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Abstract: Reservoir simulation models are the major tools for studying fluid flow behavior in
hydrocarbon reservoirs. These models are constructed based on geological models, which are
developed by integrating data from geology, geophysics, and petro-physics. As the complexity of
a reservoir simulation model increases, so does the computation time. Therefore, to perform any
comprehensive study which involves thousands of simulation runs, a very long period of time is
required. Several efforts have been made to develop proxy models that can be used as a substitute
for complex reservoir simulation models. These proxy models aim at generating the outputs of the
numerical fluid flow models in a very short period of time. This research is focused on developing a
proxy fluid flow model using artificial intelligence and machine learning techniques. In this work,
the proxy model is developed for a real case CO, sequestration project in which the objective is
to evaluate the dynamic reservoir parameters (pressure, saturation, and CO, mole fraction) under
various CO; injection scenarios. The data-driven model that is developed is able to generate pressure,
saturation, and CO, mole fraction throughout the reservoir with significantly less computational
effort and considerably shorter period of time compared to the numerical reservoir simulation model.

Keywords: fluid flow model; proxy modeling; machine learning; artificial intelligence (Al); data
driven modeling

1. Introduction

Developing a reservoir simulation model and conducting it for thousands of different scenarios
ultimately provides us with a solution space which can be used for extensive uncertainty analysis.
However, this technique essentially will be impractical for a geologically complex reservoir simulation
model with millions of grid blocks, even if it requires only few hours for a single run to be accomplished.
Although applying new technologies, such as cloud computing, can accelerate the process of running
huge reservoir simulation models, it has its own complications; first of all these technologies are
expensive and secondly, it would not be fast enough for a decision-making process. Encountering such
a problem motivates the quest to find an alternative approach.

For the problem stated above, proxy models can be developed to approximate the solution of
a complex reservoir simulation model. Although there is no proxy model that can generate exactly
the same output as the original model, they can be significantly beneficial in approximating the
desired outputs.

1.1. Proxy Modeling

Numerous efforts have been made to develop proxy models which can be used as a substitute for
a complex reservoir simulation model. The proxy models, which have been developed in petroleum
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engineering, can generally be categorized into four different groups based on their development
approach. These four groups are: statistics-based approach, reduced physics approach, reduced order
modeling approach, and artificial intelligence (Al)-based techniques.

The statistical methods, such as response surfaces, try to generate a function that can capture
the input—output relationship of the parameters involved. The number of inputs that can be used to
develop the proxy model is limited to the uncertain parameters of the system. Even with this limited
number of inputs, due to the statistical nature, this approach requires hundreds of simulation runs
to properly cover the input-output space. In general, the more complex the mathematical function
the more computational effort is required to obtain a proper function which can accurately describe
the system behavior. In petroleum engineering, this technique has been applied in several types of
studies such as history matching [1], upscaling geological models [2], field development planning [3],
optimization [4], and many other studies. However, the most common area where this methodology
has been applied is in uncertainty analysis of a particular process such as oil production [5,6] and
CO; sequestration [7]. Other regression methods such as Gaussian process regression (GP) can also
be applied to develop a response surface. This method was used by Zhang et al. to develop a proxy
model for risk assessment of a geological CO, sequestration in a brine reservoir [8].

In proxy models based on reduced physics, the physics of the process is simplified by applying
several assumptions. This approach is claimed to be more accurate due to the fact that the physics of
the phenomenon is taken into account. However, it should be noted that the formulations which are
used in petroleum engineering, and particularly those related to the fluid flow in porous media, are
developed based on several simplifying assumptions and, therefore, they are already an estimation
of what is actually happening in reality. As a result, the proxy models that are developed based on
even further simplification of theses formulas barely represent the actual physics of the process, which
significantly limits their application. In reservoir engineering, the reduced physics proxy modeling
technique has most commonly been used in modeling thermal recovery processes such as SAGD
(steam-assisted gravity drainage) and Vapex (vapor extraction), and also shale gas production. Using
this approach, several proxies have been developed based on analytical formulations for modeling
SAGD processes. Azad et al. used an analytical physics-based proxy model and the extended Kalman
filter method for the purpose of reservoir characterization [9]. Vanegas et al. [10] developed a proxy
model based on Butler’s formulation [11] for predicting oil flow rate, cumulative oil production, and
cumulative steam injection under some uncertain parameters of porosity, horizontal permeability,
vertical permeability, oil saturation, and rock type (shale or sand).

The reduced order modeling approach is used to reduce the computational effort of solving the
system of non-linear equations pertaining to the fluid flow in porous media. This method is based
on projecting the high-dimensional system matrix into a lower-dimension matrix through which the
system of equations can be solved faster. Some of the techniques in this category are able to decrease the
run time for a numerical reservoir model by several orders of magnitude. However, this procedure still
needs to be performed on the full reservoir, and therefore it would not be as efficient when it is applied
to a reservoir with a large number of grid blocks (over 10°). That is due to fact that in this approach,
generating a low order model requires generating a system of partial differential equations for a large
number of grid blocks. There is no doubt that in order to achieve a certain amount of accuracy, the
order reduction cannot exceed a certain amount and, therefore, in practice, the reduced order model
development for such a large number of grids becomes inefficient. Reduced order modeling has
been applied in different areas for several purposes of simulation, classification, visualization, and
compression of high-dimensional data. The application of this methodology in subsurface fluid flow
modeling is relatively new, and is mostly based on Krylov subspace, balanced truncation, and proper
orthogonal decomposition (POD) techniques. All of these approaches use projection methods to
transform the high-dimensional state space of the original model into a low-dimensional subspace [12].
Proper orthogonal decomposition is probably the most commonly used method for the reduced order
modeling of non-linear systems.
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The reduced order models are beneficial in several types of problems such as optimization and
uncertainty analysis where a large number of high order models are required to be performed. In
reservoir engineering, POD has been vastly used as an approach to develop fast-running proxy models
for a variety of numerical reservoir simulation models. However, many researchers have modified
POD methodology in an attempt to enhance the results or the efficiency of POD through integrating
some other techniques. For example, Cardoso et al. [13] have used a clustering technique to optimize
the snapshots for the eigen-decomposition problem and missing point estimation (MPE) procedure to
reduce the dimension of the POD basis vectors. Other techniques include the application of POD-TPWL
(trajectory piecewise linearization) and POD-DEIM (discrete empirical interpolation method) which
are elaborated further in this chapter.

Finally, proxy models can be constructed using machine learning and artificial intelligence
techniques. Artificial intelligence and in particular artificial neural networks (ANN) have proven
to be powerful data processing tools which have been applied to a wide variety of problems in
different areas such as medical, engineering, financial, business, etc. An artificial neural network is
a virtual intelligent technique which is an efficient tool for detecting and approximating the highly
non-linear relationship between inputs and outputs of a system. During the last three decades this
technique has been employed in petroleum engineering in different areas as an efficient tool to predict
reservoir characteristics such as porosity and permeability, synthetic log generation, well production
performance, etc.

The Al-based modeling approach can be viewed as finding the complex relationships between
the input-output parameters involved in fluid flow simulation. This technique is the most flexible
approach, which can be used for variety of problems regarding fluid flow in porous media such as
uncertainty analysis, optimization, and history matching. This study is focused on using machine
learning algorithms to develop a proxy model for numerical fluid flow model in porous media.

1.2. Application of Neural Networks in Fluid Flow Modeling

In the past three decades, neural networks have become of interest to petroleum engineers and
geoscientists. On the subject of fluid flow in porous media, the supervised training algorithms and
specifically backpropagation algorithm, are commonly used. In this method both the inputs and
outputs are presented to the network and the learning process takes place based on error feedback to
the network.

Artificial neural networks have been used for a variety of problems in petroleum engineering.
The earlier applications of this method are well test interpretation [14], prediction of formation
permeability [15,16], prediction of formation damage due to injection into low-permeability
reservoirs [17] and reservoir characterization [18].

Later, applications of neural networks in several areas of petroleum engineering became
more common. Gorucu et al. applied this methodology to construct a tool which was named a
“Neurosimulation Tool”, with the objective of predicting the performance of a CO, sequestration
process for enhanced coalbed methane [19]. Alajmi et al. developed a pressure transient analysis
tool which was able to predict the desired unknown properties of a double-porosity reservoir system
such as permeability of the matrix, porosity of the matrix, and fractures by training a neural network.
In the training process they used the known properties of the reservoir, fluid properties, and well
parameters as the neural network input [20]. Shihao wang et al. applied a deep learning algorithm
to develop a model to perform flash calculation for compositional simulation in an unconventional
reservoir [21]. The trained neural network is able to predict the phases and concentration distribution
in the system with very low computational cost and high accuracy. They used this result as the
initial guess for the flash calculation module in the reservoir simulator. Flash calculation requires
very time-consuming numerical calculations which encounter stability problems in some cases, and
therefore implementing deep learning algorithm in flash calculation module resulted in much faster
results with improved stability.
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In another study performed by Mohaghegh et al. a well-based surrogate reservoir model (SRM)
was developed for a giant oil field in the Middle East in order to identify the wells that are prime
candidates for rate relaxation with the objective of higher oil production. The field production after
more than two years confirmed the results predicted by the SRM surrogate reservoir model developed
which demonstrated the capability of the reservoir models developed based on neural network in real
field operation [22].

Shahkarami et al. have used the Al-based approach to develop an assisted history matching
technique for a synthetic oil field with 24 production wells and 30 years of production. The history
matching process in this study is based on three uncertain parameters of the reservoir which are
porosity, permeability and thickness. The results of this study showed that neural networks can be
used as a fast and efficient tool for assisted history matching process [23].

Klie and Florez applied a new approach to develop a data-driven model for fractured shale
reservoirs [24]. In this work, the data-driven model included dynamic mode decomposition (DMD)
for modeling the pressure field. DMD is used for state estimation, forecasting and control based on
reduced-order systems, as an alternative to POD. A long short-term memory (LSTM) network, which
is a type of recurrent neural network (RNN), is trained to track gas production.

In general, according to the existing literature, artificial intelligence techniques have been
mostly used to develop proxy models, which aim at computing wellbore related parameters such
as production/injection rather than dynamic parameters of the reservoir such as pressure and gas
saturation. The well-based models are constructed for a variety of problems including well performance
analysis, optimization, history matching, etc.

There are only a few studies that have been conducted using artificial neural networks for the
purpose of flow modeling within the porous media. In a study performed by Klie [25], POD and DEIM
methodology and radial basis function (RBF) networks were used to develop a proxy model with
two objectives of production rate prediction, and also pressure and gas saturation distribution under
uncertain permeability and varying injection rate. POD and DEIM were used as a tool to reduce the
dimensionality of the matrices generated which are going to be used as inputs for the RBF network.
Therefore, they need to go through all the complications of the POD methodology, before they can use
the RBF network to develop the proxy model. This methodology has been applied on two reservoir
models with maximum of 300 grid blocks. Applying such techniques when the number of grid blocks
increases, dramatically increases the computational time and effort to build such proxy models, and
therefore is not practical for more realistic numerical reservoir models in terms of size and complexity.

In the research performed by Chen et al. [26], a proxy model was developed for a 2D reservoir
model with 900 grid blocks and a heterogeneous permeability distribution with constant porosity.
They assumed that saturation is known and tried to predict the pressure at each grid block by using
the simplified developed proxy model using artificial neural networks. In this work a very simplified
formulation and reservoir model has been used which does not demonstrate the ability of the model to
be applied for a more realistic case.

The existing studies on the application of artificial neural network for developing a grid-based
SRM or proxy model have many limitations and deficiencies and, therefore, they cannot be used
as a practical tool for a complex numerical reservoir simulation model. The current work uses a
novel approach to develop a surrogate reservoir (proxy) model by using artificial neural networks.
The capability of the developed model is demonstrated by applying the technique to a real case, 3D
heterogeneous reservoir with 100,000 active grid blocks which is used for a CO, sequestration study.

2. Materials and Methods

The work flow which was followed to develop the fluid flow proxy model is presented in detail in
the following sections.
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2.1. Numerical Reservoir Model Development

2.1.1. Field Background

The understudy field is a depleted gas reservoir. This field was identified as a proper option for
CO, sequestration since the site is well characterized due to its natural gas production history [27]. The
target reservoir for injecting CO; is a sandstone reservoir approximately 110 ft thick and located 6561 ft
underground with an area of about 500 acres. The reservoir is overlain by a caprock of mudstones. The
structure is bound with three major sealing faults and two aquifers which are connected to the reservoir
from south-east and west side. Two wells exist in this reservoir. The first well was a natural gas
production well, producing from May 2002 to October 2003 that was converted to a monitoring well in
2007. The second well (CRC-1) is an injection well through which the CO, was injected underground.
It was drilled in 2007 and is located approximately 980 ft away from the previously producing well.
CO; injection through CRC-1 started in March 2008 [28].

In the next step a numerical reservoir simulation model is developed to simulate both the
natural gas production phase, and the CO, injection phase. However, further studies in this work
are only focused on the CO, injection process. The reservoir model is developed in CMG-GEM
(compositional modeling module, Computer Modelling Group Ltd., Calgary, AB, Canada) using the
available field data.

The structure of the reservoir is generated by making use of a contour map available from the
geological information of the field. This model includes 100 x 100 grid blocks in the x—y direction
and consists of 10 layers. The reservoir structure and well locations are depicted in Figure 1. The
production well is completed in layers 5 and 6; however, the injection well is completed in five layers
of the reservoir (layer 3 to layer 7).

7,090
7,026

6,963
6,900
6,836
6,773
6,709
6,646
6,582
6,519

6,456
Depth (ft)

Figure 1. Reservoir model structure and well locations.

Reservoir parameter distribution (porosity and permeability) is generated through a statistical
method (Kriging) using the CRC-1 core and log data.

When injection takes place in the reservoir, hysteresis phenomenon plays a significant role on fluid
flow behavior. In the early injection period, drainage is the dominant process; however, imbibition
takes place when the CO; plume starts migrating. Hysteresis affects the CO, mobility as well as the gas
water contact, and therefore is introduced to the model through the proper relative permeability curves.
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Due to the existence of an active aquifer system, a fraction of the injected CO, is dissolved into
the water phase and, therefore, in this model the CO; solubility in water is also taken into account.

2.1.2. History Matching

The developed reservoir model was history-matched based on the available field data both in the
natural gas production phase and the CO, injection phase. During the history-matching process the
monthly natural gas production rate for 18 months and the monthly CO; injection rate for 8 months
are considered as the constraint in the model and the well bottom-hole pressure is matched for the
production and injection wells by altering the reservoir parameters. The thickness of the reservoir
layers was assumed to be a constant value equal to 11 feet. Therefore, during the history-matching
process, the porosity and permeability of the reservoir are used as the major tuning parameters. Figure 2
shows the field data and the simulation results for bottom-hole pressure (BHP) of the production and
injection wells after history matching.

3,000+
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Injection Phase

N
[=]
(=]
e

1,500+

Well Bottom-hole Pressure (psi)

Production Phase

1,000 T T T T T T T
2003 2004 2005 2006 2007 2008 2009
Time (Date)
A Injection Well BHP (Filed Data)
] Production Well BHP (Filed Data)

Production Well BHP (Simulation Result)

Injection Well BHP (Simulation Result)

Figure 2. History-matched bottom-hole pressure (BHP) for production and injection well.

The history matched model is used as a base model to generate the grid-based SRM for the
injection interval when the model is executed for several injection scenarios.

2.2. Proxy Model Development

Surrogate reservoir modeling is an Al-based approach to construct a proxy model that can be
used to generate the outputs of a complex numerical reservoir simulation model. In this context, SRM
can be defined as a customized model comprised of a collection of neural networks which are trained,
tested, and verified for a specific problem.

Once developed for a particular case, it can generate the outputs of the numerical reservoir
simulation model when the inputs are altered within a specific range which the networks have been
trained with.

For this work, SRM is developed to investigate the changes of dynamic parameters (pressure, gas
saturation, and CO, mole fraction) throughout the reservoir under various injection scenarios. Figure 3
shows the general work flow to SRM development.
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Figure 3. Surrogate reservoir model (SRM) development workflow.

2.2.1. Simulation Scenario Design

As mentioned before, for the purpose of SRM development, only the injection phase is considered.
For this study a constant injection interval of 24 months is used and five CO, injection scenarios are
designed based on the amount of CO, injected into the reservoir. Assuming G as the total amount of
CO;, injected for the base case, in the four subsequent scenarios, 2G and 3G, 3.25G and 3.5G total CO,
is injected into the reservoir in 24 months. The monthly injection rates for all the above scenarios is

depicted in Figure 4.
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Figure 4. Monthly injection schedule for five CO, injection scenarios within 24 months of injection.

2.2.2. Data Set Generation

The five above injection scenarios are executed, and proper static and dynamic data are extracted
at the grid block level from the numerical reservoir model. The dynamic parameters are collected at
each month of injection for the entire injection interval. Subsequently, a comprehensive spatio-temporal
data set is generated for all injection scenarios. A list of parameters included in the data set is presented

in Figure 5.



Fluids 2019, 4, 126

static Data

Calculated Static
Data

Well Data

DynamicData

¢ Grid Location (i,j, k), (X,Y)
* Grid Top (2Z)

® porosity

* Permeability

* Distance to injection well

¢ Distance to sealing and Non-sealing
boundaries (faults and aquifers)
¢ User defined parameters

¢ Injection Rate
e Cumulative injection

¢ Pressure, Gas saturation and CO2
mole fraction at any time step

Figure 5. List of data collected for SRM dataset generation.
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In CO; injection and sequestration process, since CO; is migrating upward, CO, mole fraction,
and as a result gas saturation at any location of the reservoir, depend on the reservoir characteristics
(such as porosity and permeability) of not only the current layer, but also the lower and upper layers.
The available pore volume and degree of tightness of several grid blocks in the vicinity of the main grid
block affect CO, movement and gas saturation distribution. Therefore, in order to take into account
the effect of this dependability, extra parameters are calculated and included in the data set (Figure 6).
To obtain the value of Tier-1, Tier-2, and Tier-3, the average reservoir parameter is calculated over the
grids which are included in the corresponding tier system. It should be mentioned that the number of
grid blocks included at each tier system can be increased or decreased, based on the model resolution.

Tier-2 ——

(Layer above)

Tier-1 ——

(includes the main grid)

Tier-3 5

(Layer below)

Figure 6. New scheme for tier system calculation.

2.2.3. Data Sampling

Since the main dataset includes data from every single grid block of the reservoir for five different
scenarios, the generated dataset is very high-dimensional and, therefore, very time consuming to
be used for neural network training purposes. Therefore, data sampling is used to reduce the

dimensionality of the dataset.
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At each time step, data are sampled based on the amount of changes in dynamic parameters
compared to the initial state of injection; meaning that the 10% of the data are more selected from the
grid blocks with higher amount of changes in dynamic parameters. This approach is used to ensure
that the sampled data are able to properly represent the changes that are happening in the reservoir
due to CO; injection. Applying this methodology, 10% of the entire data at each time step is selected to
be used for training the proxy model.

2.2.4. Proxy Flow Model Development

In general, neural network is considered as a class of non-linear parametric function, where the
parameters are tuned during the neural network training. In this work, back propagation neural
network is used to develop the proxy model. Neural network training will be performed once the
network structure is determined. In the current study, a three-layer neural work (input layer, one
hidden layer, and one output layer) is used. The general structure of the network is depicted in
Figure 7. The number of neurons in the input layer is equal to the number of features used as input
parameters. In the hidden layer, the number of neurons are chosen to be slightly higher than the
number of inputs. The input features include the parameters listed in Figure 5, as well as the average
porosity and permeability at three-tier systems, for all grid blocks of the reservoir. All the features in
the generated dataset in Section 2.2.2 are normalized between -1 and 1.

Output layer

5

°
c
-t
)

<
®
=

(R d e L

Hidden¢layer
Figure 7. Typical neural network (NN) architecture for the proxy model.

At each monthly time step during the injection, three individual neural networks are trained for
pressure, gas saturation, and CO; mole fraction. Therefore, there is one output for each network at
each time step.

The neural network training process comprises several steps that lead to the determination of the
involved network parameters. In the back propagation method, at each training epoch the calculated
error is sent backward through the network and the weights are updated accordingly. Gradient descent
method was used as an optimization algorithm to minimize the error. During the neural network
training, some network hyper parameters such as momentum and learning rate are tuned to get a
better accuracy.

The data set is randomly partitioned into three parts. For each of the neural networks 80% of
the input data (out of the already sampled data) is used for training, 10% for validating, and 10%
for testing.

During the training process, performance of the neural networks in predicting the output parameter
is investigated by observing the cross plots of the neural network predicted values versus simulation
output, and also changes of the R-squared value for the training, validation and test set. The error of
the training set as well as the validation set is observed to make sure at each epoch these two errors are
decreasing. The model training is stopped when two criteria are met. First, a satisfactory R-squared
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value is obtained, and second the validation set error is not decreasing any more. The latter prevents
the overfitting problem where the training set error is still decreasing.

3. Results

3.1. Proxy Model and Numercial Model Output Comparison

As mentioned in the previous section, only 10% of the entire data was sampled and used to train
the neural networks. In order to generate the dynamic reservoir parameters for the entire reservoir, the
developed neural networks at each time step (each month of injection), are applied to all grid blocks of
the reservoir.

To evaluate the result of the trained proxy model in generating the outputs of the numerical
reservoir model, the developed model is applied to a training dataset (scenario-2) and the distribution of
dynamic parameters in the reservoir at each time step is compared. In Figures 8 and 9, the distribution
maps of the three parameters of pressure, gas saturation and CO; mole fraction at the first layer of the
reservoir are presented for two time steps during the injection process (in the middle of the injection

and at the end of the injection).
£

Figure 8. Distribution maps of pressure, gas saturation and CO, mole fraction in the first layer
of the reservoir (from left: CMG output, proxy model result, and error)—training case-12 months
after injection.
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In order to verify the capability of the developed model to generalize, the model is applied on a
blind case scenario which was not used in the training process. Therefore, a new injection schedule is
defined and executed in the reservoir simulation model. The monthly gas injection schedule for the
blind case scenario is depicted in Figure 10 with crossed lines.
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Figure 9. Distribution maps of pressure, gas saturation and CO, mole fraction in the first layer
of the reservoir (from left: CMG output, proxy model result, and error)—training case-24 months
after injection.
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Figure 10. Monthly injection schedule for the blind case scenario.

Subsequently, the required data are extracted from this scenario and the developed proxy model
is applied to generate the three output parameters throughout the reservoir over the entire injection
interval. The results of the neural network predictions for the three dynamic parameters are presented
in Figures 11 and 12.
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Figure 11. Distribution maps of pressure, gas saturation and CO, mole fraction in the first layer of the
reservoir (from left: CMG output, proxy model result, and error)—blind case-12 months after injection.
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Figure 12. Distribution maps of pressure, gas saturation and CO, mole fraction in the first layer of the
reservoir (from left: CMG output, proxy model result, and error)—blind case-24 months after injection.
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3.2. Proxy Model Error Evaluation

The 2D distribution maps, which were presented in the previous sections, visualize the proxy
model result versus the CMG output for each layer of the reservoir. In this section, the frequency error
plots are presented to demonstrate the frequency distribution of the error for all grid blocks of the
reservoir. The error plots were generated for each parameter of pressure, gas saturation, and CO, mole
fraction individually, when neural networks are applied to two different scenarios (the training case
and the blind case). As an example, the results are presented at two time steps during the injection
interval for both scenarios (Figures 13-15).

P-Injection Month 12 P-Injection Month 12

Training Case Blind Case

8 3
3

% Frequency Distribution
8 8 35 8
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0 @
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Figure 13. Pressure error frequency distribution for all grid blocks of the reservoir at 2 time steps
during the injection—left: training case, right: blind case.

Generally, the frequency of the grid blocks with higher amount of error increases when the neural
networks are applied to the blind case as opposed to the training case, especially in the later time steps.

Also the results show that the pressure networks have the highest acuracy in predicting the
pressure distribution since for this parameter the amount of error for the blind case scenario after
24 months of injection does not exceed 2%. The frequency error plot for gas saturation prediction for
the same blind case after 24 months of injection shows that about 85% of the grid blocks have an error
of less than 0.02. The prediction results for the same case for CO, mole fraction show that more than
95% of the grid blocks have an error of less than or equal to 0.05.

In general, pressure distribution generated by the proxy model is of very high accuracy (less than
3% of error) compared to gas saturation and CO; mole fraction. The reason lies in the fact that the
reservoir has a relatively small volume with strong aquifer support and, therefore, the entire reservoir
is pressurized as a result of CO; injection. Consequently, pressure does not have a clear front which
needs to be specifically detected. This can be the reason why the changes in pressure can be captured
effectively through the sampled data.

The output for gas saturation and CO, mole fraction shows higher error. The reason is that both
of these two parameters have a sharp front and, therefore in order to be accurately detected, a sufficient
amount of data is required to be introduced to the network particularly from the areas close to the edge
of the plume. Although the sampling methodology is based on selecting the majority of the data from
the area with maximum amount of change, it does not guarantee selection of all the data specifically
from the edge of the CO, plume.
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Figure 14. Gas saturation error frequency distribution for all grid blocks of the reservoir at two time

steps during the injection—Ileft: training case, right: blind case.
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Figure 15. CO, mole fraction error frequency distribution for all grid blocks of the reservoir at two

time steps during the injection—Ileft: training case, right: blind case.

4. Discussion

Due to the limitation of the computational power available for this study, the neural network
training was performed using only 10% of the data from the training scenarios; however, using a much
higher percentage of the data set extracted from the training scenarios can improve the results of the
neural network prediction. The more training data that is used, the better the fluid flow behavior can
be captured during the training process.
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In this work a single layer neural network algorithm was used to develop the proxy model;
however, application of deep neural network is recommended, specifically if a large percentage of the
reservoir grid blocks are used in the training phase.

5. Conclusions

The developed proxy model based on artificial intelligence and machine learning is capable of
generating the results of a complex numerical simulation model at the grid block level with reasonable
accuracy in a very short period of time with significantly less computational cost. It takes about
15 mine to execute one of the simulation runs used in this study, and it takes about 45 s to apply
the developed neural networks for all monthly time steps. Therefore, we have speeded this up by
about 20 times for this specific case. However, the more complex the reservoir model, the higher it is
speeded up. That’s because when the reservoir model gets more complicated the run time to solve
the partial differential equations would dramatically increase; however, the time and computational
effort to develop and apply a neural network for such a complex system is not increasing accordingly.
Therefore, the efficiency of the proxy model is much higher for more complex systems.

The Al-based proxy model is not limited by the choice of a predefined function and, therefore, it
is very flexible. In all the proxy models developed through statistical approaches, the function that
represents the system behavior is solely determined through the relationships between the uncertain
parameters and the system outputs. However, in an Al-based approach any type of data which
affect the output of the model or provides any information regarding the under study system can be
included in model development. Therefore, the model is trained by providing information related to
any component of the system, the relationship between these components, and the effect of each of
them on system behavior.

An Al-based proxy model can be used to model a significantly non-linear system. The pattern
recognition capability of neural networks enables the model to capture the interrelationship between
multiple parameters of the system without encountering any instability problems.

The characteristic of the method used in this study allows us to make use of several types of
data in order to teach the model the physics behind the fluid flow in porous media. Therefore, the
constructed model is able to generate the outputs of the numerical simulation model when the inputs
are changes within the training range.
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