardhuin, F.; Bonneton, P.; Bouchette, F.;
Castelle, B.; Crawford, W.C.; et al. Infragravity waves: From driving mechanisms to impacts. Earth Sci. Rev.
2018, 177, 774–799. [CrossRef]

http://dx.doi.org/10.1002/jgrc.20324
http://dx.doi.org/10.1017/S0022112082000706
http://dx.doi.org/10.1175/JPO3128.1
http://dx.doi.org/10.1063/1.4821810
http://dx.doi.org/10.1007/s40722-017-0086-6
http://dx.doi.org/10.1038/srep27715
http://dx.doi.org/10.1063/1.4748346
http://dx.doi.org/10.9753/icce.v34.waves.36
http://dx.doi.org/10.5194/nhess-12-631-2012
http://dx.doi.org/10.1063/1.4847035
http://dx.doi.org/10.1063/1.4880659
http://dx.doi.org/10.1016/j.coastaleng.2012.09.007
http://dx.doi.org/10.1016/j.oceaneng.2018.02.067
http://dx.doi.org/10.9753/icce.v34.waves.30
http://dx.doi.org/10.1016/j.coastaleng.2008.10.012
http://dx.doi.org/10.1002/fld.3992
http://dx.doi.org/10.1016/j.coastaleng.2016.04.003
http://dx.doi.org/10.1016/j.physleta.2007.09.027
http://dx.doi.org/10.1016/j.coastaleng.2005.11.002
http://dx.doi.org/10.1016/j.coastaleng.2006.06.004
http://dx.doi.org/10.1142/S0578563408001879
http://dx.doi.org/10.1016/j.wavemoti.2017.07.002
http://dx.doi.org/10.1016/j.earscirev.2018.01.002


Fluids 2019, 4, 99 24 of 24

42. Kim, Y.C.; Powers, E.J. Digital Bispectral Analysis and Its Applications to Nonlinear Wave Interactions.
IEEE Trans. Plasma Sci. 1979, 7, 120–131. [CrossRef]

43. Goda, Y. Random Seas and Design of Maritime Structures (Advanced Series on Ocean Engineering); World Scientific
Pub Co Inc.: Singapore, 2010.

44. Elgar, S.; Guza, R.T. Observations of bispectra of shoaling surface gravity waves. J. Fluid Mech. 1985,
161, 425–448. [CrossRef]

45. Longuet-Higgins, M.S. On the statistical distributions of sea waves. J. Mar. Res. 1952, 11, 245–265.
46. Glukhovskiy, B.K.H. Investigation of sea wind waves. In Proceedings of the Sea Climatology Conference,

Paris, France, 1966; pp 51–71. (In Russian)
47. Van Vledder, G.P. Modification of the Glukhovskiy Distribution, Report H1203; Technical Report; WL|Delft

Hydraulics: Delft, The Netherlands, 1991.
48. Klopman, G. Extreme Wave Heights in Shallow Water, Report H2486; Technical Report; WL|Delft Hydraulics:

Delft, The Netherlands, 1996.
49. Battjes, J.A.; Groenendijk, H.W. Wave height distributions on shallow foreshores. Coast. Eng. 2000,

40, 161–182. [CrossRef]
50. Wu, Y.; Randell, D.; Christou, M.; Ewans, K.; Jonathan, P. On the distribution of wave height in shallow

water. Coast. Eng. 2016, 111, 39–49. [CrossRef]
51. Longuet-Higgins, M.S. The effect of non-linearities on statistical distributions in the theory of sea waves.

J. Fluid Mech. 1963, 17, 459. [CrossRef]
52. Mori, N.; Yasuda, T. A weakly non-gaussian model of wave height distribution for random wave train.

Ocean Eng. 2002, 29, 1219–1231. [CrossRef]
53. Mori, N.; Janssen, P.A.E.M. On kurtosis and occurrence probability of freak waves. J. Phys. Oceanogr. 2006,

36, 1471–1483. [CrossRef]
54. Tayfun, M.A.; Fedele, F. Wave-height distributions and nonlinear effects. Ocean Eng. 2007, 34, 1631–1649.

[CrossRef]
55. Alkhalidi, M.A.; Tayfun, M.A. Generalized Boccotti distribution for nonlinear wave heights. Ocean Eng.

2013, 74, 101–106. [CrossRef]
56. Boccotti, P. Wave Mechanics for Ocean Engineering; Elsevier Science: Oxford, UK, 2000; Volume 64.
57. Forristall, G.Z. On the statistical distribution of wave heights in a storm. J. Geophys. Res. 1978, 83, 2353.

[CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TPS.1979.4317207
http://dx.doi.org/10.1017/S0022112085003007
http://dx.doi.org/10.1016/S0378-3839(00)00007-7
http://dx.doi.org/10.1016/j.coastaleng.2016.01.015
http://dx.doi.org/10.1017/S0022112063001452
http://dx.doi.org/10.1016/S0029-8018(01)00075-0
http://dx.doi.org/10.1175/JPO2922.1
http://dx.doi.org/10.1016/j.oceaneng.2006.11.006
http://dx.doi.org/10.1016/j.oceaneng.2013.09.014
http://dx.doi.org/10.1029/JC083iC05p02353
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Experimental Set-Up and Test Conditions
	Numerical Modeling
	General Modeling Approach
	Boussinesq-Type Model
	Whispers3D Model
	Simulations of the Experimental Case 2

	Data Processing: Spectral Analysis
	Data Processing: Bispectral Analysis
	Data Processing: Nonlinear Wave Parameters
	Data Processing: Wave Height Distribution
	Brief Review of Existing Distribution Models
	Rayleigh Distribution
	Glukhovskiy Distribution and Its Modifications (GV91 and GK96)
	Composite Weibull Distribution (CWD)
	Weibull-Generalised Pareto Distribution (WGP)
	Gram–Charlier Type Model (GBD)

	Comparative Evaluation of Wave Height Distributions

	Discussion and Conclusions
	References

